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In the present work, we study the starting transient of an immersed micro-jet in close
vicinity to a solid wall parallel to its axis. The experiments concern laminar jets (Re
< 200) issuing from a 100 µm internal tip diameter glass micro-pipette. The effect of
the confinement was studied placing the micro-pipette at different distances from the
wall. The characterization of the jet was carried out by visualizations on which the
morphology of the vortex head and trajectories was analyzed. Numerical simulations
were used as a complementary tool for the analysis. The jet remains stable for very
long distances away from the tip allowing for a similarity analysis. The self-similar
behavior of the starting jet has been studied in terms of the frontline position with
time. A symmetric and a wall dominated regime could be identified. The starting jet
in the wall type regime, and in the symmetric regime as well, develops a self-similar
behavior that has a relative rapid loss of memory of the preceding condition of
the flow. Scaling for both regimes are those that correspond to viscous dominated
flows. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4905037]

I. INTRODUCTION

The dynamics of starting immersed jets have been widely studied in turbulent regimes due to
their important role in different industrial applications such as fuel and oxidizer jets in combustion
chambers, inkjet printers, or flow control, especially control of separated flows.

Laminar starting jets, however, have received less attention. Besides the academic interest,
applications of similar flow configurations can be found in microfluidics. Instantaneous switching
on of submerged laminar jets1 can be used to perform analog or digital operations similar to those
performed with electronics. Devices like fluid amplifiers are of interest in environments where
electronic digital logic would be unreliable (e.g., in systems exposed to high levels of electromag-
netic interference or ionizing radiation). In the domain of biology, these types of jets are used for
instance as a stimulus to study the response of type T mechanic-sensorial receptors of the Hirudo
Medicinalis leeches to shear stresses.2 Laminar starting jets are also studied in relation to biological
propulsion mechanisms.3

Jets of this kind can be characterized by the evolution of a vortex head and the jet stem formed
between the nozzle and the structure.

At the first stage of the injection of the fluid in the quiescent environment, a vortex head is created
due to the roll up of the vortex sheet that separates at the edge of the exit orifice. This structure grows
rapidly in size by absorbing all of the fluid ejected from the nozzle and does not translate consider-
ably while it remains attached to the nozzle. The initiation of the starting jet is characterized by the
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separation of this vortex structure from the nozzle and the formation of a trailing jet behind the trans-
lating leading vortex head.

At very low Reynolds number, Cantwell4 studied the starting process of round jets using an
axisymmetric Stokes flow approximation and obtained the particle paths at Reynolds number Re
≤ 30, based on the exit velocity U0 and on the nozzle diameter D. He showed that when coordinates
are scaled with the square root of time, the starting vortex becomes a self-similar flow.

Other theoretical studies have proposed models consisting of a spherical vortex head structure5,6

or a Norbury vortex ring7,8 interacting with a steady jet.
At relative high Reynolds number (Re ∼ 3000), Gao et al.9 have described a pinch-off process

of the starting jet in which the vortex head detaches from the trailing jet at distances of ∼10D. An
adequate interruption of the fluid injection leads to the formation of an isolated vortex ring translating
in the quiescent fluid by its self induced velocities. Vortex rings have been studied in depth since
some of the early works of Helmholtz10 and Reynolds.11 In particular, vortex rings in unbounded
semi-infinite domains are well understood, including the formation dynamics, their propagation, and
transition to turbulence (see for instance Shariff and Leonard12 or Lim and Nickels13).

When Reynolds numbers are moderate (Re < 1000), the leading vortex remains attached to the
enlarging jet stem for long distances as long as the fluid continues discharging from the orifice. In
this case, the toroidal vortex, which forms the jet head, grows in time by fluid entrainment directly
from the surroundings as well as from the quasi-steady trailing jet structure.

The growing vortex head of the starting jet may travel with a rectilinear motion or with deviations
from the axial direction. Deviations of the jet column are in general associated with the development
of instabilities that alter the dynamics of the head.14 In transient jets, Witze15 and Ouellette and Hill16

have shown that the fluid flow solution for the quasi-steady state jet is valid for the stem of the starting
jet, even in the jet’s initial stages of development. Therefore, it is likely that instabilities observed in
steady jets should also be present in the starting jet.

The instabilities observed in steady axisymmetric jet flows are either of the sinuous kind: charac-
terized by helical-spiral modes in which the waves associated with the instabilities appear as a rhyth-
mic undulation or twisting of the jet, or of the varicose kind: characterized by axisymmetric modes
in which the waves travel as a succession of symmetrical swellings and contractions. Increasing Re
from 100 to 1000 in steady jets, Crow and Champagne17 found a continuous evolution from helical
to axisymmetric structures. The latter tend to prevail at larger values of Reynolds number. In Ref. 18,
the critical Reynolds number for the onset of instabilities in a steady jet was found numerically to
be close to 220. However, this value depends on different parameters of the simulated situation. It
has been found that the assumed velocity profile influences the critical Reynolds number associated
with the onset of instabilities. In particular, the boundary layer thickness, which would be different
for a tube, a square-edged orifice or a knife-edge orifice, has been identified as an important crite-
rion in the production of instabilities and promotion of the various structures. Also, because of the
convectively unstable nature of the jet instabilities, the stochastic nature of surrounding disturbances
becomes another significant aspect in the onset of the instability development process.19,20 O’Neill
et al.21 found experimentally that for Re < 500, the instabilities of jets can be dampened at very long
distances from the nozzle exit. The author concluded that the perception that steady round jets at
low Reynolds numbers were unavoidably unstable flows, supported by previous flow visualization
studies, was erroneous.

For laminar starting jets, Reynolds22 found a variety of instabilities in the jet (pedal breakdown,
sinuous oscillations, and shearing puffs) with onsets at very low values of the Reynolds number. These
experiments are in contradiction with the results of Danaila et al.18 or O’Neill et al.,21 but as some
works signal,23 Reynolds’ results, especially those for Re < 150, could have been seriously affected
by the presence of appreciable background disturbances in the experimental apparatus.

The use of starting micro-jets enables studying starting jets that are less prone to develop insta-
bilities. Gau et al.24 and Aniskin et al.25 have recently reported that steady micro-jets are more stable
than large-scale jets. One possible explanation of this enhancement of stability can be associated with
a low level of the background perturbations with short wavelengths (or high frequencies) that these
jets would require to develop instabilities with a high growth rate.
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The presence of a wall at close proximity to the starting jet may also affect the vortex structure of
the head and the instabilities developed in the trailing jet. This is one of the subjects that we address
in the present paper.

When a vortex filament is convected near a solid surface, a viscous response appears in the
near-wall flow. For vortices with high enough values of circulations, a sequence of events initiates
in the boundary layer, which culminates in an abrupt eruption of surface fluid and usually leads to
the formation of a new vortex structure. In general, such eruptive events develop because a vortex
in proximity to a wall induces a persistent adverse pressure gradient on the boundary layer and/or
a local concentration of the vorticity field. Reports of the paradigmatic vortex ring interacting with
solid bodies can be found for instance in Refs. 26–28. However, most of these studies involve a vortex
ring impacting normally on a wall or with a wall at an angle with its direction of propagation. The
motion and the structure of a vortex ring convecting in a quiescent fluid, parallel to a plane wall, were
just recently described by O’Loughlin and Bohl.29 The initial vortex ring trajectory was reported to
divert towards the wall as described by an inviscid flow model. However, as the ring came closer to
the wall, the interaction became viscous in nature and was qualitatively similar to that of a vortex
ring/oblique wall interaction.

Other studies have also analyzed the effect of a radial confinement of laminar steady jets. For
coaxial confinements,30,31 the flow typically comprises a pair of symmetric vortices trapped between
the jet like core flow and the downstream channel walls. With increasing jet velocity, a critical value
of Reynolds number is reached at which the symmetric flow downstream of the jet exit breaks down
into an asymmetric flow through a pitchfork bifurcation. In general, however, for Re < 300, coaxial
confinement does not greatly affect the jet stability.

To the best of our knowledge, the present paper is the first study dealing with stable starting
jets generated close to a plane rigid parallel wall. The study is undertaken with micro-jets originated
through the end of a capillary tube with Reynolds number corresponding to the sub-critical regime
(40 < Re < 130). The goal of our work is to analyze stable transient starting jets and to identify the
effect of the wall on the flow. Moreover, we aim to experimentally determine its scaling laws.

The rest of the manuscript is organized in sections. First, we describe the experimental setup then
the experimental results, describing the characteristics of the observed regimes. We then proceed to
a discussion introducing both numerical simulation and scaling laws in order to unveil some of the
underlying physics of this phenomenon. The results are summarized at the end of the manuscript.

II. EXPERIMENTAL ARRANGEMENT

To create the starting jet, we used glass capillaries (microcaps-Drummond, US) (inner diameter
D = 0.1 mm, outer diameter OD = 0.5 mm, and length L = 20 mm) placed horizontally at the center
of a distilled water-filled tank (100 × 50 × 20 mm).

A large number of studies dedicated to the study of vortex rings have considered the use of a
piston driven mechanism to inject fluid in a quiescent media. For starting jets, other types of studies
choose the sudden pressurization of a pipe system ended with a nozzle through the rapid opening
of a solenoid valve. For micro-jets, a commercial system that enables the injection of very small
amounts of fluid in a controlled way is available, and hence we chose this last option. The pipettes
were therefore connected to a computer controlled pressure pulse generator Picospritzer II (Parker
Corporation, General Valve Division, Fairfield, NJ) with tygon tubes (0.762 mm inner diameter and
length of 500 mm). The system generated the jet by imposing a pressure step into the tube filled with
water, colored with methylene blue.

By recording the position as a function of time of the liquid-gas interface inside the tygon tube
with a video camera, it is possible to obtain a picture of the typical transient of the flow rate injected
by the system. In Fig. 1, we show the dynamics of the meniscus during the opening and closure in a
shortened experiment for three different pressures. We can observe during the start phase, an initial
increase of the meniscus velocity until a peak value followed by a decrease to an almost constant
value. During the stop phase, it can be observed that the meniscus not only decreases its velocity but it
also has a backward displacement. In this work, we undertook longer experiments (∼1 s) and focused
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FIG. 1. Typical initial transient of the flow rate as a function of time at three different pressures. Opening and closing of the
solenoid valve.

our analysis on the long term dynamics when the steady regime is well established. As we will show,
the initial transient, even of large importance for studies related to vortex ring dynamics or related to
initial stages of jet flow, seems not to significantly alter the characteristics of the long term dynamics
of the jet flow.

It is worthy to mention that because of the way we have performed the measurement, the peak
value of the flow rate during the initial transient may result overestimated when directly read from
this graph. Indeed, when the valve is opened (closed), a dilatation (contraction) of the tygon tubing is
expected. Thus, for the very first stages of the experiments and for those occurring after the closure,
the tracking of the movement of the interface cannot be directly associated with the real value of
the mean exit velocity from the nozzle. It is however possible to propose a rough correction to the
measurements for the initial transient. To this end, we can compensate the excess in the measurement
during the initial stage when values of the flowrate are contaminated by the expansion of the tubing
and by subtracting the values associated with the receding meniscus phase, which are associated with
the contraction of the tubing. The corrected transient obtained by this procedure can be observed in
Fig. 2. In this figure, it is possible to visualize that after a time lag of 10 ms, the flow initiates, attains
a peak value, and then decreases to an almost constant value. The compensated peak values are much
smaller than the ones observed in the uncompensated case. Under these considerations, we can state
that volumes dispensed by the system are linear over time, with a short transient to attain constant
volume flow rate (∼50 ms). Finally, we can also signal that Abramovich5 undertook experiments of
a starting jet by a sudden opening of a valve, and the pressure recordings over time show a behavior
that is consistent with the evolution of the flow rate of our experiments.

A glass wall in horizontal (Fig. 3(b)) or vertical (Fig. 3(c)) position was placed parallel to the
jet axis to enable lateral and top views of the flow patterns. The relative position of the pipette to
the wall was varied by means of a micromanipulator (Narishige, Japan). The angle formed between

FIG. 2. Corrected initial transient of the flow rate as a function of time at three different pressures. Opening of the solenoid
valve.
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FIG. 3. (a) 1-High speed digital camera. 2-Stereoscopic microscope. 3-Connection to pressure pulse generator. 4-PMMA
chamber and micropipette. (b) Wall position for top view recording. (c) Wall position for lateral view recording.

the jet axis and the normal to the wall surface was 90◦ ± 1◦. Four different pressure values were set
in the apparatus to generate jets with different Reynolds numbers in the range of 40–130. Flow rate
plots like the one shown in Fig. 2 were obtained for each pressure value. The flow rate corresponding
to the different pressure steps was taken as the plateau flow rate in those plots. The starting jet was
visualized through a trinocular stereozoom microscope Olympus SZ60 (Olympus, Japan) using two
different magnifications. The pictures obtained were images of 512 × 512 pixels recorded at 300 and
600 frames per second with a digital Cmos fast camera SpeedCamMiniVis (Weinberger, Germany).
Image scales were determined from a reference grid. The original images were post-processed by
subtracting the background image and increasing the contrast. During the first stages of this research,
the light source was located at the side of the stereozoom microscope, in line with the jet’s axis, at
an angle of about 45◦ from the horizontal plane. This illumination produced the shadows that can be
seen in Fig. 4. Subsequent images were obtained using a led ring illuminator, which corrected for this
shadowing effect (Fig. 5).

FIG. 4. Top figures: LV and bottom figures: TV of a jet at Re ∼ 50 at four different times. The first (left, LV and TV) images
correspond to the regimen with axial symmetry (symmetric regime). The last (right, LV and TV) images correspond to the
wall regime. The coordinate system is drawn in the first top view and in the first lateral view.
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FIG. 5. Lateral views at Re = 73 at different distances from the wall. From left to right: 0.26, 1.74, 2.68, and 5.29 mm.

After each experiment, the water in the tank was allowed to come to rest by waiting 30 minutes
before starting a new experiment.

III. EXPERIMENTAL RESULTS

In Fig. 4, we show visualizations of the flow patterns with top (TV) and lateral (LV) views for a
typical case (Re ∼ 50 and non-dimensional distance to the wallYW/D ∼6) at different times. As the jet
develops, different flow configurations appear. In the symmetric regime (Fig. 4, left, LV and TV), the
vortex head is formed, separates from the nozzle and travels in the fluid in the axial direction keeping
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its axial symmetry. In our experiments, the formation process of the head is very short (t ∼10 ms)
compared to other time scales. The head continues to increase in size and the jet column is conical,
with an axis that remains rectilinear all along the symmetric regime. In the wall regime (Fig. 4, right,
LV and TV), the axial symmetry of the head is lost. The head tilts and it starts moving first towards the
wall and then away from the wall. The vortex head evolves not only in size but also in shape during
this stage. The axis of the jet column is no longer rectilinear.

In this regime, the LV show that the presence of the wall breaks the symmetry of the streaklines.
However, the TV show that the symmetry of the streaklines with respect to the midplane is not altered
by the presence of the wall. Figure 5 shows LV for a jet of Re = 73 at different distances from the
wall. It is clear that the further the jet is located from the wall, the later the last two scenarios described
above occur.

A. Symmetric regime

In this regime, the jet patterns are quite similar to those of the start-up of a laminar free jet flow.
Once the vortex head is formed and separated from the nozzle, the structure remains axisymmetric
and grows with time. The lateral and top views are therefore almost identical.

A schematic representation of the head of the liquid emanated from the nozzle is displayed in
Fig. 6(b), in the mid plane perpendicular to the wall surface and containing the jet axis. Two symmetric
spiraled vortices with vortex centers at positions (RV ,0,XV) and (RV , π,XV) appear in the midplane
(positions are measured in a cylindrical coordinate system, RV is the radial position of the vortex
center and XV is the axial position of the vortex center) and are located at an axial distance (XF − XV)
from the axial position of the front point (XF, the part of the head with the largest value of the axial
coordinate x at a given time). It is important to mention that this is a definition, and that these coor-
dinates do not coincide with the local maxima of the vorticity field. We can also consider the top and
bottom points of the head ((YU,0,XU) and (YL, π,XL)). The positions of these last two points coincide
with the points exhibiting the largest radial coordinate in which the tracer can be detected. Because
of the existing symmetry, XU = XL and YU = YL.

The front, vortex centers, and top or bottom points of the vortex do not move together with the
same velocity. In the present regime, the velocity of the front has only one component that agrees
with the axial direction, and there is no deflection of the front trajectory from the jet axis.

FIG. 6. (a) Lateral view of symmetric phase. (b) Schematic of the vortex head with notation.
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FIG. 7. Frontlines from the coordinate system of Fig. 4. Frontlines sequences are constructed considering time steps of
33.3 ms starting at 33.3 ms. Left: Re = 40; d = 5.4 mm. Right: Re = 73; d = 5.4 mm.

On the contrary, the vortex centers, top, and bottom points have an axial and a vertical velocity.
From visualization experiments, it is cumbersome to determine the position of the vortex centers.
Hence, it is convenient to restrict the analysis to the evolution of the front, top, and bottom points.

1. Frontlines

It is possible to represent the frontline positions at different times. This line is formed at different
times by the points with the largest radial coordinate in which the tracer can be detected (measured
from a polar coordinate system placed at the jet origin). We show in Fig. 7 a typical time series of the
frontline for this regime.

As shown by these figures, in this regime, the top and bottom points separate from each other
forming an almost constant angle (φ) with respect to the centerline, that is a function of jet’s exit
velocity. The symmetry observed indicates that there is not an appreciable effect of the wall.

We represent in Fig. 8, the tangent of the angle for different Reynolds numbers. The angle in this
regime decreases with the jet’s exit velocity, and a good fit is obtained with a Boltzmann type function.

2. Front and lateral point velocities

Prandtl’s32 analysis of a starting jet was revisited recently by Hettel et al.33 using Bernoulli’s
equation applied to the axial streamline. It was found that the velocity of the front (UF) was constant
and could be related to the jet’s exit velocity (U0) by the expression UF/U0 = 0.5.

FIG. 8. Tangent of the angle formed by the frontlines in the symmetric phase for different Reynolds numbers.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  186.38.51.124 On: Tue, 06 Jan 2015 21:45:03



013601-9 Cabaleiro, Laborde, and Artana Phys. Fluids 27, 013601 (2015)

Hettel et al.33 verified this relationship numerically considering a velocity U0 related to the veloc-
ity of a piston that pushed the fluid through the nozzle. This expression was tested for short distances
of the vortex head from the nozzle exit (about 3 diameters). When considering larger distances, this
expression is inadequate. The local value of the jet velocity should be taken into account instead of
the one at the nozzle exit.

For a steady laminar jet, it was proved34 that in the axis of the jet issuing from a point source,
the local velocity is inversely proportional to the nozzle exit distance x: U0 ∼ K/x. Here, x, y, z is a
Cartesian coordinate system (Fig. 4), and K is Landau’s constant.

Based on Cantwell’s4 study (which extended this analysis to the case of a starting jet), the front
velocity can be expected to follow the same dependence with respect to the axial coordinate. In many
cases, however it has been convenient to modify this law and consider that the jet origin is slightly
displaced from the nozzle exit (virtual origin of the jet). On this basis, a velocity fit of the front can
be proposed with an expression of the type

UF =
K

2(x − X0) . (1)

Here, we introduce a virtual origin of the jet through X0, as done in several works. To describe
the trajectory of the front, a power law of the following type can be proposed

XF = a(t − t0)b + X0. (2)

The time t0 can be associated with the vortex head formation time3 prior to its separation from
the nozzle. Taking into account, this expression it follows that

UF = ba
1
b (XF − X0) b−1

b . (3)

When b = 1/2, the dependence of the front velocity with the axial coordinate stated by Landau’s
expression is recovered. K in Landau’s expression is then equal to a2.

Power-laws were fitted to the front position curves shown in Fig. 9 at different Reynolds numbers.
Note that in these figures, we have represented the square root of time as the abscissa. In agreement
with the observed alignment of points along straight lines, the coefficient b obtained with these fits
appears to be a constant value of 0.5 in all our experiments. The virtual origin on the other hand
increases with the jet’s exit velocity (Fig. 10) but no clear effect of the wall distance was observed.

With the value of b = 1/2, it is possible to define a nondimensional number

ReF =
UF(XF − X0)

ν
=

a2

2ν
. (4)

This local Reynolds number based on the front axial position and the front velocity can be used
to characterize the flow in this regime, and it remains constant when times considered exceed the
transient to attain a constant flow rate.

FIG. 9. Horizontal position of the front XF as a function of the square root of time t . Jet flowing at different Reynolds
numbers. Nozzle axis placed at a distance of 5.4 mm from the wall.
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FIG. 10. Left: Virtual origin of the jet considering the front point position and the lateral point positions as a function of
Reynolds number. Right: Coefficient a2 of Eq. (2). Solid lines correspond with Abramovich’s5 fit of the front point. Dashed
lines correspond with Andrade and Tsien’s35 fit of the front point.

In steady jets, Abramovich5 obtained that the empirical value of the constant K was proportional
to Re3/2 (Re based on the nozzle diameter and the jet’s exit velocity), while Andrade and Tsien35

found it was proportional to Re2. Both Cantwell4 and Prandtl32 analyzed the case of a jet produced by
a constant force directed along the x-axis immersed in an infinite domain. According to their work,
it is expected that, for short distances from the jet origin, the constant K (for starting jets) can be
determined by the following law:

K =
8ν

A − 1
, (5)

where ν is the kinematic viscosity, A is a constant, and

ReJ2

16π
= A +

4
3

A
A2 − 1

− A2

2
ln

(
A + 1
A − 1

)
. (6)

Here, a Reynolds number ReJ has been defined in terms of the amplitude J of the force directed
along the x-axis and the density of the fluid ρ

ReJ =
J/ρ
ν

. (7)

For ReJ >> 1, the use of Eqs. (5)–(7) indicates that the constant should behave like K ∝ ReJ2. We
show in Fig. 10, fits of the virtual origin and of coefficient a2 for different Reynolds numbers. We indi-
cate in the graphs the fits with the Reynolds dependence observed by Abramovich,5 and by Andrade
and Tsien.35 The expected quadratic dependence of K (or a2) with respect to the Reynolds number
does not seem appropriate in our case. A better fit is obtained with Re2.5. Different factors may play
an important role in explaining the discrepancies with theoretical results. For instance, the finite size
of the tank that is considered, or the fact that the force is generated by a finite-diameter jet-tube.

The power laws postulated for the front point positions over time stated by Eq. (2) may also be
proposed for the lateral points. A square root dependency of the position of the lateral points’ position
over time is again observed. In Fig. 10, we also show the values of the coefficients of the power laws for
the lateral points (with b = 1/2). As these graphs show the constant affecting the square root of time
is different for the lateral and the front positions. This means that the front and the lateral velocities
are different at the same time. Lateral points are retarded with respect to the front point.

3. Vortex head diameter

The jet feeds fluid into the spiraled vortex accompanied by an entrainment of the surrounding
media that produces, as a result, an increase in size of structures over time. In the symmetric regime,
this process can be characterized considering a characteristic diameter DH = RU + RL. In our exper-
iments, DH grows with time. The curves of DH can be fitted with the following expression:

DH = A1tB1 − C1. (8)
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FIG. 11. Constants for the increase of the vortex diameter (Eq. (8)) as a function of Reynolds number.

We show in Fig. 11 the values of the coefficients of Eq. (8) for the different experiments. The
values of B1 and C1 seem to be almost constant (close to 0.4 and 0.000 42, respectively), whereas
the value of A1 seems to be linear with Re. Gao et al.9 found that after a short time of initiation of
injection, the vortex ring diameter grew as a linear function of time. In the simulations of a starting
free laminar jet, Hettel et al.33 observed that close to the nozzle the volume of the head increased
linearly with time, assuming that the head was a perfect torus. However, these calculations remain
valid only for very short times after initiation as no entrainment of surrounding fluid was considered.
Therefore, it is inadequate to extrapolate these results to our experiments. In our experiments, we
observed that in the range of times corresponding to the symmetric regime, DH grows with a power
of time that remains close to the value of 0.4.

B. Wall dominated regime

In the wall dominated regime, the vortex head and jet column are clearly altered by the wall
presence (Fig. 12).

The initiation of the transitional regime can be linked to the increase of the vortex head size. An
upper bound of the time required for the wall dominated regime’s initiation can be related to the time
required by the vortex head to attain dimensions that become comparable with the wall-nozzle axis
distance d = −YW . We can make use of the curve fits of the symmetric phase to give an upper bound
of this time Tmax, considering as limiting value DH/2 = d

Tmax =

(
d + C1

A1

) 1
B1
. (9)

FIG. 12. Visualization of the first stages of the Wall regime. Left: Lateral view. Right: Top view.
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FIG. 13. Time required for initiation of the wall regime. Nozzle distance to the wall d = −YW =1.6 mm.

In order to quantify the initiation of the transitional stage, we compare for each experiment the
values of YL and YU at different times. Comparing the values of YL vs. YU, we define the initiation time
of the regime Tinit as the one corresponding to the separation of experimental points from the slope 1
by 5%. Fig. 13 shows these values. For a given distance to the wall and taking into account our data,
it is expected that this time will decrease following a law proportional to Re−2.5. The value of Tmax

overestimates the beginning of the regime but remains a good first approximation.

1. Head trajectory and velocities

In Fig. 14, we represent typical trajectories of the front, top, and bottom points of the jet during
the wall regime. The head trajectory is initially almost rectilinear but during the roll-up of the vortex
ring, it moves away from the wall. As a consequence of the vertical movement of the head, the
streak-line of the axis of the jet stem does not remain rectilinear any longer and bends, first approach-
ing the wall and then separating from it (Fig. 12).

Typical frontlines for the wall dominated regime at different times are given in Fig. 15. As we
can observe the rectilinear movement of the front is lost and we can no longer identify symmetry
around the centerline.

In Fig. 16, we show the horizontal position of the front versus the square root of time. We repre-
sent cases at two different distances from the wall. At the larger distance, the wall regime does not
take place and, therefore, the results enable comparison with the symmetric regime. The comparison
shows that proximity of the wall to the vortex head decreases the horizontal velocity of the front.

For the field of view of the experiments, the vertical velocity of the front increases with time
until attaining an almost constant value. Note that in Fig. 17, a constant velocity is represented as the
square of the abscissa.

FIG. 14. Trajectories of the front, top, and bottom points of a jet at Re = 98 and YW = −2.3 mm.
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FIG. 15. Frontlines from the coordinate system of Fig. 4 considering time steps of 33.3 ms starting at 33.3 ms. (a) Re = 73;
d = 1.6 mm; (b) Re = 73; d = 0.26 mm.

It was observed that this quasi steady velocity increases with Reynolds number and, for a fixed
value of Re, it decreases as the distance to the wall increases (see Fig. 18, note that in these plots, the
vertical velocity is normalized with the jet’s exit velocity). In our experiments, Re number variations
were achieved by changing the jet’s exit velocity. Therefore, an almost constant value of Uy/U0 (as
in Fig. 18, left) indicates a linear increase of the vertical velocity with Re.

IV. DISCUSSION

In order to better understand the underlying physics of the starting jet, and of the influence
of a wall placed at close proximity to it, we proceeded to analyze the problem through the use of
non-dimensionalization and scaling. Numerical simulations were also carried out to complete the
analysis.

When the governing equations and boundary conditions (BCs) of a problem are invariant un-
der a Lie’s group, the solution is also invariant under the same group. In this case, the solution can
be expressed in terms of a reduced set of combinations of the basic variables, called the similarity
variables. The fundamental one-parameter (s) dilation group can be expressed as

r̆ = esr; θ̆ = θ; t̆ = e2st; ŭi = e−sui; p̆ = e−2sp, (10)

FIG. 16. Nondimensional horizontal front position as a function of the square root of time. Starting jet at different Reynolds
numbers (40, 73, 98, and 126) and two nozzle-wall distances.
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FIG. 17. Nondimensional vertical front position as a function of the square root of time. Starting jet at two different Reynolds
numbers and a fixed nozzle-wall distance.

where r and θ are Polar coordinates, ui are the velocity components in a polar coordinate system, p
is the pressure, t is the time, r̆ and θ̆ are the transformed polar coordinates, ŭi are the transformed
velocity components, p̆ is the transformed pressure, and t̆ is the transformed time.

The problem of the starting vortex formation in an impulsive started jet is invariant under the
fundamental dilation group of the Navier-Stokes equation when the assumption of an unbounded flow
produced by a force acting at the origin can be accepted.4 Then, the unsteady flow dynamics of the
jet can be analyzed in terms of the portraits of particle paths in similarity coordinates x/sqrt(νt) and
y/sqrt(νt). The value of the parameter s is in this case 0.5. We will restrict our analysis of similarity to
a single plane. In the symmetric regime, this is enough as we can take advantage of the axial symmetry
of the flow. In the case of wall jet, we will consider the dynamics in the vertical plane of symmetry.
This last option is not completely original for nonaxis-symmetric jets as similarity analysis restricted
to planes of symmetry of the flows for the case of pulsating jets has been previously reported.36 We
concentrate our analysis mainly on the frontline dynamics as we can identify this line easily in the
portrait of particle paths. As we mentioned before, our experimental study will be complemented now
by the results issued from numerical simulations. Having all the variables available, this will help to
unveil some of the underlying physics and illuminate our discussion. On the other hand, this approach
will give us the opportunity to undertake a parametric analysis that would be more arduous to be
done from physical experiments. The code used in the Computational Fluid Dynamics (CFD) study
is Code_Saturne37 and we considered both 2D simulations for the axisymmetric regime and 3D simu-
lations for the study of wall regime. Details of the simulation domain and BC considered can be seen
in Fig. 19. At the walls, Neumann BC was imposed to the pressure and Dirichlet BC to the velocity
components, and at the free inlet/outlets, Neumann BC were imposed to the velocity components and
Dirichlet BC to the pressure. At the symmetry plane, Neumann BC was imposed both to the velocity
components and to the pressure. Given the symmetry observed from the top view in our experimental
visualizations, we chose to use a half domain for the 3D simulations in order to reduce the number

FIG. 18. Vertical velocity of the front point of the vortex head as a function of Reynolds number at d = 5.4 mm (left) and as
a function of the distance to the wall (right) for a jet at Re = 98.
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FIG. 19. Numerical simulations domains and boundary conditions. (a) 2D simulations; (b) 3D simulations.

of cells: we used a 3 million volumes non-uniform structured mesh, which was refined near the shear
layer regions for these Direct Numerical Simulations (the smallest finite volume had a characteristic
size of 0.02D). Both the axisymmetric simulations and the 3D simulations were run in nondimen-
sional form (the nondimensionalization parameters were the jet’s exit velocity U0, the fluid density ρ,
and the orifice diameter D). The domain was 80 diameters long, 10 diameters wide, and 20 diameters
high. The nondimensional time step for the simulations was 0.05. Smaller time steps were tested and
no difference was observed between the solutions. Typical results of this kind of simulations can be
observed in Fig. 20.

A. Symmetric regime

We consider here the early times of the flow and assume that the wall can be regarded as infinitely
far away. We would like to signal three aspects that may break the dilation group invariance of the
problem in our experiments. The first one is that the jet is not produced by a force but by the exit of a
flow through an orifice. On one hand, this changes the problem because the momentum is incorporated
to the fluid accompanied by a mass addition. Taking into account the work of Kurdyumov,38 it is
expected that this would require us to incorporate some corrective terms to the self-similar solution.
Even if this correction would be small, the exit of fluid from an orifice incorporates a characteristic
length of the problem (the radius of the jet at the exit orifice) that is absent when it is assumed that
the jet is produced by a force. The second aspect that we also would like to highlight is the effect of
the wall of the tube as a boundary that could alter the development of regions of self-similarity. The
third aspect is related to the impulsional establishment of the flow and how this transient may alter
the results.

We recall here the main results obtained by Sozou39 and Cantwell4 of a creeping unsteady jet.
Taking into account the stream functions and particle path equation appearing in these works, it is
possible to construct the phase portraits and a typical one can be observed in Fig. 21.

Cantwell4 has signaled that the results issued from his model differed from numerical experiments
of starting jets. He observed as main differences the long slender stem and a small angle of spread
in the nonlinear high Reynolds number. We show in Fig. 22, our experimental results of frontlines
in terms of the similarity variables x/sqrt(νt) and y/sqrt(νt). The cases illustrated correspond to
situations in which the nozzle was placed at relative long distance to the wall.

As it can be observed, these graphs show that the transition to a self-similar behavior depends
on the Reynolds number. At the relative low Reynolds number tests (Fig. 22, left), the self-similar

FIG. 20. Numerical simulations. Tracer concentration at Re = 40. (a) Early stages of the flow at large nozzle-wall distance
(2D axisymmetric simulation) ; (b) wall regime, small nozzle-wall distance (3D simulation).
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FIG. 21. Phase portrait in similarity variables of particle paths under a creeping flow assumption.4 Force acting on x direction
at the origin.

behavior occurs quite close to the origin. The collapse observed in this graph indicates that for the
range of times observed, all the possible sources that could break the invariance of the problem and
thus invalidate the self-similar behavior are not relevant. At larger Reynolds number (Fig. 22, right),
the behavior is different, and in this coordinate system, the frontline occupies different positions un-
til a collapse of the curves is attained. Thus, the self-similar region is found preceded by an initial
transition region. Note however that the lateral points (bottom and top) tend to collapse quickly in a
single y similarity coordinate but its x position and also the front point position require larger times.

The discrepancies, already observed by Cantwell,4 between theory, and results obtained from
numerical simulation of a jet flow produced by an impulsive force, are also present in our results con-
cerning a jet flow produced through fluid injection. One can evaluate these differences considering the
position of the front and top and bottom points in the similarity coordinates portrait once self-similar
behavior is achieved.

We show in Fig. 23, the predictions of the front and lateral points that arise for creeping flows as
Cantwell4 considered. In his approach, he considered a Reynolds number defined in terms of the force
applied at the origin ReJ. However, an equivalence with Re is immediate considering the momentum

FIG. 22. Frontlines in terms of the similarity variables. Frontlines sequences are constructed considering time steps of
33.3 ms starting at 33.3 ms. Left: Re = 40; d = 5.4 mm. Right: Re = 73; d = 5.4 mm (symbols agree with those of
Figure 7).
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FIG. 23. Front position and maximum Y coordinate as a function of Reynolds number in the portrait phase diagrams. Values
predicted under a creeping flow assumption4 and experimental values.

flux imposed by the fluid injection to the quiescent liquid with the jet. As we can see from this figure,
the position of the front point in the similarity coordinates increases with Reynolds number. The
influence of Reynolds number on the position of the lateral point, and thus on the radius of the starting
vortex structure, is much lower. Considering the assumption of creeping, a theoretical angle of spread
can be deduced. This value is quite constant, close to 0.75, but contrary to what is observed in Fig. 8,
it slightly increases with Reynolds number.

1. Influence of the transient injection and nozzle wall thickness

We would like to consider here the influence on the frontlines of the characteristics of the ramp
imposing the flowrate and of the thickness of the nozzle wall. To this end, we have analyzed the results
of 2D and 3D numerical simulations.

In a first study, for a given value of steady flow rate, we have considered different initial transients
and analyzed the long term dynamics. 2D simulations were performed with four ramps similar to the
ones observed in our experiments. The ramps were described by an exponential function that grows
asymptotically in time to the steady value of the flow rate as

U(t)
U0
= 1 − exp

(−t
τ

)
. (11)

We have considered cases with the same value of U0 and different time constants τ (1.4, 6.8, 27.4,
and 109.6 ms) (see Fig. 24). The results obtained from the numerical simulations with the different
ramps show that in all cases the behaviors at long term are alike to those of the experimental re-
sults (Fig. 25). In all cases, we observe a region where curves tend to collapse preceded by an initial

FIG. 24. Mean velocity ramps considered for the numerical simulations. The dotted lines mark the nondimensional times at
which the tracer is represented in Fig. 25.
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FIG. 25. 2D Numerical simulations to illustrate effect of time constant τ of the velocity ramp. Tracer concentration at
Re = 73. Left column: tU0/D = 50, right column: tU0/D = 800. From top to bottom, τU0/D = 18.25, 36.5, 73, and 146.

transition region where they remain separated (Fig. 26). The initial transition region depends on the
characteristics of the ramp. The shorter the time constant of the exponential function, the shorter the
initial transition region. However, the flow behavior at long term is not significantly altered by the
ramp characteristics.

The effect of the wall thickness at nozzle distances far from the wall can be observed in Fig. 27.
A case of thick and thin wall is presented (thickness: 2 diameters and 0.1 diameters, respectively).
The effect is rather moderate and we can observe slight modifications on the positions of the collapse
of the curves, being closer to the nozzle exit for the case with a thick wall.

It is important to signal here that even though the flows considered are fundamentally non-linear,
it is remarkable that the creeping flow solutions remain a good frame of reference for the analysis.
The initial transition region lies clearly outside the region of validity of this solution. However as the
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FIG. 26. Frontlines in terms of similarity variables considering different ramps. Re = 73, (a) τU0/D = 18.25, (b) τU0/D =

36.5, (c) τU0/D = 73, and (d) τU0/D = 146.

vortex structure travels downstream, it decreases its velocity, viscous effects become non-negligible
and the self-similar behavior takes place. This indicates that the starting jet exhibits, as other flows,
a rather robust self-similar behavior with a relative rapid loss of memory of the initial conditions of
the flow. Thus, the flow in the symmetric regime can be considered a class of processes that is locally
(as opposed to globally) self-similar.

B. Wall dominated regime

We can mention two effects associated with the wall presence that alter the dynamics of the vortex
head observed in the symmetric regime. A first effect is related to an image vortex, and a second
effect is related to the non-slip condition at the wall. Both effects also exist in the case of vortex ring
interactions with a wall as described in the literature.13 The first effect is a non-viscous interaction
which initially produces a slight approach of the vortex head to the wall. We can consider, to illustrate
this effect, a nonviscous model for the head, which consists in assuming that the vorticity distribution
agrees with Hill’s spherical vortex model.40 This model is based on the hypothesis that the vorticity
is confined to the interior of a sphere that moves with uniform velocity. Evaluation of the effect of the
wall is immediate considering the image vorticity that annihilates the normal velocity at this bound-
ary.41 In Fig. 28, we show the results considering this kind of model. As we can see the decrease in
pressure in the region existing between the sphere and wall attracts the head towards the surface.

To illustrate the second “viscous” effect, we consider results of the 3D numerical simulation (see
Fig. 29).

The nonslip condition produces new secondary vorticity of opposite sense to that of the vortex
head along the boundary. The mutual interaction of vorticity is stronger with the vortex segments of the
head that are located closer to the wall than with those that are further away. As a result of this process,
the spinning of the part of the head that moves at larger distances from the wall is altered less than the
one at closer distances from it. This drives the lower structure to the upper mid-plane. The retardation
of fluid at the vicinity of the wall is also accompanied by an increase in pressure that also pushes
the vortex head upwards. As the torus of the vortex ring changes its shape, the different constitutive
segments no longer have the same curvature radius. The induced velocity is no longer the same in the
different vortex segments. The segments lying in the proximity of the horizontal mid-plane, which

FIG. 27. Frontlines in terms of similarity variables considering different wall sizes of the nozzle, with a step ramp; (a) thick
nozzle (wall thickness: 2 diameters); (b) thin nozzle (wall thickness: 0.1 diameters).
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FIG. 28. Nondimensional pressure field for the Hill’s sphere model of unit radius with a wall. Movement of the sphere is
vertical and wall is placed vertically.

as a consequence of deformation have diminished their radius, tend to move faster in the horizontal
direction than those of the upper segment. The process continues until only one vortex structure can
be identified in the head, in which the upper structure cannot be distinguished from the lower one.

Concerning the incidence of wall thickness when the nozzle is disposed at close vicinity to the
wall, we can indicate that the thick wall slightly retards the front position when compared to the thin
wall simulation, much like the axisymmetric case. There is also a slightly higher approximation of the
jet stem to the wall in the case of the thick wall, but the effect is not significant. Snapshots of the 3D

FIG. 29. 3D numerical simulations, Re = 73, d = 0.26 mm, and thick wall nozzle. At the top line: Pressure fields. At the
bottom line: Z-vorticity fields. At left, the nozzle exit for nondimensional time t ×U0/D = 40, and at right, a larger view for
t ×U0/D = 110. The white line is a tracer iso-contour.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  186.38.51.124 On: Tue, 06 Jan 2015 21:45:03



013601-21 Cabaleiro, Laborde, and Artana Phys. Fluids 27, 013601 (2015)

FIG. 30. 3D numerical simulations to illustrate effect of the wall thickness. Snapshots of tracer isocontours at three different
nondimensional times: tU/D = 10, 35, and 65. Re = 73. d/D = 2.6. Left: Thick nozzle (wall thickness: 2 diameters).
Right: Thin nozzle (wall thickness: 0.1 diameters).

numerical simulations at Re = 73 illustrate this and can be found in Fig. 30. Snapshots there appearing
correspond to four different nondimensional times: tU/D = 10, 35, and 65 (which are equivalent to
t = 1.4, 4.8, and 8.9 ms).

The evolution from a dipolar-like structure to a monopolar-like structure occurs also in transient
wall jets.42 Similarity has been found only for the steady wall jets. In the transient case described,
however, as the vortex structures evolve in shape with large distortions, it is difficult to expect some
kind of similarity during this transition. Once the flow adopts a monopolar configuration that travels
in proximity to the wall, there exists some potential to find a self-similar behaviour. This vortex struc-
ture in the plane normal to the wall containing the jet axis is reminiscent of a planar junction vortex
pattern. Such kind of flows take place in the regions close to the junction of an impulsively started
plate. Similarity analysis for this kind of flow has been previously reported.43 Early stages of these
flows are viscous dominated, and at larger times, they become inertia dominated. In consequence, for
this last stage, scaling is different than the one considered in Cantwell’s study. In the case we study,
the two-dimensionality of the flow that is present in the junction vortex flow is also absent, except on
the plane of symmetry where this condition is fulfilled. It is on this plane that we focus our analysis.

1. Scaling laws

The main aspect that may break the dilation group invariance of the problem in this regime is
related to the boundary condition imposed by the wall. In this problem, the invariance of the boundary
condition under this transformation is no longer assured, and thus self-similarity is not expected in
all regions of the flow.

Fig. 31 shows the frontlines in terms of the similarity variables x/sqrt(νt) and y/sqrt(νt) experi-
mentally obtained. As we can see, the frontlines are tilted as a consequence of the wall presence. After
a initial interval in which the curves in nondimensional variables do not superpose, a good collapse
of the curves is observed. The first interval depends on the nozzle-wall distance. The collapse of the
curves attained indicates that the self-similar behavior occurs for the larger times. At this stage, the
flow adopts at the symmetry plane a monopolar-like configuration, reminiscent of the junction vortex
structure.
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FIG. 31. Frontlines in terms of similarity variables considering time steps of 33.3 ms starting at 33.3 ms (symbols agree
with those of Figure 15); (a) Re = 73; d = 1.6 mm; (b) Re = 73; d = 0.26 mm.

Inspired in Allen and Naitoh’s43 findings, we can propose for this stage a fit of the horizontal
front position with a power-law of the type(

U0
2t
ν

)m
= k

(
(XF − X0) U0

ν

)n
= k

(
ReF

U0

UF

)n
. (12)

In this expression, we observe a new scaling for the horizontal front position XF
∗ =

XFU0
ν

and

for the time t∗ =
(
U0

2t
ν

)
. Allen and Naitoh43 found for the movement of the junction vortex that the

values of both power coefficients (m and n) were close to unity. This kind of scaling has been used
however by these authors to describe the inertia dominated regime of the junction vortex flow. When
m = 1/2 and n = 1, inertia and viscous scalings are coincident. We represent in Fig. 32 X ∗F against
sqrt(t∗). The graphs show that, for early times, the constant k is higher than when the wall effect is
present at larger times. At the last stages the value of k seems to remain constant in all cases. For
a given Re, the function k for large times has a poor dependency on the value of the nozzle-wall
distance d. Moreover, for a given nozzle-wall distance, the function k for large times adopts similar
values. Initiation of the viscous-wall dominated regime can be associated with the instant in which
the value of k attains a constant value along time. This time is larger for the larger exit jet velocities
and for the larger nozzle-wall distances.

FIG. 32. Nondimensional horizontal front position as a function of the square root of the nondimensional time. Left figure:
Starting jet at different Reynolds numbers (40, 73, 98, and 126) and 5.4 mm nozzle-wall distance. Right figure: Starting jet
with Reynolds number 98 at different nozzle-wall distances (1.6, 2.3, 3.2, 4.2 mm).
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In short we observed that at the plane of symmetry, the flow in the wall regime can be considered
a class of processes that is locally (as opposed to globally) self-similar. This process is preceded by
an initial transition region where the flow does not present this characteristic. This stage, where the
dipolar structures are altered by the presence of the wall, is not of a self-similar class. As the vortex
head structure travels downstream and adopts a monopolar-like structure, the self-similar behavior
takes place. This indicates that the starting jet in the wall type regime, and in the symmetric regime
as well, develops a self-similar behavior that has a relative rapid loss of memory of the preceding
condition of the flow. Scaling for both regimes are those that correspond to viscous dominated flows.

V. CONCLUSIONS

We consider a starting laminar immersed jet issuing from a long micropipette with a wall placed
tangentially at close proximity to the exit orifice. The flow can be characterized by a vortex head
followed by a stem jet. Our study distinguishes from many previous studies of the free laminar starting
jet since the effects of instabilities in the flow we study, and especially those of the stem jet, are negli-
gible. We could identify two regimes. A symmetric regime in which the behavior is not influenced
by the wall, and a second regime in which the wall introduces modifications to the flow patterns. The
size of the vortex head increases with time, and once it attains a radius close to half of the nozzle-wall
distance, it loses the axial symmetry. The time required for the transition into the second regime ap-
pears to be proportional to Re−2.5. We analyzed the movements of three points of the vortex head: the
front, top, and bottom points. The horizontal velocity of the last two points is lower than that of the
front point. In the symmetric regime, we found a similar behavior of the front velocity of the starting
jet with the one observed in steady jets: namely, a linear decay of the velocity with the inverse of the
distance to the nozzle exit and a correction of this axial distance with a virtual jet origin. A good fit of
Landau’s constant can be obtained with Re2.5, which is larger than the values found by Andrade and
Tsien.35 The dependence of Landau’s constant with respect to Reynolds number differs comparing
starting jets with steady jets. In the symmetric regime, the top and bottom points move describing a
constant angle that decays as Reynolds number increases. The axis of the jet stem remains rectilinear
during this regime and the jet opens with a small angle.

In the wall dominated regime, the spiralled vortex of the head does not form a torus any longer.
The structure is deformed and the lower segment moves away from the wall. The front point velocity
exhibits a vertical component in this regime and the head tends to increase its distance to the wall.
The vertical velocity component monotonically increases with Reynolds number and decreases as
the distance to the wall increases.

Compared to the symmetric regime, the horizontal velocity of the front is slightly retarded, and
the top and bottom points do not separate any longer with a constant angle. In the first stages of the
wall dominated regime, the front position varies linearly with the square root of the time and it is still
possible to fit the horizontal front positions with similar laws than the one observed for the symmetric
regime, but Landau’s constant and the virtual origin have to be slightly modified.

The vertical mid-plane of the flow is still a symmetry plane. In this plane, at very long times,
the head structure is reminiscent of the junction vortex. Due to the movement of the head in the wall
dominated regime, the axis of the jet stem does not remain rectilinear and bends first approaching the
wall and then separating from it.

We have analysed the self-similar behavior of the flow in the symmetric and wall dominated
regimes. We restricted this analysis to a single plane and concentrated our analysis mainly on the
frontline dynamics as we can identify this line easily in the portrait of particle paths. We observed
that in the symmetric and wall dominated regimes, it is possible to find a class of processes that is
locally (as opposed to globally) self-similar. This kind of process is preceded by an initial transition
region where the flow does not present this characteristics. In the symmetric regime, this transition
phase depends, among other parameters, on the process of injection of fluid. In the wall dominated
regime, this first stage is associated with a process in which the dipolar structures are altered by the
presence of the wall. As the vortex head structure travels downstream and adopts a monopolar like
structure, self-similar behavior takes place. These kind of results indicate that the starting jet in the
wall type regime, and in the symmetric regime as well, develops a self-similar behavior that has a
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relative rapid loss of memory of the preceding condition of the flow. Scaling for both regimes are
those that correspond to viscous dominated flows.
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