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Introduction
Numerous human pathologic conditions are directly or indi-
rectly related to the remodeling of the collagen structure. 
Quantitative studies have shown structural differences between 
the collagen fibers of normal and pathologic tissues. In patho-
logic samples, collagen fibers exhibit a disordered pattern, 
whereas normal extracellular matrixes have a well-defined order.1 
Therefore, a detailed characterization of this tissue compartment 
is of great importance for classifying the state of an organ.

The nonlinear optical microscopy second-harmonic genera-
tion (SHG) is a powerful technique for imaging biological tis-
sues containing anisotropic structures that are highly polarized, 
such as collagen. Second-harmonic generation images provide 
valuable morphologic and functional information about tissue 
because it possesses both good depth penetration and spatial 
resolution.2,3 During the past years, SHG has already been 
largely used for imaging collagen-rich tissues such as cornea, 
tendon, and arteries.4–7 Second-harmonic generation has been 
mainly used to selectively investigate collagen fiber orientation 

and their structural changes in human dermis, keloid, fibrosis, 
thermally treated samples, and also in tumor microenviron-
ments.7–11 Because collagen matrix remodeling is a relevant 
factor in carcinogenesis, preliminary results showed that analy-
ses of samples under microscopic techniques, such as SHG, 
combined with different quantization methods could be a 
potential diagnosis tool.12

There are several quantification methods to analyze and 
evaluate SHG images. The most studied methods are as fol-
lows: tumor-associated collagen signatures (TACS), which 
measures the inclination of the collagen fibers from the bound-
ary of the tumor; anisotropy study through fast Fourier trans-
form (FFT) analysis; and the gray-level co-occurrence matrix 
(GLCM).1,5–7,13–17

The FFT is an important tool in image processing. Each 
point of the image in Fourier domain represents a frequency 
contained in the space domain image. Images formed by pure 
sinusoid have a 2-dimensional Fourier transform represented 

Epithelial Ovarian Cancer Diagnosis of Second-
Harmonic Generation Images: A Semiautomatic 
Collagen Fibers Quantification Protocol

Angel A Zeitoune1,2, Johana SJ Luna3, Kynthia Sanchez Salas3, 
Luciana Erbes1,2, Carlos L Cesar4,5, Liliana ALA Andrade6, 
Hernades F Carvahlo4,7, Fátima Bottcher-Luiz4,8, Victor H Casco2  
and Javier Adur1,2,3

1Biofotónica y Procesamiento de Información Biológica (ByPIB), Centro de Investigación y Transferencia 
de Entre Ríos (CITER), CONICET-UNER, Entre Ríos, Argentina. 2Microscopy Laboratory Applied to 
Molecular and Cellular Studies, Engineering School, National University of Entre Ríos, Entre Ríos, 
Argentina. 3Laboratory Applied to Non-Ionizing Radiation, Engineering School, National University of 
Entre Ríos, Entre Ríos, Argentina. 4National Institute of Science and Technology on Photonics Applied to 
Cell Biology (INFABiC), São Paulo, Brazil. 5Department of Physics, Federal University of Ceará (UFC), 
Fortaleza, Brazil. 6Department of Obstetrics and Gynecology, Faculty of Medical Sciences, State 
University of Campinas (UNICAMP), São Paulo, Brazil. 7Department of Structural and Functional Biology, 
Biology Institute, State University of Campinas (UNICAMP), São Paulo, Brazil. 8Department of Pathology 
of the Faculty of Medical Sciences, State University of Campinas (UNICAMP), São Paulo, Brazil.

ABSTRACT: A vast number of human pathologic conditions are directly or indirectly related to tissular collagen structure remodeling. 
The nonlinear optical microscopy second-harmonic generation has become a powerful tool for imaging biological tissues with anisotropic 
hyperpolarized structures, such as collagen. During the past years, several quantification methods to analyze and evaluate these images have 
been developed. However, automated or semiautomated solutions are necessary to ensure objectivity and reproducibility of such analysis. This 
work describes automation and improvement methods for calculating the anisotropy (using fast Fourier transform analysis and the gray-level 
co-occurrence matrix). These were applied to analyze biopsy samples of human ovarian epithelial cancer at different stages of malignancy 
(mucinous, serous, mixed, and endometrial subtypes). The semiautomation procedure enabled us to design a diagnostic protocol that 
recognizes between healthy and pathologic tissues, as well as between different tumor types.

Keywords: FFT, GLCM, SHG microscopy, human cancer ovary, diagnostic protocol

RECEIVED: September 26, 2016. ACCEPTED: January 2, 2017.

Peer review: Four peer reviewers contributed to the peer review report. Reviewers’ 
reports totaled 1185 words, excluding any confidential comments to the academic editor.

Type: Original Research

Funding: The author(s) disclosed receipt of the following financial support for the 
research, authorship, and/or publication of this article: This study was supported by 
CEPOF (Optics and Photonics Research Center, FAPESP), INFABIC (National Institute of 

Photonics Applied to Cell Biology, FAPESP, and CNPq), and PIO CONICET-UNER  
(Res: 4337/15; No. 14620140100004 CO).

Declaration of conflicting interest: The author(s) declared no potential 
conflicts of interest with respect to the research, authorship, and/or publication of this article.

CORRESPONDING AUTHOR: Javier Adur, Biofotónica y Procesamiento de  
Información Biológica (ByPIB), Centro de Investigación y Transferencia de Entre Ríos 
(CITER), CONICET-UNER, Ruta 11, Km 10, E3100 Oro Verde, Entre Ríos, Argentina. 
Email: jadur@ingenieria.uner.edu.ar

690162 CIX0010.1177/1176935117690162Cancer InformaticsZeitoune et al
research-article2016

https://uk.sagepub.com/en-gb/journals-permissions
mailto:jadur@ingenieria.uner.edu.ar


2	 Cancer Informatics ﻿

by a point. This information is useful to characterize images 
with high alignment degree and with a predominant orienta-
tion as collagen fibers in normal samples. For regularly aligned 
fiber structures, the expected FFTs exhibit high values around 
the orthogonal axis to the fibers, acquiring an elliptical distri-
bution. Conversely, randomly arranged fibers are expected to 
possess circular FFT images.1,5,7,18,19

Texture is an important feature used in the identification of 
objects or regions of interest (ROIs) in an image. Gray-level co-
occurrence matrix is one of the most used methods to calculate 
the texture. It is based on second-order statistics,1,5,7,15,18,20,21 
determining the texture via measuring the gray level of pixels at 
different orientations from an individual pixel or group of pix-
els. The gray levels of these neighbors are recorded in a matrix, 
in which mathematical relationships can be used to describe 
that image parameter. Different textural measures (Haralick 
texture descriptors) are obtained based on GLCM calculation: 
contrast, energy, entropy, and correlation that provide informa-
tion about different image textural characteristics.22 The con-
trast estimates the amount of local variations in an image, 
whereas energy is the sum of squared elements in GLCM. 
Energy may also be referred as uniformity or the angular second 
moment. The entropy descriptor is a measurement of random-
ness in the image, being of higher entropy values, indication of 
greater texture complexity, or stochasticity. Finally, correlation 
allows the assessment of correspondence of neighbor pixels over 
the whole image.

These methods have been separately used in different stud-
ies with dissimilar implementation methods and mainly in ani-
mal cancer models.1,20,21 Recently, we have used some of these 
methods to analyze human ovarian cancer SHG images.5,18 In 
those previous studies, serous and mucinous ovarian tumors 
were manually analyzed, calculating TACS, FFT, and correla-
tion texture features from the GLCM. Even though important 
differences were detected between tumor types, the quantifica-
tion steps were tedious, time-consuming, and even prone to 
subjective bias. For example, in the previous studies, in the FFT 
procedure, the essential ellipse determination should be per-
formed for each ROI, based on the operator criterion. In the 
GLCM calculation case, the step size (in pixels) and step direc-
tion (0°, 45°, 90°, and 135°) should be manually selected each 
time in the ImageJ plugin process. Thus, in the original plugin 
version, the same procedure must be successively executed for 
each ROI (from 1 to 12 pixels), in each step size and step direc-
tion (0°, 45°, 90°, and 135°). So, the plugin run each time and 
for each selection data must be saved in a table, which in turn 
must be copied to another file because in each run the table is 
overwritten.

Because of this, to ensure objectivity and reproducibility of 
the results are a need for automatic solutions, this work 
describes a semiautomation and improvement techniques for 
calculating the anisotropy using FFT and GLCM. They are 
applied to biopsy samples of human ovarian epithelial cancer at 

different degrees of malignancy (mucinous, serous, mixed, and 
endometrial). This procedure allows the design of a diagnostic 
protocol that discriminates between healthy and pathologic 
tissues, as well as between different tumor types.

Nevertheless, this preliminary approach requires to increase 
the biopsy number to be sure that it may be safely used for 
clinical diagnosis of ovarian malignancies.

Materials and Methods
Ovarian samples and images acquisition

The ovarian samples were provided by the Hospital of 
University Women (CAISM), Campinas, SP, Brazil. The 
research protocol was approved by the Ethics Committee 
(Institutional Ethics Committee of the Medical Sciences 
Faculty, Unicamp). All procedures were performed in accord-
ance with the Declaration of Helsinki and the ethical princi-
ples of the medical community. Ovarian tumors were fixed  
in 10% formalin, dehydrated, embedded in paraffin, and  
sectioned to a thickness of 4 µm. Sections were dewaxed,  
rehydrated, and stained with hematoxylin-eosin (H&E). 
Subsequently, samples were examined using the SHG tech-
nique. Each H&E-stained section was classified by experi-
enced pathologists on the basis of histologic criteria established 
by the World Health Organization.

The images were acquired with an inverted Axio 
Observer microscope Z.1 equipped with a confocal scan-
ning head Zeiss LSM 780 NLO (Carl Zeiss AG, Jena, 
Germany). The excitation beam was provided by a pulsed 
laser Ti:Sapphire (Spectra-Physics, Irvine, CA, USA) under 
the same setup previously described.5 A set of 96 images of 
normal tissues and subtypes of epithelial ovarian cancer 
(endometrial, serous, mucinous, and mixed) were used (see 
Table 1 and Figure 1 for representative images of H&E and 
SHG of normal ovarian epithelium and cancer tissues). The 
images of H&E were used as a criterion standard and for 
diagnostic purposes. Second-harmonic generation images 
were used for collagen identification and quantification 
over specific ROI.

Development and standardization of automatic 
quantif ication tools

Collagen anisotropy and geometric computations were per-
formed over specific ROIs in SHG images. Over each image, 4 
ROIs of 120 × 120 pixels (41.54 µm × 41.54 µm) were manu-
ally selected by the operator (Figure 1). These regions were 
located immediately below ovarian epithelium to make sure 
that mainly collagen network in the proximity of it was ana-
lyzed because this is the region responsible for stromal inva-
sion.5 The selection of ROIs (containing 13-41 fiber packages) 
was done to allow image sampling of complex epithelial sur-
faces. Image processing software Octave and ImageJ were used 
for the processing of available image bank.
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Collagen anisotropy quantif ication using FFT.  The anisotropy 
of images was calculated using the aspect ratio (AR) between 
the major and minor axes of the ellipse resulting from the 
2-dimensional Fourier transforms. The transformed image 
from each ROI was binarized through threshold, which was 
dynamically established to a value of 125% by the Otsu 
method,23 obtaining values between 0.5 and 0.6. Despite hav-
ing a certain remaining noise, a binary image with a signifi-
cantly elliptical arrangement was obtained. Several steps were 
followed for noise removal. First, to obtain a homogeneous 

white ellipse, black pixels were filled inside it. Then, external 
white pixels having a radius greater than 4 pixels were closed 
using a morphological operator, forming a single structure. 
Finally, to soften the edges and remove speckle noise, 2 aver-
aging filters (16 × 16 pixels) were successively applied. The 
resulting lengths of the major and minor axes of the ellipse 
were used to automatically calculate the AR. The tilt angle of 
the major axis was also obtained. In summary, for each ROI, 
FFT is performed, and the image obtained is processed by elim-
inating noise to finally obtain the ellipse figure (see Figure 2, 

Table 1.  Ovary samples.

Tissue type Number of patients Samples per patient Total

Normal 4 3 12

Endometrial 4 3 12

Mucinous Adenoma 4 3 12

  Borderline 1 3 3

  Adenocarcinoma 4 3 12

Serous Adenoma 4 3 12

  Borderline 3 3 9

  Adenocarcinoma 4 3 12

Mixed 4 3 12

  Total sample 96

Figure 1.  Representative bright-field hematoxylin-eosin (H&E) and second-harmonic generation (SHG) images (1024 × 1024 pixels) at a 2-photon 

excitation wavelength of 940 nm for normal and pathologic human ovary tissues. Boundary epithelium (white outline) and 4 different regions of interest 

(ROIs) (120 × 120 pixels, white squared) in which fast Fourier transform analysis and gray-level co-occurrence matrix were performed are shown. For 

simplicity, boundary and ROIs are only represented in the first column images. Ep indicates epithelium; m, mucin; M, mucinous; S, serous; St, stroma. All 

scale bars = 40 µm. 40X/1.30 NA oil immersion objective (EC Plan-Neofluar Carl Zeiss AG, Jena, Germany), was used.
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left panel). The AR Website (https://github.com/Crandelz/
Fiber-Organization) contains the most up-to-date version of 
the Octave plugin.

Collagen geometry quantif ication using GLCM.  Textural mea-
sures were obtained using the ImageJ software with a custom-
ized version of the TextureToo plugin. Briefly, in the original 
version, after the ROI choice, variables must be selected and 
final outcomes are presented in an output table. After calculus, 
it is necessary to change the step and repeat the procedure from 
the beginning, with the results overwritten on the same table. 
This procedure must be followed in each direction change, for 
the remaining 3 angles. The procedure becomes tedious if 
many steps are required for a complete quantification. The plu-
gin was modified with the aim to optimize this process and 
reduce the computational cost, allowing the user to enter the 
initial and final steps (pixels) of a given angle. The entire range, 
for all texture estimation, is calculated with 1-stop increments 

in a single program execution. Next, new step direction is 
selected and the entire range is calculated. In addition, results 
are exported in a file instead of being overwritten as in the 
original plugin. Finally, for each variable, an average is per-
formed between the 4 directions (see Figure 2, right panel, 
where the whole procedure is shown). Final calculation was 
performed in 4 ROIs, and the curve does represent the mean ± 
standard deviation for each pixel. The Texture-Analysis Web-
site (https://github.com/Crandelz/Texture-Analysis) contains 
the most up-to-date version of the ImageJ plugin.

Phantoms

Facing different fiber arrangements, to understand the mean-
ing and behavior of the obtained variables, artificial images 
(phantoms) simulating those arrangements were made 
(Figure 3). Ovary collagen fiber package widths were measured 
using the line and the Scarbar plus commands of the ImageJ 

Figure 2.  Diagram of the steps involved in the measurements of collagen in SHG signals using FFT (left) and GLCM (right) parameters. From the SHG 

image, 4 different regions adjacent to the epithelial/stromal interface were used. For simplicity, just the steps for 1 ROI are shown. GLCM is exemplified 

using a range of 50 pixels and 4 directions (0°, 45°, 90°, and 135°). Similar procedure is applied to the remaining variables (contrast, entropy, and 

correlation). FFT indicates fast Fourier transform; GLCM; gray-level co-occurrence matrix; ROI, region of interest; SHG, second-harmonic generation.

https://github.com/Crandelz/Fiber-Organization
https://github.com/Crandelz/Fiber-Organization
https://github.com/Crandelz/Texture-Analysis
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software (range, 1-3 µm). This operation allows us to deter-
mine that fibers have a width of approximately 2.5 µm. Because 
all ovarian stroma images used are 1024 × 1024 pixels (212.25 

µm × 212.25 µm), fiber width would be around 12 pixels. The 
phantoms were generated with known thickness, spacing, and 
orientation fibers. Simulated fibers were built with a width and 

Figure 3.  (A) Phantoms used to represent straight (normal) and wavy (pathologic) collagen fibers of stromal ovarian tumors—1: normal; 4: pathologic; 2 

and 3: intermediate condition representations. (B) FFT outcomes of phantoms shown in (A) indicating AR. (C) GLCM-texture parameters (correlation, 

contrast, entropy, and energy) used to characterize phantoms, as a function of d (0-50) in the directions of 0°, 45°, 90°, and 135°. Black line: phantom 1 

(straight fibers); red line: phantom 2 (tilted straight fiber); green line: phantom 3 (wavy fibers); and yellow line: phantom 4 (disorganized fibers). AR 

indicates aspect ratio; FFT, fast Fourier transform; GLCM; gray-level co-occurrence matrix.
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interspacing of 13 pixels, in agreement with the data of Hu 
et al.20 Two phantoms of straight fibers were built with 0° and 
45° orientation angles, one with wavy fibers and the other hav-
ing random fiber distribution (Figure 3A).

Statistics

For multigroup comparisons, 1-way analysis of variance 
(ANOVA) with a post hoc Tukey-Kramer test was used. We per-
formed Welch test (unpaired and with normal distribution) for 
2-group comparisons (normal vs tumor). The levels of signifi-
cance were as follows: *P < .05, significant; **P < .01, very signifi-
cant; ***P < .001, extremely significant. Data were analyzed with 
GraphPad InStat (GraphPad Software, San Diego, CA, USA) 
and graphic with SigmaPlot 2001 V7.0 (Systat Software Inc. 
[SSI], Richmond, CA, USA). Posterior analysis was performed 
only with parameters with values of P < .01 and P < .001 and 
presented as the lower bound (LB) and upper bound (UB) 95% 
confidence interval.

Results
Phantom analyses
Anisotropy (FFT).  The transform of a rectangular pulse is a sync 
function. Considering the first 2 phantoms (Figure 3A) as a 
series of square pulses on the y axis with 0° or 45°, it follows that 
the FFT is a sync function along axis v, perpendicular to the 
direction of fibers (Figure 3B). By observing the images, it is 
concluded that image FFT provides information about fiber 
orientation, showing a pattern with predominantly perpendicu-
lar orientation to it. Third phantom is of periodic nature because 
both the y and x axes cross between black and white spaces of 
curves. For this reason, FFT has frequency variations along 
entire plane with a concentration in the center plane, tending to 
form an ellipse whose major axis is perpendicular to the fiber 
direction. Last phantom FFT of disordered fibers presents fre-
quency variations throughout the uv plane with concentration 
peaks of major amplitude in the central region, tending to form 
a circular pattern, in contrast to elliptical patterns in phantoms 
with higher order. This allows us to detect structures that lack 
predominant orientation or regular organization in fibers by the 
FFT circular pattern. From FFT calculations, phantoms with 
random lines showed an AR close to 1 compared with more 
order lines that are close to 0 (Figure 3B).

Geometry analyses—texture (GLCM).  Figure 3C depicts the 
different texture variable calculi over the phantoms. These 
parameters can obtain the following quantitative values: con-
trast, between 0 and 65 500; entropy, between 0 and less than 
10; energy, between 0 and 1, and correlation, between −1 and 1. 
Phantoms 1 and 2 exhibit similar correlation and contrast 
curves, being a remarkable fact, because both images are just 
rotated versions of each other. However, entropy and energy 
curves exhibit a similar morphology behavior, but having an 
offset between same phantoms. Thus, as can be easily observed, 
when the lines are regularly organized, correlation and contrast 
curves depict pronounced peaks and valleys, which are related 

to line width. Wavy fiber phantoms (3) exhibit high contrast 
(between 25 000 and 40 000, from pixel 20 onward), and 
because any movement direction records the variation in gray 
levels caused by the geometry itself, it is verified in any direc-
tion. This situation looks similar to the randomly arranged 
fiber phantom (4), in which all directions exhibit high contrast 
(around 25 000, from pixel 10 onward). In the first phantoms, 
entropy is low (high regularity degree). Conversely, randomly 
arranged fibers (phantom 4) have high entropy values (greater 
structural complexity). For energy, it is observed that when 
moving along the fiber direction orientation, energy is greater 
than that verified in other directions. Conversely, the disor-
dered fiber phantoms (4) exhibit low energy values in all direc-
tions (close to 0), indicating less uniformity of the system 
analyzed.

Ovarian tissues analyses

Anisotropy and geometry analyses were performed, and values 
of the lower bound (LB) and upper bound (UB) 95% confi-
dence interval are presented. Table 2 shows the AR and differ-
ent variable textures quantified by GLCM. In the first case, all 
carcinomas showed extremely significant differences when 
compared with normal ovary tissue. For mucinous subtype and 
its variants (borderline subtype was not considered because it 
was only identified in a single patient), extremely significant 
differences between normal tissue and mucinous adenocarci-
noma, as well as between adenoma and adenocarcinoma sub-
types, were found. For serous subtype, no statistically significant 
differences were obtained.

For the texture analysis, curves were plotted for each of the 
4 calculated variables (correlation, contrast, energy, and entropy) 
from steps 1 to 50. Figure 4 illustrates the behavior of the 4 
variables for normal vs pathologic tissues (left column), normal 
tissue vs serous subtype (middle column), and normal tissue vs 
mucinous subtype (right column). Qualitatively, more aggres-
sive tumors—adenocarcinomas and borderline—show lower 
energy (less uniformity) and higher entropy (more complexity), 
which is highly consistent with the previous analysis performed 
in the phantoms. From these curves, we analyzed statistically 
each variable in 4 specific steps, preferably where the curves did 
not exhibit overlapping. Regarding the correlation analysis, it 
was observed that approximately from step 20 all curves 
became asymptotic; for that reason, steps 3, 5, 10, and 15 were 
selected. In contrast, energy and entropy curves showed no 
overlapping or intersection from step 8; therefore, steps 10, 20, 
30, and 40 were selected. For simplicity, Table 2 presents the 
quantification only for 2 steps (double black arrow in Figure 4) 
and was performed between tumor types and for each step 
independently.

In summary, from the statistical analysis (Table 2), it was 
concluded that AR is useful to confirm the pathologic state of 
a sample, whereas the textural variables—at specific step 
selected—allowed to distinguish between subtypes of carcino-
mas. In Table 2, texture parameters showed very significant 
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differences. Evaluating the confidence intervals and the use-
fulness of each texture variables, a protocol was built to sys-
tematize the analysis of second-harmonic ovarian biopsy 
microscopic images.

Protocol

To differentiate between healthy and pathologic tissues and to 
enable the distinction between subtypes and degrees of malig-
nancy, the following steps are performed:

1.	 Take SHG images of size 1024 × 1024 pixels;
2.	 Proceed to the identification of ovarian epithelium;
3.	 Choose (immediately below the epithelium) a number 

of ROIs (at least 4) of 120 × 120 pixels;
4.	 For each ROI, obtain the ellipses/circles calculating the 

FFT and also AR;
5.	 Average between them, getting a single value for the 

AR;
6.	 Calculate the following textural variables for each 

ROI:

Figure 4.  Texture analysis using the gray-level co-occurrence matrix. Each point represents the regions of interest average for that step. Correlation (first 

row), contrast (second row), energy (third row), and entropy (fourth row) values in stromal ovarian tissues vs distance pixels, ranging from 1 to 50 pixels 

(0.35-17.30 µm) in 0°, 45°, 90°, and 135° image directions. Normal vs pathologic tissues (left column), normal tissue vs serous subtype (middle column), 

and normal tissue vs mucinous subtype (right column). Double black arrow marks the steps where quantification was done. M indicates mucinous; S, 

serous.
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(a) Energy for steps 10 and 20;
(b) Entropy to step 10;
(c) Contrast to step 10;
(d) Correlation for steps 3, 5, 10, and 15;

7.	 Average each variable between ROIs;
8.	 Sample classification using the decision tree.

Decision tree for classification detection using AR and 
GLCM features is shown in Figure 5.

Discussion and Conclusions
Careful examination of biopsies is quite powerful, but many 
visual analysis tasks performed in the laboratory are prone to 
error and are monotonous and subjective.24-26 Nevertheless, 
even today, most of the imaging studies in biological sciences 
do not use fully automated analysis,24 so a need remains for 
image analysis software that allows interactivity but records any 
choices made by the user and automates repetitive steps when-
ever possible.

Figure 5.  Decision tree for ovarian cancer detection using gray-level co-occurrence matrix (GLCM) features extracted from steps 3, 5, 10, and 15 for 

correlation and from steps 10, 20, 30, and 40 for contrast, energy, and entropy. AR indicates aspect ratio; Contr., contrast; Correl., correlation; E, 

endometrioid; M, mixed; MA, mucinous adenoma; MAC, mucinous adenocarcinoma; N, normal; SA, serous adenoma; SAC, serous adenocarcinoma; SB, 

serous borderline; Sn, step n; vs, versus. [ ] indicates confidence interval; ⊂, included in.
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Usually, it is quite easy to analyze one region of a single 
image, but current imaging studies generally require analysis of 
several regions in numerous images. This reiteration can render 
even the simplest examination tasks quite complicated in prac-
tice. The principal difficulties include recording ROIs and 
linking them to the resulting quantifications. One approach to 
improve the reproducibility of image analysis is to use pro-
gramming or scripting to automate the analysis process, thus 
removing variability from interactive user input.

Following this premise and also attending the recent con-
cern about reproducibility of scientific research,27 in this work 
we present a successful image analysis strategy to address these 
issues. Using Octave and ImageJ, that support scripts written in 
their own macro language, we developed an improvement and 
automated plugins, both for AR determination from axis of 
ellipse figures obtained with FFT and for texture variables 
obtained with GLCM.28 In previous works, our group and 
other researches obtained the axis of the ellipse by manually 
drawing the shape of the figure on the image of the FFT.29,30 
In that case, it was fundamental to trace the edge of the figure 
that forms the set of frequencies obtained to thereby highlight 
the ellipse (major and minor axes) formed. Given that this var-
ies according to the image, and should be chosen trying to 
achieve a perceptibly elliptical shape, the methodology is sub-
ject to errors of subjective assessment of the operator. Now, we 
calculated automatically the AR after processing the image of 
FFT. The results obtained are coincident with previous 
one,5,11,18,29 which means values close to 0 indicate samples 
with predominant alignment (normal samples) and therefore 
more anisotropy. The values near to 1 indicate more randomly 
arranged fibers (tumor samples), which means it presents 
isotropy. For GLCM determination, previous plugin for 
every variable required a new run each time so that step and 
angle are modified. Now, with a customized version of 
TextureToo plugin, the user can enter the initial and final steps 
for a given angle. The entire range is calculated with 1-stop 
increments in a single program execution. The results are 
exported in a file that contains the image name, followed by the 
corresponding step number, orientation, and texture variable, 
all separated by commas.

The modification of these processing tools allows the accu-
rate automatic calculation of anisotropy and texture variables, 
shortening processing times and avoiding errors of subjective 
judgment of the operator. We compared time calculations with 
previous works and the time consumed was reduced considera-
bly. When serous tumor types were analyzed (a total of 33 sam-
ples) with this new strategy, the final results (after selecting the 
ROIs) were obtained in 8 minutes compared with more than 50 
minutes needed in original tray.18,30 These improvements are 
important because these metrics (AR and GLCM) are system-
atically used for diagnosis of ovarian pathologies.16,31

Our strategy is fundamentally applicable for some small- 
and medium-sized data sets (<200 images) where interactive 

manual ROI segmentation is the available option (step 3 in our 
protocol). This allows us to analyze many SHG images and 
build a diagnosis protocol, which use a classification tree to dif-
ferentiate between biopsies. Interactive segmentation may sim-
ply be much more efficient than automatic segmentation where 
tuning the segmentation algorithm parameters can be extremely 
time-consuming. A positive aspect to mention is that an inter-
active approach allows the comparison of different analysis 
parameters. For example, using this protocol, we tested several 
serous adenocarcinoma biopsies, and all were successfully classi-
fied. In the near future, we are planning to obtain and test more 
biopsies for all human ovary tumor types with the idea of con-
tinuing to add more samples to our protocol. We do expect that 
confidence intervals (presented in Table 2) become more accu-
rate as more samples will be analyzed with this methodology. 
Our tactic allows interactivity but records any choices made by 
the user and automates repetitive steps whenever possible. In 
this line, recently an open-source Java-based plugin for the Fiji 
distribution of ImageJ, called Slide Set, was created.24 This pro-
vides a framework for interactive and reproducible image analy-
sis, controlled through a graphical user interface with intuitive 
menu-based commands. For very large data sets, where the 
number of images alone makes interactivity impractical, several 
software packages that support fully automated image analysis 
workflows with little scripting exist, such as CellProfiler, 
PhenoRipper, and the Protocols feature of Icy.32-34

In conclusion, it was shown that the processing and analysis 
of SHG images allow to characterize different ovarian tumors 
with specific stroma disorder through textural differences. Also, 
anisotropy measurements indicate that collagen network in 
serous, mucinous, endometrial, and mixed tumors is markedly 
different from the corresponding normal tissue, demonstrating 
there are structural changes in fibrillary collagen matrix in 
malignant tissues and these changes can be measured with 
SHG techniques. As stated above, SHG images from collagen 
fibers could become a promising technique to understand car-
cinogenesis. In this sense, early identification of structural 
changes in the matrix allows the early detection and treatment 
of disease.

Careful investigations on the selection of the fields of view 
and the interpretation of the quantitative parameters are 
required, and other quantitative methods can also be comple-
mented to provide comprehensive information associated with 
the progression of ovarian cancer. In the future work, we are 
planning for more biopsies, performing an image classification 
using a support vector machine algorithm and analyzing the 
performance of the classifier by finding the average and stand-
ard deviation of the area under the receiver operator character-
istic curve for the 100 training sets. This curve will provide us 
the sensitivity and specificity of the diagnosis method.

In summary, we have demonstrated the feasibility of per-
forming classification of collagen fibril morphology based on 
first- and second-order texture statistical parameters derived 
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from SHG images. With better understanding of early dis-
ease, we hope to develop an optical diagnostic test for ovarian 
cancer.
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