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ABSTRACT 

All-trans-Retinoic Acid (ATRA) is a derivative of vitamin A with anti-proliferative properties. 

Endotoxin shock and subsequent immunosuppression (IS) by lipopolysaccharide (LPS) stimulates 

myelopoiesis with expansion of myeloid-derived suppressor cells (MDSC). Since we have previously 

shown that ATRA reverses the IS state by decreasing functional MDSC, our aim was to investigate if 

ATRA was able to modulate MDSC generation by regulating myelopoiesis in murine hematopoietic 

organs. We found that ATRA administration in vivo and in vitro decreased the number of CD34+ 

precursor cells that were increased in IS mice. When we studied the cellular mechanisms involved, we did 

not find any differences in apoptosis of CD34+ precursors or in the differentiation of these cells to their 

mature counterparts. Surprisingly, ATRA decreased precursor proliferation, in vitro and in vivo, as 

assessed by a reduction in the size and number of colony forming units (CFU) generated from CD34+ 

cells and by a decreased incorporation of 3H-thymidine. Moreover, ATRA administration to IS mice 

decreased the number of MDSC in the spleen, with a restoration of T lymphocyte proliferation and a 

restitution of the histological architecture. Our results indicate, for the first time, a new use of ATRA to 

abolish LPS-induced myelopoiesis, affecting the proliferation of precursor cells, and in consequence, 

decreasing MDSC generation, having a direct impact on the improvement of immune competence. 

Administration of ATRA could overcome the immunosuppressive state generated by sepsis that often 

leads to opportunistic life-threatening infections. Therefore, ATRA could be considered a complementary 

treatment to enhance immune responses. 
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ABBREVIATIONS 

LPS: lipopolysaccharide 

ATRA: All-trans Retinoic Acid 

MDSC: Myeloid-Derived Suppressor Cells 

IS: Immunosuppressed group  

BM: Bone Marrow 

CFU: Colony Forming Units 

GM-CSF: Granulocyte-Macrophage Colony-Stimulating Factor  

HSC: Hematopoietic Stem Cells  

Con A: Concanavalin A 

AnV: Annexin V 
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INTRODUCTION 

Retinoids are natural derivatives, or synthetic analogs, of vitamin A involved in many important 

biological processes. Aberrant retinoid signaling mechanisms have been associated with cancer 

development in humans and animals (1). Retinoids are being increasingly included in both 

chemopreventive and therapeutic schemes of various tumoral diseases (2). In general, they are believed to 

inhibit carcinogenesis by blocking the promotion of already initiated or transformed cells by three 

mechanisms: induction of apoptosis, irreversible cell cycle arrest (cellular senescence), and induction of 

abnormal cells to differentiate back to normal (2, 3). In particular, all-trans-retinoic acid (ATRA), the 

active derivative of vitamin A, has been extensively studied as an anti-cancer agent (2). It has been shown 

that ATRA inhibits the growth of tumor cells by blocking the cell cycle (3). However, the effect of ATRA 

on normal myeloid cells is much less clear.  

Sepsis is one of the oldest and most elusive syndromes in medical history. The mortality of sepsis 

still remains at about 20% to 30% in the USA (4). Patients who survive the initial shock, mainly the pro-

inflammatory, phase of sepsis are at risk of developing a state of immune suppression and become 

susceptible to nosocomial infections with organisms that are not typically pathogenic in 

immunocompetent hosts. In fact, secondary infections that develop due to post-sepsis immunosuppression 

are a major cause of death in patients with sepsis (5). In this sense, the effects of ATRA on an 

immunosuppressed scenario due to infections have been less studied.  

Immature myeloid-derived suppressor cells (MDSC) are a heterogeneous cell population 

consisting of myeloid progenitor cells, considered to be one of the major components of the immune 

suppressive network responsible for suppressing T-cell responses in pathological conditions such as 

tumors (6). More recently, expansion of MDSC has been described in acute and chronic inflammatory 

diseases including trauma, inflammation, burn, and autoimmune diseases (7). In mouse, MDSC are 

identified by a Gr-1+ CD11b+ CD31+ phenotype and their expansion has been recently reported in spleen 

and lymph nodes from septic animals (8), and in BM and lymph nodes from lipopolysaccharide (LPS)-

induced immunosuppressed mice (9, 10), as well as in blood from septic patients (11). 
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Hematopoiesis is a hierarchical process in which hematopoietic stem cells (HSC) differentiate into 

progenitor cells (common lymphoid or common myeloid progenitors) that are capable of exponential 

proliferation as well as continuing the process of differentiation, accounting for repopulation of myeloid, 

lymphoid and megakaryocyte/erythroid cells during normal replenishment (12). CD34 has served as the 

most important marker for hematopoietic precursors and is present all along progenitors that give rise to 

myeloid cells (13). Moreover, only CD34+ cells have the ability to form hematopoietic colonies in vitro, 

whereas no colonies are generated from CD34- cells at any developmental stage (14).  

After infections, in several inflammatory reactions and after LPS administration, there is an 

increased myelopoiesis in bone marrow (BM) and a subsequent cell precursor mobilization to peripheral 

blood in order to repopulate myeloid populations (12). In this sense, an increase of CD34+ cells has been 

reported in septic patients and in cecum ligation and puncture (CLP) mice (15). As part of this CD34+ 

cell expansion, there is also an increase in MDSC population. Possibly developed as a normal regulatory 

mechanism to counteract a triggered immune response, MDSC generation in a dysregulated pathological 

scenario, such as sepsis, may be involved in the etiology of LPS-induced immunosuppression. In this 

sense, the reduction of this suppressive population has been shown to be beneficial in different 

experimental settings (7). Moreover, direct suppressive activity of CD34+ cells has been reported as well. 

In sepsis, the presence of granulocyte colony stimulating factor (G-CSF) is reported to mobilize a murine 

population of CD34+ cells endowed with potent immunosuppressive activity (16). This population was 

shown to inhibit the alloreactive response in vitro and in vivo. Moreover, in patients with head and neck 

cancer, the presence of CD34+ cells suppressed functional competence of lymphocytes within the 

squamous cell carcinoma and inhibited their capacity to secrete interleukin-2 (17). Altogether, these 

results support the idea that eliminating or reducing the increase of the CD34+ cell precursor population, 

may contribute to an improved immunosuppressive state in sepsis. 

Experimentally, repetitive inoculation of increasing doses of LPS to mice induces derangements in 

the inflammatory response and a state of adaptive immunosuppression (9, 18), mimicking several clinical 

signs found in patients who develop immunosuppression after a septic episode (19). Exposure to LPS has 

been considered the initial phase and one of the causes of the immunosuppression frequently observed in 
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late sepsis. Using this model we and others have shown that mice develop a clear state of  

immunosuppression, as evidenced by an impaired antigen-specific antibody production, decreased T cell 

proliferation, lymphocyte depletion, increased of immature myeloid cells with suppressive functions, 

reduced ability to produce TNF-α and other cytokines in vitro, and induction of anti-inflammatory 

mediators  such as IL-10, transforming growth factor-beta and glucocorticoids (9, 10, 18, 20). 

In a previous work, we have shown that ATRA administration to LPS-immunosuppressed mice 

was able to restore the number of different lymphocyte populations and reversed the inhibited MDSC-

mediated T cell proliferation in lymph nodes (9). Therefore, in this work our aim was to address the 

question whether ATRA can affect LPS-induced myelopoiesis, regulating the number of immature 

MDSC and probably their generation, in order to reestablish the immunologic unbalance in 

immunosuppression. Elucidating this mechanism is critical not only for understanding the biology of 

ATRA effects on myeloid cells but also for assessing its potential use, together with other therapies, in 

post-sepsis immunosuppression. 

 

MATERIALS AND METHODS 

Reagents 

LPS: E. coli O111:B4 (Sigma, St. Louis, USA), ATRA for in vivo experiments (Vesanoid®, F. Hoffman- 

La Roche Ltd, Basel, Switzerland), RPMI-1640 (Gibco, MA, USA), FCS (Gibco, MA, USA), 2-

mercapoethanol (Gibco, MA, USA), L-glutamine (Gibco, MA, USA), antibiotic-antimycotic (Gibco, MA, 

USA), GM-CSF (Sigma, St Louis, MO, USA), ATRA for in vitro experiments (Sigma, St. Louis, USA), 

Antibodies: Phycoerythrin (PE)-CD34, -F4/80, -Gr-1, -DHR; fluorescein isothiocyanate (FITC)-CD11c, -

Annexin V (AnV), -iNOS; Phycoerythrin-Cyanine 5 (PE-Cy5)-Gr-1,-CD3,-CD31 (All antibodies were 

purchased from BD Bioscience, San Jose, CA, USA), paraformaldehyde (Anedra, Buenos Aires, 

Argentina), Bacto agar (Difco Laboratories, USA), Iscove’s modified Dulbecco’s medium (IMDM; 

HyClone, Logan, UT, USA), 3H-thymidine (Dupont Nen, Boston, USA), scintillation fluid (Optiphase 

Hisafe 2, PerkinElmer, Waltham, MA, USA), Concanavalin A: (Sigma, St. Louis, USA), magnetic beads: 

(Invitrogen Dynal AS, Oslo, Norway), gentian Violet (Merck, Darmstadt, Germany), glacial acetic 
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(Merck, Darmstadt, Germany), triton X-100 (Merck, Darmstadt, Germany), GraphPad Prism 5.0 software 

(San Diego, CA, USA). 

 

Experimental model of LPS-induced immunosuppression  

BALB/c mice were bred in the animal facility of IMEX, Academia Nacional de Medicina, Buenos Aires. 

Male mice aged 2–3 month and weighing 20–25 g were used throughout the experiments. They were 

maintained under a 12-h light–dark cycle at 22±2 °C and fed with standard diet and water ad libitum. For 

all experiments, LPS-induced immunosuppression was developed by daily subcutaneous (s.c.) inoculation 

of increasing doses of LPS for a period of 15 days, as follows: two doses of 5, two doses of 10, two doses 

of 20, three doses of 50 and six doses of 100 µg/day/mouse. In in vivo experiments, concomitantly to LPS 

administration, another group of mice was daily inoculated via intraperitoneal (i.p.) either with vaseline 

(IS group), or ATRA (500 µg/day/mouse, IS+A group). ATRA was obtained from commercial supply. 

The capsule content was removed in sterile conditions and the concentration adjusted with vaseline 

immediately before administration. Other groups of animals were given every day s.c. saline solution and 

i.p. vaseline (Control group), or s.c. saline solution and ATRA i.p. (ATRA group). The total number of 

animals per group was 8 or 12 according to each experiment. For experiments that the total number per 

group was 8, we performed 2 experimental repetitions with 4 animals in each group and for experiments 

that the total number per group was 12, we performed 3 experimental repetitions with 4 animals in each 

group (see corresponding Legend to Figure). 

The experiments were conducted according to principles set forth in the Guide for the Care and Use of 

Laboratory Animals (21), and the study was approved by the Animal Care and Use Committee of our 

Institution. 

 

Cell tissue collection 

The spleen and bone marrow (BM) were removed from mice under sterile conditions, and single-

cell suspensions were prepared by homogenization through a sterile stainless steel mesh. To perform the 

experiments, the spleens were processed in 2 ml of medium RPMI-1640, 10 % FCS, 0.1 % 2-
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mercapoethanol, 1 % L-glutamine and 1 % antibiotic-antimycotic (complete medium). After 

centrifugation, the cell suspension was collected. Femurs and tibiae of mice were removed and freed of 

muscles and tendons. The bones were placed in 70 % ethanol for 2 min and subsequently washed in PBS. 

Both bone ends were cut and cells were flushed from the bones under sterile conditions with 2 ml of 

complete medium. Cell suspensions were washed and resuspended in complete medium. Absolute 

leukocyte counts were obtained using a Neubauer chamber using Turk´s solution (0.01 % gentian violet 

in 3 % glacial acetic acid) by optical microscopy.  

 

Cell cultures with ATRA in vitro 

Cells suspensions obtained from immunosuppressed (IS) spleens and BM were supplemented with 

low concentrations of GM-CSF (10 ng/ml) in order to stimulate granulocyte and monocyte precursors to 

proliferate and survive in culture. Splenic and BM cell cultures from IS mice were treated with ATRA (10 

µM, IS/+A) or were left untreated (IS/-A). 

 

Flow cytometric studies 

The main different populations present in the spleen and BM were studied using flow cytometry. 1 

x 106 cells were incubated with specific rat anti-mouse antibodies conjugated with different 

fluorochromes: Phycoerythrin (PE)-CD34, -F4/80, -Gr-1; fluorescein isothiocyanate (FITC)-CD11c; 

Phycoerythrin-Cyanine 5 (PE-Cy5)-Gr-1, -CD31. Cells were washed and resuspended in 

paraformaldehyde 0.5 %. The percentage of positive cells was determined among 70.000 events. The 

absolute number of the specific subpopulations was calculated as follows: (Absolute total leukocyte cell 

count x Percentage obtained by flow cytometry)/100. 

 

Apoptosis 

The percentage of hematopoietic precursors (CD34+) undergoing apoptosis was measured by flow 

cytometry using FITC-Annexin V (AnV), and anti-CD34-PE in cell suspensions obtained from the spleen 

and BM after 24 h of ATRA addition. AnV staining was performed using a commercial kit according to 
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manufacturer instructions. The absolute number of the apoptotic cells was calculated as follows: 

(Absolute total leukocyte cell count x Percentage obtained by flow cytometry)/100. 

 

Colony formation unit (CFU) assay  

BM and splenic cells were plated in 0,1% Bacto agar in Iscove’s modified Dulbecco’s medium 

containing penicillin–streptomycin, 20 % FCS, 20% glutamine and 100 ng/ml of recombinant mouse 

granulocyte-macrophage colony-stimulating factor (GM-CSF). They were added to six-well plates with 8 

x 105 BM cells and 1 x 106 spleen cells per well. The plates were incubated at 37 °C in 5 % CO2 for 7 

days in order to form a semi-solid agar allowing granulocyte-monocytes colonies to grow and 

differentiate. Colonies (>40 cells) were scored by scanning the whole Petri dishes using an inverted 

microscope with phase contrast with 20 x magnification. In order to obtain the colonies area, pictures 

were taken with 40 x magnification and the areas calculated using the Fiji software program (22). 

 

Proliferation assays 

5 x 105 splenic and BM cells were seeded in 96 well plates with GM-CSF (10 ng/ml) for 48 h at 37 

ºC in 5 % CO2. Then 0.5 µCi/well of 3H-thymidine was added and incubated for another 20 h. After that 

cells were harvest and scintillation fluid was added to the vials (2 ml/disc) and the radioactivity was 

measured using a beta-counter. 

For T lymphocyte proliferation assays, suspensions from spleen were obtained and resuspended in 

RPMI-1640, 10 % FCS, 0.1 % 2-mercapoethanol, 1 % L-glutamine and 1 % antibiotic-antimycotic. 

Lymphocyte counts were determined with a Neubauer chamber using Turk´s solution. Moreover, CD3+ 

lymphocytes were determined by flow cytometry  and the same initial number of CD3+ cells (2 x 105) for 

all groups were seeded in 96 well plates in triplicates in the presence or absence of Concanavalin A (Con 

A, 5 μg/ml) for 48 h at 37 ºC in 5 % CO2. Then 0.5 µCi/well of 3H-thymidine was added and incubated 

for another 20 h and proceeded as previously described to measure the incorporation of 3H-thymidine. 
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Gr-1 depletion 

Spleen suspensions (5 x 106 cells) were incubated with an anti-Gr-1 mAb for 30 min at 4 ºC and 

then washed. Depletion was subsequently performed by incubating with magnetic beads according to 

manufacturer instructions. The cell depleted fraction showed less than 2 % of Gr-1+ cells as assessed by 

flow cytometry. 

 

Intracellular inducible NO synthase (iNOS) determination 

24 h after Con A addition to the cultures, cells were collected with trypsin-0.5 % EDTA, washed 

and counted with Turk’s solution by optic microscopy. Then, cells were incubated with PE-CD11b and 

PE-Cy5-Gr-1 antibodies for 30 min, washed and fixed with paraformaldehyde 0.05 %. Cells were 

subsequently treated with triton X-100 (0.25 %) for 15 min, blocked with 3 % BSA for 1 h and stained 

with an anti-iNOS antibody conjugated to FITC for 30 min. In all cases, isotype-matched antibodies were 

assayed in parallel and fluorescence was determined by flow cytometry on 100,000 events of each 

sample. The % of iNOS+ cells within the Gr-1+ CD11b+ population was determined and the absolute 

number of the iNOS+ Gr-1+ CD11b+ populations was calculated as follows: (absolute cell count x 

percentage obtained by flow cytometry)/100. 

 

Reactive oxygen species (ROS) determination 

After 24 h of Con A addition to the cultures, cells were collected with trypsin-0.5 % EDTA, 

washed and counted using Turk’s solution by optic microscopy. To determine the production of ROS, 

dihydrorhodamine (DHR)-123 (Sigma) was used. Cells were incubated with a PE-Cy5-Gr-1 antibody and 

1 μM of DHR-123 for 15 min at 37 °C. Upon ROS generation a brightly fluorescent FL-1 product is 

produced, which was detected by flow cytometry. The % of DHR+ cells within the Gr-1+ population was 

determined and the absolute number of the DHR+ Gr-1+ populations was calculated as follows: (absolute 

cell count x percentage obtained by flow cytometry)/100. 
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Histology  

The spleens of all sacrificed animals were fixed in 10 % buffered formalin and embedded in 

paraffin. Semi-serial cuts were performed for hematoxylin-eosin staining (H&E). 

 

Statistics 

For in vivo experiments, comparisons between multiple groups (Control, IS, and IS+A) were 

performed using one-way ANOVA, applying the correction of Bonferroni with the GraphPad Prism 5.0 

software. For in vitro experiments, comparisons between cells obtained from IS mice left untreated (IS/-

A) or treated with ATRA (IS/+A) were performed using a two-tailed paired t-test. In all cases, p<0.05 

was considered significant. 

 

RESULTS 

ATRA decreases the number of hematopoietic CD34+ precursors in a murine model of LPS-

immunosuppression  

To explore the capacity of ATRA to modify the number of CD34+ progenitors in LPS-induced 

immunosuppression, mice were daily inoculated with LPS (IS), and ATRA was administered 

concomitantly with LPS (IS+A). Cells obtained from the BM and the spleens were used because the 

spleen in adult mice, in contrast to humans, is both a hematopoietic and a secondary lymphoid organ (23). 

The percentage of CD34+ cells was determined by flow cytometry and the absolute number was 

calculated considering the total leukocyte count as detailed in material and methods. As Figure 1 shows, 

the IS group presented an increased number of hematopoietic CD34+ precursors both in the spleen and 

BM compared to the Control group. The treatment with ATRA in IS mice (IS+A) decreased the number 

of this population in both organs compared to the IS group. Administration of ATRA alone had no effect 

on the number of CD34+ cells compared to the Control group (data not shown). These results show the 

ability of ATRA to decrease the expansion of hematopoietic precursors in LPS-immunosuppressed mice. 

 

 



Copyright © 2016 by the Shock Society. Unauthorized reproduction of this article is prohibited. 

ATRA decreases hematopoietic precursor proliferation in LPS-immunosuppression 

Taking into account the decrease in CD34+ cells observed in IS mice treated with ATRA, we 

performed in vitro cultures incubating splenic and BM cells from IS mice with or without ATRA in order 

to study the cellular mechanisms by which ATRA decreased the expansion of hematopoietic CD34+ 

precursors in LPS-induced immunosuppression.  

As reported by other authors (24 and own unpublished results), we observed that cells, especially 

myeloid cells, do not survive more than 3 days without the presence of cytokines in culture (data not 

shown). Therefore, for all in vitro approaches we supplemented cell cultures with low concentrations of 

recombinant mouse granulocyte-monocyte colony stimulating factor (GM-CSF) in order to prevent 

unspecific cell death and, additionally, to favor granulocytic-macrophage myeloid precursor growth and 

proliferation. 

Figure 2 A, shows that the numbers of CD34+ cells in IS BM and splenic cultures treated with 

ATRA (IS/+A) were decreased compared to untreated cells (IS/-A) after 72 hs of culture. To elucidate the 

mechanisms of this reduction, we determined if CD34+ precursors were able to undergo further 

maturation into differentiated cells such as  neutrophils (Gr-1+ CD11b+), macrophages (F4/80+) or 

dendritic cells (CD11c+).  For this purpose, we incubated IS BM and splenic cells for 72 h with ATRA 

and analyzed the resulting cell populations by flow cytometry. As Figure 2 B shows, ATRA decreased the 

number of Gr-1+ CD11b+ and CD11c+, while F4/80+ cells remained unchanged compared to untreated 

cells in both spleen and BM. This result indicates that the decrease of CD34+ cells observed by treatment 

with ATRA is not a consequence of an increased differentiation of these precursor cells to mature 

lineages. 

Then, we determined if the lower number of CD34+ cells observed by treatment with ATRA in 

vivo and in vitro was due to apoptosis measuring AnV+ CD34+ cells by flow cytometry after addition of 

ATRA. However, as depicted in the Supplementary Figure 1, http://links.lww.com/SHK/A514, ATRA 

did not affected the apoptotic rate in IS cell cultures.  
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Altogether, these results indicate that in an LPS-induced immunosuppressed context ATRA does 

not decrease the level of immature CD34+ progenitors by increasing their differentiation to mature 

myeloid lineages (Gr-1+ CD11b+, F4/80+, CD11c+) or by inducing their apoptosis.  

This led us to explore whether ATRA could modulate the growth/proliferation of CD34+ myeloid 

progenitors. First, we performed a colony forming unit (CFU) assay using semi-solid agar with GM-CSF, 

that allows the evaluation of the quantity and characteristics of colonies generated exclusively by CD34+ 

cells after 7 days (14). As shown in Figure 3 A, the number of CFU decreased when IS cells from BM 

and spleen were treated with ATRA. Moreover, the area of the colonies was also lower in the presence of 

ATRA (Figure 3 B). These results suggest that ATRA is modulating not only the number of myeloid 

precursors capable of generating colonies but also their ability to proliferate. To further confirm if ATRA 

is affecting the proliferation of hematopoietic precursors, a proliferation assay was performed measuring 

the incorporation of 3H-thymidine after 72 h of ATRA addition in splenic and BM cells in suspension 

obtained from IS mice. Supporting the CFU assay results, the addition of ATRA decreased the 

incorporation of 3H-thymidine in both hematopoietic organs (Figure 3 C). 

 

ATRA administration to LPS-immunosuppressed mice affects hematopoietic precursor 

proliferation 

In order to extrapolate the effects observed in IS BM and splenic cultures treated with ATRA, 

mice were given ATRA concomitantly with LPS inoculation and CFU assays in the presence of GM-CSF 

were performed with cells obtained from BM and spleen of mice. As depicted in Figure 4 A, 

administration of ATRA to mice (IS+A group) was able to reduce the number of CFU compared to the IS 

group, reaching values similar to those observed in the Control group, both in spleen and BM. 

Furthermore, the area of the colonies of IS+A mice was lower compared to IS mice (Figure 4 B). 

Moreover, incorporation of 3H-thymidine in cells obtained from the spleen and BM from IS+A mice 

supplemented with GM-CSF in culture decreased compared to the IS group (Figure 4 C).  

Altogether, the in vitro and in vivo results indicate that the mechanism by which ATRA decreases 

the number of hematopoietic CD34+ precursors is by reducing their cellular proliferation. 
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Administration of ATRA to IS mice decreased the generation of immature myeloid-derived 

suppressor cells (MDSC) and restored T lymphocyte proliferation  

MDSC are an immature myeloid cell population that are increased in late phases of sepsis playing 

a key role in the inhibition the T lymphocyte proliferation observed in IS mice (9). Moreover, based on 

the effects of ATRA in the decrease of immature cell proliferation, our next objective was to study if this 

drug was able to decrease the number of MDSC in IS mice and, as a result, modulate the impaired T cell 

proliferation in LPS-derived immunosuppression. Mouse MDSCs are identified by the co-expression of 

CD11b, Gr-1 and the immaturity marker CD31 on their cell surface (25). As the spleen in adult mice is 

both a hematopoietic and a secondary immune organ, where immunological responses are initiated, we 

analyzed the presence of MDSC in the spleen of IS mice and their modulation by ATRA. Figure 5 A 

shows that IS mice had an increment in the number of MDSC (Gr-1+ CD11b+ CD31+) compared to the 

Control group and that the administration of ATRA (IS+A) was able to decrease this number. In order to 

evaluate whether this decrease was associated with a lower MDSC-mediated T cell suppressive function, 

we performed T-cell proliferation assays from splenic cells measuring the incorporation of 3H-thymidine 

using Concanavalin A (Con A) as a specific T-cell mitogen. As shown in Figure 5B, T cell proliferation 

was decreased in IS mice compared to the Control group. Depletion of Gr-1+ cells from IS cell 

suspensions restored T cell proliferation to Control levels, indicating that MDSC in IS mice are 

responsible for the observed T cell proliferation inhibition. Additionally, treatment with ATRA to IS mice 

was able to restore the inhibited T cell proliferation, indicating that the lower number of  MSDC observed 

by treatment with ATRA in IS mice is related to a reduced inhibitory function. Mice treated only with 

ATRA showed numbers of MDSC and levels of T cell proliferation similar to Control mice (data not 

shown). 

It is known that the correct architecture of secondary lymphoid organs is necessary for an efficient 

initiation of adaptive immune responses (26). Therefore, we examined the spleen’s histology in order to 

study the effect of ATRA on the histological structure of this organ in the different groups. Figure 5 C 

shows that the white pulp from spleens from Control mice had normal periarteriolar lymphoid sheaths 

(PALS), follicles and marginal zones. Splenic cords and venous sinuses were also seen in the red pulp 
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normal. However, the white pulp structures from IS mice were smaller and with an irregular shape; this 

shrinkage was mainly due to the depletion of lymphocyte populations in the outer PALS, the follicle, and 

the marginal zone. Additionally, the red pulp was relatively enlarged due to a decrease in all white pulp 

cellular components. Surprisingly, the spleens of IS animals treated with ATRA showed a partially 

restored histology. The white pulp structures reassumed their size and shape in an irregular fashion; some 

of the animals showed complete and normal cell populations while others showed an incomplete cell 

population lacking, mainly, the marginal zone. The red pulp seemed to be restored and the white/red pulp 

relationship was partially restored. Spleens from animals treated only with ATRA were similar to those of 

the Control group (data not shown). Altogether, these results indicate that ATRA is able to improve T cell 

functions in IS mice by decreasing MDCS cells and restoring the architecture of the spleen.  

 

ATRA in vitro restored T cell proliferation and reduces the number of MDSC with suppressor 

activity from IS mice 

 In order to determine if ATRA directly affects the number of MDSC and in consequence, impacts 

on T cell proliferation, we performed in vitro assays adding ATRA to the cultures of splenic cells from IS 

mice. MDSC have been described to inhibit T cell proliferation by different mechanisms: causing an 

increase in the inducible form of Nitric Oxide Synthase (iNOS) that produces NO (Nitric Oxide) and 

releasing Reactive Oxygen Species (ROS) (10). Figure 6 A shows that the addition of ATRA to IS cells 

in vitro caused an increase in T cell proliferation. This effect was accompanied by a decrease in the 

number of Gr-1+ iNOS+ and Gr-1+ DHR+ cell populations (Figure 6 B and C), indicating that ATRA 

can directly suppress the generation of MDSC and in consequence, improve T cell proliferation.  

 

DISCUSSION 

Vitamin A (retinol) is known to play an essential role in immunity and may be important for the 

optimal functioning of the innate and adaptive immune systems. Most of the effects of vitamin A are 

mediated by ATRA. Vitamin A deficiency has been associated with exacerbated immunodeficiency, 

reduced or unbalanced lymphocyte counts, and deregulated antibody production (1). Moreover, clinical 
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trials have shown that vitamin A supplementation reduces morbidity and mortality from various 

infectious diseases, and numerous studies in animal models have confirmed the ability of vitamin A to 

prevent infections and to strengthen the immune system (27). Secondary infections that develop due to 

post-sepsis immunosuppression are a major cause of death in septic patients (19). In fact, in recent years, 

this loss of immune competence has been considered to be one of the main problems in late sepsis (28). 

For that reason, many investigators consider that the effort to recover or preserve host immune functions 

will be the next major advance in the management of patients with sepsis.  

The clinical importance of our study relies in finding strategies to restore the immune competence 

in patients that developed an immunosuppressive phase after sepsis and succumb to secondary 

opportunistic infections. Our work is focused on the study of this immunosuppressive phase, and our 

model mimics quite well this stage. Repetitive inoculation of LPS has been widely used to study the 

refractory to subsequent stimulation with LPS or bacteria associated to sepsis found at the cellular level. 

A similar loss of LPS reactivity, such as the one observed in LPS-immunosuppressed mice, has been 

repeatedly reported in circulating leukocytes of septic patients and in patients with non-infectious 

systemic inflammatory response syndrome (SIRS). Studies on cellular signaling within leukocytes from 

septic and SIRS patients revealed numerous alterations reminiscent of those observed in mice or cells 

treated with repetitive doses of LPS (Reviewed in (29). Persistent exposure to LPS in patients is possible, 

as evidenced by Torgersen et al., who reviewed postmortem findings in 235 surgical intensive care unit 

(ICU) patients admitted with a diagnosis of sepsis and found that, at death, a continuous septic focus was 

observed in 88.7 % of patients who were treated for longer than 7 days (30). All experimental models 

have limitations, and even though no model reproduces all aspects of human sepsis, each experimental 

model allows studying at least those aspects of human sepsis that the model reproduces. Therefore, and 

considering the aspects presented above, we believe that our model is adequate to investigate and 

intervened on the immunosuppressive phase that patients may develop after a septic episode.  

We have previously reported that administration of ATRA to LPS-immunosuppressed mice was 

able to restore immune competence, and this was in part mediated by the modulation of the inhibitory 

population of MDSC, which were inhibiting T cell proliferation in lymph nodes. Moreover, ATRA 
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reverses the impaired LPS-induced primary humoral immune response (9). In this work, our hypothesis 

was that ATRA could reduce MDSC generation by modulating myeloid lineage expansion, and therefore 

improve immunological competence. Our results are relevant to better understand the etiology of sepsis-

induced immunosuppression. We found that ATRA abolished LPS-induced myelopoiesis, affecting the 

proliferation of CD34+ precursor cells, and in consequence, decreasing MDSC generation, having a direct 

impact on the improvement of immune competence. In this sense, we observed a restored T lymphocyte 

proliferation in IS mice treated with ATRA in concordance with a reestablished histological architecture. 

This would be necessary for creating a supportive environment that facilitates the initiation of an adaptive 

immune response which is impaired in immunosuppressed septic patients. Moreover, we have previously 

shown that administration of ATRA to IS mice also restored the impaired antigen-specific humoral 

response (9).  

As ATRA has been reported to decrease the number of cell precursors by induction of apoptosis 

(31), differentiation to their mature counterparts (32), or inhibiting their expansion (33), we also 

conducted experiments to discern the cellular mechanisms by which ATRA could be affecting MDSC 

generation. We found that ATRA interferes with myelopoiesis by decreasing the number of CD34+ 

myeloid precursor cells. This was also associated with a decrease in downstream populations derived 

from them, such as MDSC (Gr-1+ CD11b+ CD31+). The decrease of CD34+ precursor cells was not 

mediated by apoptosis or by an increase in differentiation to more mature forms, such as macrophages 

(F4/80+), neutrophils (Gr-1+ CD11b+) or dendritic (CD11c+) cells, as the numbers of these populations 

were similar or even lower in IS animals treated with ATRA compared to the IS alone. However, there 

was a consistent decrease in the proliferation of hematopoietic myeloid-committed precursors observed 

by the incorporation of 3H-thymidine in the cultures supplemented with GM-CSF, and in the colony 

formation units (CFU) that were decreased both in number and size. As this last assay implicates specific 

clone expansion of CD34+ cells (14), the fact that the size of the colonies was reduced indicates that 

ATRA is lowering the proliferative rate of CD34+ precursors, resulting, in consequence, in a decreased 

number of daughter cells, including immature MDSC. Moreover, as ATRA is decreasing the number of 

early progenitor cells that will generate cell populations with suppressive activities in a pathological 
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context, ATRA administration might be an interesting and fast strategy to reduce MDSC generation in 

their place of origin (hematopoietic organs), avoiding  their expansion in later stages when the 

immunosuppressed scenario is highly developed. Additionally, as ATRA caused the same effect in vitro, 

when precursors were partially isolated from the IS context, this indicates that ATRA is directly affecting 

the capacity of cells to proliferate. The decreased proliferation in immature precursors results in a 

decreased downstream myeloid progeny.  

The anti-proliferative effects of ATRA could also be relevant for other immunosuppressive 

contexts, such as tumors, as it has also been reported that mouse granulocyte-macrophage progenitors 

isolated from tumor-bearing mice display strong suppressive properties, being capable of inhibiting 

polyclonal stimuli- and alloantigen-induced T cell proliferation (34).  

The results presented in this work showed for the first time the anti-proliferative effects of ATRA 

on myeloid precursor cells in an IS-derived context. The importance of ATRA in an immunosuppressive 

scenario is related to MDSC and the regulation of their generation. In our model of immunosuppression, 

LPS inoculation caused an augmented demand for myeloid cells leading to increased proliferation of their 

precursors. This also brings about an increase in MDSC cells that negatively regulate lymphocyte 

responses. In this sense, the regulation of MDSC generation/differentiation has been shown to improve 

the immune function against tumors in animal models and patients (7). MDSC were recently described in 

septic patients (11), and although their presence may imply a normal negative feedback to the huge pro-

inflammatory response that is triggered in sepsis, it is also possible that these cells may also be involved, 

in part, in the susceptibility to infections that some patients develop (immunosuppressive phase).  

Additional potential advantages of ATRA administration to post-sepsis immunosuppressed 

patients is supported by several observations. Reduced levels in serum and increased urinary excretion of 

retinol have been reported in critically ill patients with sepsis or septic shock (35). As vitamin A 

deficiency damages the immunological response, it is possible that this deficiency renders patients more 

susceptible to secondary infections and contributes to immunosuppression after sepsis. Therefore, 

administration of ATRA may restore vitamin A deficiency, and controlling MDSC generation/expansion 

will improve the immunological state of these patients. The results of this study point to ATRA as a 
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possible complementary treatment to reduce the early generation of MDSC, enabling septic patients to 

overcome the immunosuppressive phase. 
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LEGENDS TO FIGURES 

Figure 1. ATRA reduced in vivo the number of hematopoietic CD34+ precursors in LPS-

immunosuppressed mice. Number of CD34+ cells in spleen and BM from Control, IS, and IS+A mice 

and a representative flow cytometry chart of total CD34+ cells from spleen and BM of each group is 

shown. Results are expressed as the mean ± SE. Total n=8 per group (2 experimental repetitions with n=4 

per group).* p<0.05 vs. Control and # p<0.05 vs. IS. 
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Figure 2. The effect of ATRA on hematopoietic precursors is not mediated by differentiation to 

mature lineages. A- Number of CD34+ cells observed in IS splenic and BM cell suspensions alone (IS/-

A) or supplemented with ATRA (IS/+A) in vitro and low concentration of GM-CSF in the culture media 

after 72 h. A representative flow cytometry chart of total CD34+ from spleen and BM cells is shown for 

both groups. B- Number of neutrophils (Gr-1+ CD11b+), macrophages (F4/80+) or dendritic (CD11c+) 

cells measured in cell suspensions from IS spleens and BM alone (IS/-A) or supplemented with ATRA 

(IS/+A) and GM-CSF in vitro. A representative flow cytometry chart showing the mature cell populations 

present in spleen and BM is shown. Results are expressed as the mean ± SE. Total n=12 per group (3 

experimental repetitions with n=4 per group). # p<0.05 vs. IS/-A. 
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Figure 3. Addition of ATRA in vitro to IS cell suspensions decreased the proliferation of 

hematopoietic precursors. A-Number of GM-CFU grown during 7 days in semi-solid agar with GM-

CSF (GM-CFU assay), from splenic and BM IS cell suspensions alone (IS/-A) or after adding ATRA 

(IS/+A) in vitro. B- Colony area from the GM-CFU obtained from spleen and BM and corresponding 

pictures (x 40) of a representative colony from each group (IS/-A and IS/+A). C- Incorporation of 3H-

thymidine measured as counts per minute (CPM) obtained from proliferation assays with cell suspensions 

from IS spleen and BM supplemented with ATRA (IS/+A) or left untreated (IS/-A) and GM-CSF after 72 

h in culture. Results are expressed as the mean ± SE. Total n=12 per group (3 experimental repetitions 

with n=4 per group). # p<0.05 vs. IS/-A. 
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Figure 4. Administration of ATRA in vivo to IS mice decreased the proliferation of hematopoietic 

precursors. A-Number of GM-CFU colonies grown 7 days in semi-solid agar with GM-CSF (GM-CFU 

assay), from splenic and BM cell suspensions of Control, IS, and IS+A groups. B- Colony area of the 

GM-CFU obtained from spleen and BM, and representative pictures (x 40) of one colony from each 

group (Control, IS, and IS+A). C- Incorporation of 3H-thymidine measured as counts per minute (CPM) 

obtained from proliferation assays with splenic and BM cell suspensions from Control, IS and IS+A 

supplemented with GM-CSF after 72 h in culture. Results are expressed as the mean ± SE. Total n=12 per 

group (3 experimental repetitions with n=4 per group). * p<0.05 vs. Control and # p<0.05 vs. IS. 
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Figure 5.  ATRA in vivo reduced the number of immature MDSC (Gr-1+ CD11b+ CD31+) and 

restored T cell proliferation. A- Number of Gr-1+ CD11b+ CD31+ population obtained from spleens of 

Control, IS and IS+A groups. A representative flow cytometry chart is shown for all groups. Gr-1+ cells 

were first gated, and the analysis of CD11b+ CD31+ cells within the Gr-1+ gated population was 

performed. B- Counts per minute (CPM) obtained from T lymphocyte proliferation assays, using Con A 

as a specific T-cell mitogen in splenic cell suspensions from Control, IS, and IS+A groups after 72 h of 

Con A addition. The IS depleted Gr-1 bar represents the depletion of the Gr-1 population using an anti-

Gr-1 antibody and magnetic beads. C- Histological examination of the spleen of the different 

experimental groups (hematoxylin and eosin staining, x 100). Results are expressed as the mean ± SE. 

Total n=8 per group (2 experimental repetitions with n=4 per group), * p<0.05 vs. Control and # p<0.05 

vs. IS. 
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Figure 6. ATRA in vitro directly decreased MDSC and its T-cell suppressive function. A- CPM 

obtained from proliferation T lymphocyte assays using cell suspensions from IS spleens supplemented 

with ATRA (IS/+A) in vitro or left untreated (IS/-A) at 72 h after Con A addition. B- Number of Gr-1+ 

iNOS+ cells obtained in culture after 24 h of Con A addition from IS splenic cell suspensions alone (IS/-

A) or supplemented with ATRA (IS/+A). C- Number of Gr-1+ DHR+ cells obtained in culture after 24 h 

of Con A addition from IS splenic cell suspensions alone (IS/-A) or supplemented with ATRA (IS/+A). A 

representative flow cytometry chart is shown showing the gate of cells corresponding to the total Gr-1+ 

iNOS+ (B) or Gr-1+ DHR+ (C) cells for the different experimental groups. Results are expressed as the 

mean ± SE. Total n=8 per group (2 experimental repetitions with n=4 per group),# p<0.05 vs. IS/-A. 
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Supplementary Figure 1.  ATRA in vitro did not induce apoptosis of CD34+ cell. A- Percentage of 

AnV+ cells within the CD34+ population measured in cell suspensions from IS spleens and BM alone 

(IS/-A) or supplemented with ATRA (IS/+A) and GM-CSF in vitro. B- Number of CD34+ AnV+ 

population measured in cell suspensions as described previously. C- A representative flow cytometry 

chart is shown showing the CD34+ AnV+ cell population. Total n=12 per group (3 experimental 

repetitions with n=4 per group). # p<0.05 vs. IS/-A.  

 

 


