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The results reported here indicate that the electron density obtained from a QTAIM analysis is 

an excellent descriptor of molecular interactions that stabilize and destabilize the formation of 

the ligand-receptor (L-R) complex. The study was conducted on a series of 25 compounds 

that have inhibitory effects on DHFR. Besides the synthesis and bioassays performed for 

some of these compounds, various types of molecular calculations were performed. Thus, we 

performed MD simulations, computations at different levels of theory (ab initio and DFT) 

using reduced models and a QTAIM study on the different complexes. 

The resulting model has allowed us to differentiate not only highly active compounds with 

respect to compounds weakly active, but also among compounds that have similar affinities in 

this series. The model also showed a high degree of predictability which allows predicting the 

affinity of non-synthesized compounds. Very important additional information can be 

obtained through this type of study, it is possible to visualize which amino acids are involved 

in the interactions determining the different affinities of the ligands. 

 

Keywords: QTAIM; Molecular Descriptor; Molecular Dynamics; Quantum Mechanics 
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In general, majority of docking algorithms are able to predict the bind correctly, with 

accuracy of ~ 2 Å root-mean-square deviation (RMSD) to that of observed in the crystal 

structure (of course depending of the structural characteristics of both the ligand and the 

binding pocket). The challenge is in scoring these L-R bindings; an ideal scoring function 

should be able to reproduce binding energy and to rank the ligands according to their binding 

affinities. However, the majority of scoring functions, bundled with docking packages, often 

perform a very poor reproduction of the binding affinity; hence, the use of them is limited to 

screening of databases of a large number of ligands. 

In order to predict binding affinity of small molecule inhibitors, a variety of post-docking 

methods have been established. These methods range from simple consensus scoring to free 

energy perturbation (FEP) [1-4] among others. Undoubtedly, the post-docking methods can 

improve significantly the prediction of the energies of L-R binding, however they are still far 

from being able to predict with a high degree of accuracy the differences in L-R affinities for 

those ligands having similar binding energies. The situation is even more complex when we 

are in front of compounds with structural differences. In such cases, most of the times one 

must accept only if we can differentiate between very active compounds from compounds 

with low affinity for the receptor (very poor activity). It is clear that any progress or 

improvement that we can find to enhance these post-docking methods is of paramount 

importance for the structure based drug design and they are very welcome. 

In a recent paper we attempted to find a correlation that would allow us to differentiate 

between DHFR inhibitors with similar affinities, but we had no success [5]. In fact, we were 

only able to differentiate between highly active compounds of those who had very poor 

activity, but we were not able to differentiate between compounds with similar affinities. In 

that paper we also showed that if one has a good geometry, the QTAIM study provides an 

important insight into the molecular interactions between ligand and receptor. In this new 

work, we used the electron density obtained from QTAIM analysis as a descriptor of the 

molecular interactions of the L-R complex, which has allowed us to discriminate very well 

between compounds with similar binding affinities. 

Dihydrofolate reductase (DHFR) is an excellent molecular target for this study because it has 

been and is currently studied by using different molecular modeling techniques [6-9]. 

Kerrigan et al. have reported an interesting review about recent progress in molecular 

dynamics simulations of DHFR [10] and they conclude that “molecular mechanics 

calculations can work well to model the initial binding step of an inhibitor or substrate with 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPTDHFR. However, DHFR continues to be a challenge for free energy estimation methods and 

caution is recommended when interpreting these results”. 

It should be noted that there are very few simulations specifically focused in the molecular 

interactions involved in the formation of the L-R complexes. Thus, interesting details about 

the intricacies of molecular interactions of DHFR interacting with its inhibitors remain 

unknown. Recently, we reported some molecular modeling studies using reduced models for 

the binding pockets [5, 11-15]. This approach allows performing more accurate quantum 

mechanical calculations, as well as to obtain a detailed electronic analysis by using the 

method of Quantum Theory of Atoms in Molecules (QTAIM). 

The main objective of this work is to find a way that allows us to differentiate between 

ligands possessing similar affinities for the DHFR. To achieve this goal, different calculations 

techniques have been used either alone or in combination in order to find a molecular 

descriptor that allows getting such differentiation. Thus, the present study was carried out at 

different stages. In the first step, seven new compounds were synthesized and then they were 

evaluated for their inhibitory activities against human DHFR. These results were added to 

thirteen compounds reported by Gangjee et al. (1-13) [16], two compounds reported in our 

earlier work (14a and 15a) [5] and two new compounds (14e and 15f) recently reported in 

reference [17] in order to have a more complete and representative number of compounds (25 

molecules in the complete series (Figure 1 and Table 1)). In the next step, we performed MD 

simulations, QM calculations (using different levels of theory) and QTAIM analysis with the 

aim to obtain a correlation which allows the discrimination between compounds possessing 

similar affinities by the enzyme. The conclusions are presented at the end. 
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Table 1. Structural features and IC50 values of compounds type 14 and 15. 

Series Compound R IC 50 (µµµµM) 

 
14 

14b  
 

65.98 ± 6.5 

14c 
 

63.05 ± 6.3 

14d 
 

52.89 ± 5.2 

14e* 
 

64.54 ± 6.4 

 
15 

15b 
 

27.87 ± 2.7 

15c 
 

43.84 ± 4.3 

15d 

 

77.09 ± 7.7 

15e 
 

20.81 ± 2.0 

15f* 

 

49.39 ± 4.9 
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3 Ar = C6H5 (18 µM) * 
4 Ar = 2,6-diMeC6H3 (32 µM) * 
5 Ar = 2-naphthyl (6 µM) * 
6 Ar = 3,4-diClC6H3 (2.8 µM) * 
7 Ar = 1-naphthyl (2.9 µM) * 
8 Ar = 4-NO2C6H4 (5.8 µM) * 
9 Ar = 4-BrC6H4 (2.7 µM) * 
10 Ar = 2,4-diClC6H3 (1.4 µM) * 
11 Ar = 4-OMeC6H4 (2.9 µM) * 
12 Ar = 2,5-diOMeC6H3 (5.8 µM) *  
13 Ar = 8-quinoline (1.8 µM) *  

1   R = Et (0.066 µM) * 
2   R = Me (0.21 µM) *  

MTX (0.022 µM) 
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14a (68.01 µM) ** 
 

15a (54.45 µM) ** 
 

*Compounds reported in reference 16 **Compounds reported in reference 5 
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METHODS OF CALCULATIONS 

The results of this work have been compared with those recently reported in the reference 5; 

therefore all calculations and molecular simulations have been performed using the same 

techniques previously used. 

 

MD simulations 

The starting structure of human DHFR was obtained from Protein Data Bank of Brookhaven 

National Laboratory (PDB entry code 2W3M) and the topologies of the ligands were built 

using the MKTOP program [18]. MD simulations for each L-R complex have been carried 

out using the GROMACS 4.5.5 simulation package [19, 20]. For these simulations, the 

OPLS-AA force field [21-26] and the rigid SPC water model [27, 28] in a cubic box with 

periodic boundary conditions were employed. The box size was 7.437 x 7.437 x 7.437 nm and 

the total number of water molecules was approximately 14,500 for each simulation. Besides, 

three Na+ ions were added to the systems by replacing water molecules in random positions, 

thus making the whole system neutral. 

A steepest-descent algorithm for 1,000 steps was used, in order to minimize the energy of 

each system. Next, the complexes were equilibrated during 100 ps in NVT and NPT 

ensembles to stabilize the temperature and the pressure of each system, respectively. Then a 5 

ns MD simulation was performed for each complex. The time step was 0.002 ps and the 

temperature was maintained constant at 310 K with the V-rescale algorithm [29]. Long range 

interactions were treated by the Particle Mesh Ewald (PME) method [30, 31] with a 1 nm 

cutoff and a Fourier spacing of 0.12 nm. The compressibility was 4.8 x 10-5 bar-1. 

The Linear Interaction Energy (LIE) method was used to calculate L-R binding free energy 

[32, 33]. The following equation was used for such calculations: 

 

∆�������	 = ��〈�����	�〉����	 − 〈�����	�〉����� + 	��〈������ 〉����	 − 〈������ 〉�����												(1) 
 

where α and β parameters are dispersion and electrostatic adjustable energy scale factors [34]. 

Their values (0.181 and 0.5, respectively) were previously reported by Marelius et al., who 

adjusted them for DHFR from experimental parameters [35]. The 〈�����	�〉 and 〈V#-%&# 〉 terms 

denote MD energy averages of the nonbonded van der Waals and electrostatic interactions 

between ligand and its surrounding environment (subscript l-s), respectively. 
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MM-GBSA Free Energy Decomposition 

The MM-GBSA free energy decomposition was carried out in order to evaluate which amino 

acids were interacting with the ligand. This calculation allows decomposing the interaction 

energies to each residue considering molecular mechanics and solvation energies [36-40]. 

Four energy terms are considered for each inhibitor-residue pair: van der Waals contribution 

(∆'�	�), electrostatic contribution (∆'���), polar desolvation term (∆�()), and nonpolar 

desolvation term (∆�*+). These terms can be summarized as the following equation: 

  

∆���,���-�������	�� = ∆'�	� + ∆'��� + ∆�() + ∆�*+																																			(2) 
 

For these calculations, the mm_pbsa program in AMBER12 [41] has been employed and 

snapshots were taken at 10 ps time intervals from the corresponding last 1,000 ps MD 

trajectories, while the explicit water molecules were removed from the snapshots. 

 

Constructing the reduced models for the binding site 

The use of model systems to calculate and simulate molecular interactions (MI) is necessary 

since the inhibitors interacting at the active site of DHFR constitute a molecular system too 

large for accurate quantum mechanics molecular orbital calculations and the number of 

ligands to be screened is large as well. 

Since we are interested in comparing the results obtained in this work with those reported in 

our previous work, we use the same reduced system that was used in that study [5]. This 

reduced model is composed by 23 amino acids: Ile7, Val8, Ala9, Leu22, Trp24, Glu30, 

Phe31, Tyr33, Phe34, Gln35, Met52, Thr56, Ser59, Ile60, Pro61, Asn64, Leu67, Lys68, 

Arg70, Val115, Tyr121, Val135 and Thr136. In addition all water molecules within a 5 Å 

radius from the ligand were also included in the reduced model. 

To be sure that the different amino acids that stabilize and destabilize the complex formation 

have been included in the reduced system, we performed an MM-GBSA free energy 

decomposition analysis for the different complexes under study. The information obtained 

from these calculations is very important for quantitative analysis and is highly useful for the 

understanding of the binding mechanism. Figure 1S in Supplementary Material displays the 

spectra obtained for the most representative compounds reported here. A surface of the 

binding site considering the residues of this model is shown in Figure 2. 
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Figure 2 

 

 

QM calculations 

First, the twenty-three residues included in our reduced model and the ligand were calculated 

at the PM6 [42] level of theory, using the MOPAC2009 program [43]. The ligand and the 

torsional angles, bond angles and bond lengths of the side chains of the amino acids were 

optimized, while the atoms of the backbone were frozen during calculations. For these 

optimizations, four different starting geometries from MD simulations were taken into 

account: the global minimum and three local minima, obtained from the potential energy 

calculations. This step is important because in this way, a more representative sample of the 

spatial arrangements of the complexes was evaluated. Then, we have performed single point 

calculations of optimized geometries at RHF/6-31G(d) and PBE1PBE/6-31G(d) levels of 

theory, using Gaussian 09 program [44]. 

The binding energy (BE) of each complex L-R was calculated employing the following 

equation: 

 

/'01 =	'��2345 −	('2345 +	'�)																																																(3) 
 

where /'01 is the binding energy, E8-9:;< is the complex energy, '2345 is the energy of the 

reduced model (binding pocket), and '� is the energy of the ligand. 
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Topological Analysis of the Electron Charge Density Distribution 

The reduced models constructed for the studied complexes were then submitted to topological 

analysis of the charge density (ρ(r)). QTAIM calculations were performed over Kohn-Sham 

DFT wave functions employing the hybrid PBE functional and 6-31G(d) as basis set. 

The terminology of QTAIM was extensively reviewed in the standard literature [45]. Next, 

we briefly summarize some basic concepts that are needed for the discussion of results. From 

the QTAIM point of view, two interacting atoms share three topological elements related to 

each other, a point, a line and a surface. The first element is the bond critical point (BCP), 

namely the critical point in ρ(r) topology that is found between any two interacting nuclei. 

From each BCP, two unique trajectories of gradient vectors of electronic density, ∇ρ(r), 

originate at that point and terminate at each of the neighboring nuclei. These trajectories 

define a line along which ρ(r) is a maximum with respect to any neighboring line. This line, 

that constitutes the second element, is the bond path, BP. Additionally, the set of trajectories 

that terminate at a BCP define the interatomic surface (IAS) that separates the atomic basins 

of the neighboring atoms [45]. 

The determination of all the intermolecular BCPs and the corresponding BPs were performed 

with Multiwfn [46] and AIMPAC [47] software. The molecular graphs were depicted with 

Pymol [48]. 

In this paper, QTAIM calculations were performed in order to determine the ρ(r) values at the 

BCPs established between each atom (belonging to the backbone or the side chain) of the 

amino acids of the receptor and each atom of the ligand. In order to obtain the total ρ(r) value 

of the interaction between a particular residue and the inhibitor, we performed the sum of the 

ρ(r)values of each BCPs between that amino acid and the inhibitor according to the following 

equation: 

=5�� =	>=��-��?@-���	5����																																																						(4) 
 

where =5�� is the ρ(r) value for the total interaction with a particular residue and 

=��-��?@-���	5���� represents the ρ(r) value of each interaction (BCP) between the atoms of the 

ligand and the corresponding residue. 

 

Multivariable Linear Regression  

A data set of 25 compounds with known DHFR inhibition activity was utilized to perform a 

Multivariable Linear Regression (MLR) analysis with the aim to establish a mathematical 

relationship between the biological activity and the ρ(r) value calculated from QTAIM study. 
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order to use them as independent variables while the biological activity (expressed as –log 

IC50) was utilized as the dependent variable. A total of 23 interactions, which belong to the 

reduced model, were used as molecular descriptors. The values of the biological activity as 

well as the numbering of the compounds included in the data set are given in Table 1. 

The mathematical models were developed using a subset of 22 compounds (calibration set) 

from the full data set. Then, the optimal model was validated through a test set containing 3 

compounds which do not form part of the calibration set. The elements of each set (calibration 

and test set) were selected in such a way that they share similar structural characteristics and 

the experimental data of the test set represent of the whole span. Thus, the compounds 7, 14c 

and 15c were selected as test set.  

The optimal model was developed by performing an exhaustive search selecting the best 

linear regressions (minimum standard deviation (S)) from each combination from 1 to 20 

molecular descriptors. The quality of the models is suggested for the calculated coefficients of 

determination (R2) and the standard deviations (S). All the MLR calculations were carried out 

using the MATLAB 7.0 software [49]. 

 

EXPERIMENTAL SECTION 

General Experimental Section 

Solvents and Reagents 

Reagents and solvents used were purchased from commercial suppliers and use without 

further purification procedures. 

Chromatography 

Thin layer chromatography (TLC) was used to monitorize the reaction progress and product 

purity, it was performed on Merck Kieselgel 60 F254 aluminium precoated plates, and spots 

visualized with ultra-violet irradiation. 

Melting Points 

Melting points were recorded on a Digital Melting Point Apparatus, model IA9300 series, 

Barnstead Electrothermal and are uncorrected. 

NMR Spectroscopy 

1D (1H, 13C, DEPT) and 2D (COSY, HSQC and HMBC) NMR spectra were recorded on 

Brucker Advance 400 spectrometer. Chemical shifts (δH) are quoted in parts per million 

(ppm) downfield of tetramethylsilane, and residual proton of the solvent (δH ((CH3)2SO) = 

2.49 ppm) used as internal reference. Coupling constants (J) are given in Hertz (Hz), and 

multiplicity abbreviated as: d (doublet), t (triplet), dd (double-doublets), m (multiplet). The 1H 
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constants J/Hz).  

Mass Spectrometry 

Low resolution mass spectrometry by electron impact was recorded on a Hewlett Packard HP 

Engine-5989 spectrometer (equipped with a direct inlet probe) at 70 eV. High Resolution 

Mass Spectra by electron impact were recorded on a Micromass Auto Spec-Ultima, magnetic 

sector mass spectrometer at 70 eV. 

 

General Procedure for the synthesis of imine derivatives (14b-d): To a solution of 

triaminepyrimidine 1 (1 mmol) in 15 mL of methanol, 1 mmol of appropriate 

arylbenzaldehyde was added, and this solution was stirred overnight at room temperature. The 

solid formed was filtered off, washed with fresh methanol and dried at 50 ºC, if necessary it 

can be recrystallized from MeOH (see Scheme 1). 

 

Scheme 1 

 

 

6-methoxy-N5-[(E)-(4-methylphenyl)methylidene]-N4-phenylpyrimidine-2,4,5-triamine 

(14b). 80% yield; Yellow solid; pf 168-169 ºC; Rf 0.38 (Chloroform); IR (ν cm-1): 3330, 

3226, 2923, 1639, 1603, 1560; 1H NMR (DMSO-d6): δ 2.37 (s, 3H), 3.94 (s, 3H), 6.56 (s, 

2H), 6.99 (t, 1H, 8 Hz), 7.27 – 7.32 (m, 4H), 7.83 – 7.87 (m, 4H),  8.66 (s, 1H), 9.01 (s, 1H). 
13C NMR (DMSO-d6): δ 21.0, 53.0, 102.7, 120.7, 121.7, 127.6, 128.4, 129.2, 135.2, 139.7, 

140.0, 153.7, 158.2, 159.6, 161.2. MS (m/z, %) (assignation, abundance %): 333 (M+, 68.2), 

332 (M-1, 48.5), 331 (M-2, 100), 302 (M-31, 10.1), 242 (M-91, 89.9), 215 (M-118, 9.4), 77 

(C6H5
+, 24.7). Calculated HRMS for C19H19N5O: 333.1590; found: 333.1578. 

6-methoxy-N4-phenyl-N5-[(E)-pyridin-4-ylmethylidene]pyrimidine-2,4,5-triamine  (14c). 

85% yield; Yellow solid; pf 208-210 ºC; Rf 0.09 (Chloroform); IR (ν cm-1): 3431, 3335, 3215, 

1653, 1607, 1566, 1543; 1H NMR (DMSO-d6): δ 3.97 (s, 3H), 6.78 (s, 2H), 7.03 (t, 1H, 8 Hz), 

7.32 (t, 2H, 8 Hz), 7.86 – 7.91 (m, 4H), 8.66 (s, 2H), 8.77 (s, 1H), 9.01 (s, 1H). 13C NMR 

(DMSO-d6): δ 53.1, 102.6, 120.6, 121.3, 122.1, 128.3, 139.7, 144.5, 149.7, 150.0, 158.8, 

160.3, 161.9. MS (m/z, %) (assignation, abundance %): 320 (M+, 100), 319 (M-1, 6.1), 242 
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+, 6.4). Calculated HRMS for C17H16N6O: 320.1386; 

found: 320.1385. 

2-[(E)-{[2-amino-4-methoxy-6-(phenylamino)pyrimidin-5-yl]imino}methyl]phenol (14d). 

78% yield; Yellow solid; pf 178-180 ºC; Rf  0.29 (Chloroform); IR (ν cm-1): 3462, 3345, 

3229, 1632,1601, 1555, 1120, 1082; 1H NMR (DMSO-d6): δ 3.90 (s, 3H), 6.52 (s, 2H), 6.91 – 

6.99 (m, 3H), 7.26 – 7.33 (m, 3H), 7.70 – 7.76 (m, 3H), 8.44 (s, 1H), 9.09 (s, 1H), 11.84 (s, 

1H). 13C NMR (DMSO-d6): δ 52.9, 103.2, 115.9, 118.7, 119.9, 121.4, 121.5, 128.0, 129.5, 

131.2, 140.0, 156.7, 157.7, 158.3, 159.2, 160.6. MS (m/z, %) (assignation, abundance %): 335 

(M+, 54.8), 334 (M-1, 16.2), 242 (M-93, 100), 215 (M-120, 8.8), 77 (C6H5
+, 11.9). Calculated 

HRMS for C18H17N5O2: 335.1382; found: 335.1380. 

 

Procedure for the one-pot synthesis of guanine derivatives (15b-e): To a solution of 

triaminepyrimidine 1 (1 mmol) in 15 mL of methanol, 1 mmol of appropriate 

arylbenzaldehyde was added, and this solution was stirred overnight at room temperature. The 

solid formed was filtered off, washed with fresh methanol and used directly without further 

purification with 1 mmol of iodine in 20 mL of AcOEt; the reaction mixture was stirred for 24 

h at room temperature. The solid formed is filtered off and washed with a solution of 

NaHCO3, then with a solution of sodium thiosulfate and, dried in an oven at 100 oC) (see 

Scheme 1).  

2-amino-8-(4-methylphenyl)-9-phenyl-1,9-dihydro-6H-purin-6-one (15b). 60% global 

yield; Beige solid; pf > 300 °C; Rf  0.79 (CHCl3/CH3OH, 9:1); IR (ν cm-1): 3420, 3183, 1695, 

1647; 1H NMR (DMSO-d6): δ 2.25 (s, 3H), 6.54 (s, 2H), 7.08 (d, 2H, 8 Hz), 7.24 (d, 2H, 8 

Hz), 7.33 (m, 2H, broad band), 7.48 (m, 3H, broad band), 10.69 (s, 1H). 13C NMR (DMSO-

d6): δ 20.7, 116.3, 127.2, 128.0, 128.2, 128.6, 128.7, 129.3, 135.6, 138.2, 145.2, 153.7, 153.8, 

156.8. MS (m/z,%) (assignation, abundance %): 317 (M+, 100), 316 (M-1, 37), 300 (M-17, 6), 

275 (M-42, 6), 194 (M-123, 19), 77 (C6H5
+, 12). Calculated HRMS for C18H15N5O: 317.1277; 

found: 317.1269. 

2-amino-9-phenyl-8-[4-(propan-2-yl)phenyl]-1,9-dihydro-6H-purin-6-one (15c). 59% 

global yield; Beige solid; pf > 300 °C; Rf  0.80 (CHCl3/CH3OH, 9:1); IR (ν cm-1): 3424, 3308, 

3184, 1694, 1645, 1599, 1368; 1H NMR (DMSO-d6): δ 1.15 (d, 6H, 8 Hz), 2.83 (sp, 1H, 8 

Hz), 6.53 (s, 2H), 7.15 (d, 2H, 8 Hz), 7.29 (d, 2H, 8 Hz), 7.36 (m, 2H, broad band), 7.50 (m, 

3H, broad band), 10.69 (s, 1H). 13C NMR (DMSO-d6): δ 23.5, 33.0, 116.3, 126.0, 127.5, 

127.9, 128.2, 128.7, 129.4, 135.6, 145.1, 148.9, 153.7, 153.8, 156.8. MS (m/z,%) (assignation, 

abundance %): 345 (M+, 100), 344 (M-1, 20), 330 (M-15, 55), 222 (M-123, 7), 77 (C6H5
+, 

17). Calculated HRMS for C20H19N5O: 345.1590; found: 345.1579. 
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yield; Beige solid; pf > 300 °C; Rf  0.79 (CHCl3/CH3OH, 9:1); IR (ν cm-1): 3424, 3308, 3161, 

1699, 1651, 1211; 1H NMR (DMSO-d6): δ 6.58 (t, 1H, 8 Hz), 6.79 (d, 1H, 8 Hz), 6.84 (s, 2H), 

6.90 (d, 1H, 8 Hz), 7.17 (t, 1H, 8 Hz), 7.43 – 7.45 (m, 3H), 11.45 (s, 1H)12.07 (s, 1H). 13C 

NMR (DMSO-d6): δ 113.9, 116.8, 118.1, 127.2, 128.1, 129.1, 129.6, 130.4, 135.7, 144.1, 

153.1, 154.6, 156.5, 157.3. MS (m/z, %) (assignation, abundance %): 319 (M+, 100), 318 (M-

1, 75), 302 (M-17, 20), 301 (M-18, 10), 276 (M-43, 5), 196 (M-123, 13), 77 (C6H5
+, 16), 43 

(M-278, 6). Calculated HRMS for C17H13N5O2: 319.1069; found: 319.1073. 

2-amino-8-(1,3-benzodioxol-5-yl)-9-phenyl-1,9-dihydro-6H-purin-6-one (15e). 52% global 

yield; Beige solid; pf > 300 °C; Rf 0.82 (CHCl3/CH3OH, 9:1); IR (ν cm-1): 3422, 3186, 1694, 

1645, 1232, 1032; 1H NMR (DMSO-d6): δ 6.01 (s, 2H), 6.49 (s, 2H), 6.82 – 6.86 (m, 3H, 

broad band), 7.35 (s, 1H, broad band), 7.51 (s, 4H, broad band),10.66 (s, 1H). 13C NMR 

(DMSO-d6): δ 116.5, 122.1, 128.0, 128.8, 129.1, 129.4, 129.8, 131.1, 135.2, 144.0, 153.8, 

153.9, 156.7. MS (m/z,%) (assignation, abundance %): 347 (M+, 100), 346 (M-1, 45), 304 (M-

43, 4), 224 (M-123, 13), 77 (C6H5
+, 5). Calculated HRMS for C18H13N5O3: 347.1018; found: 

347.1015. 

 

Bioassays 

To avoid including experimental errors in the correlation, we used exactly the same bioassay 

as those used in reference [5]. The assay is based on the ability of DHFR to catalyze the 

NADPH-dependent reduction of dihydrofolic acid to tetrahydrofolic acid. The rate of 

NADPH consumption in the presence of the compound under investigation is monitored by 

the decrease in absorbance at 340 nm [50-55] every 15 seconds, during 2.5 minutes. Reactions 

were performed in a solution containing saturating concentrations of cofactor (80 µM 

NADPH) and substrate (50 µM dihydrofolate), 15 µL of enzyme solution, 50 mM Tris−HCl, 

0.001 M 2-mercaptoethanol, and 0.001 M EDTA at pH 7.4 and 30 °C. The enzyme was 

purchased from Sigma-Aldrich Co. (St. Louis, MO). In order to determine IC50 values, five 

different concentrations of compounds as inhibitors were tested (each assay was made by 

triplicate) and percent inhibition graphs were drawn by using statistical packing program on a 

computer. 

 

RESULTS AND DISCUSSION 

We recently reported two new DHFR inhibitors: compounds 14a and 15a [5]. In order to have 

a more extensive series and based on these two structures, we decide to synthesize seven 

novel derivatives from 2,4,5-triamino-6-methoxypyrimidine with diverse aryl aldehydes to 

render well compounds 14b-d (structurally related to 14a) or compounds 15b-e (structurally 
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and Table 1). 

In the next step we tested the inhibitory effect of these compounds; such results are 

summarized in Table 1. As we can see from Table 1 some of these compounds displayed a 

relatively significant activity, such as compound 15b which shows inhibitory effect at 

concentrations of 27.87µM. 

As it was stated above the main objective of this work is to obtain a correlation between the 

binding energies of these compounds and their respective IC50. Therefore MD simulations and 

quantum mechanical calculations were performed for all the L-R complexes. To try to use a 

sample as representative as possible of different types of ligands, we also include in this 

analysis the sixteen compounds reported in our previous work [5], thus forming a complete 

set of 25 compounds (Figure 1). 

As we expected the general results obtained from MD simulations were very similar to those 

previously reported for compounds 14a and 15a [5]. A highly conserved glutamic acid 

(Glu30) is functioning as an anchoring point. In the present study, all the simulated 

compounds were docked into the receptor with the N1 and 2-amino group near to Glu30. 

After 5 ns of MD simulations, the ligands moved slightly but in a different form compared 

with the initial position. However, the strong interaction with Glu30 was maintained for all 

the complexes. Other important MI stabilizing the different complexes are: π···π stacking 

interactions with Phe31 and Phe34, and hydrophobic interactions with Ile7 and Val115. 

Next, the BE obtained for the different complexes were evaluated. From the BE obtained 

from our MD simulations, a very good binder can be differentiated from a very weak binder (-

11.85 kcal/mol for MTX vs. -6.74 and -3.61 kcal/mol for compounds 14b and 15c, 

respectively) but ligands with similar binding affinities cannot be easily differentiated. In 

function of the IC50 values we were expecting exactly the opposite values for compounds 14b 

and 15c. Similar to these unexpected results, there are others that might be observed in Table 

1S in Supplementary Material. In addition, it is important to note that the value of R2 obtained 

for this correlation is very low (0.49) (Figure 3). This result clearly indicates that by using this 

approximation is not possible to discriminate between compounds with similar binding 

affinities; in addition the low correlation obtained indicates a very poor predictive power of 

the method. This result was not surprising since we obtained similar results in our previous 

work using this approach [5]. Considering that MD simulations might neglect or poorly 

approximate terms that are playing determinant roles (such as lone pair directionality in 

hydrogen bonds, explicit π···π stacking polarization effects, hydrogen bonding networks, 

induced fit, and conformational entropy), we cannot expect to detect clear differences 

between compounds possessing relatively similar BE. 
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Figure 3 

 

 

In the next step of our study, reduced model systems were optimized using combined 

semiempirical, ab initio and DFT calculations. To perform these calculations, reduced system 

models were employed whose design is explained in the calculation methods section. PM6 

optimizations were performed considering all receptor amino acids that might interact after 

initial positioning of the ligands against Glu30 residue. Next, RHF/6-31G(d) and DFT 

(PBE1PBE/6-31G(d)) single point calculations were carried out for each complex optimized 

from PM6 computations. 

It is important to note that the L-R interaction is a dynamic process and therefore in order to 

have a more accurate description of such situation, four different snapshots for each complex 

were considered. This resulted in different energy values and such variation can be observed 

in the error bars which are shown in Figures 4, 5 and 6. Once the BE of the different 

complexes were obtained from the theoretical calculations, the different correlations between 

these theoretical calculations and our experimental data (Table 1) were calculated. The Figure 

4 shows that semi-empirical calculations (PM6) gave a correlation between the BE and the 

inhibitory activity with an R2 value of 0.49, which does not improve those results obtained 

with the LIE method (Figure 3). However, the results obtained from RHF/6-31G(d) (Figure 5) 

and PBE1PBE/6-31G(d) (Figure 6) were significantly better with R2 values of 0.77 and 0.76, 

respectively. Nevertheless it is important to note that not only the value of R2 is important in a 

correlation but also how the distribution of the various points along the line is. Regarding 

Figures 5 and 6 it is evident that the different points are clustered into two well-defined 

groups. This would indicate that although these correlations allow us to differentiate between 
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for doubt whether it is possible to distinguish between two compounds having similar 

affinities. To corroborate this assumption we removed the three classical type inhibitors 

(MTX , compounds 1 and 2) from the series and a new correlation was obtained with this new 

series. Such as we expected the new correlations gave very low R2 values (0.64 and 0.61 for 

ab initio and DFT calculations, respectively). These results show the severe limitations of 

these approaches in order to correctly predict the inhibitory activity between compounds with 

similar affinities. This result was somewhat disappointing for us so we seek a new parameter 

or kind of molecular descriptor that might be able to predict the inhibitory activity between 

compounds with similar BE in this series. 

 

Figure 4 

 

 

Figure 5 
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Figure 6 

 

 

We recently reported that the information about the electronic density obtained from a 

QTAIM analysis is useful to describe the molecular interactions that stabilize and destabilize 

the different complexes L-R [13-15]. Specifically in our previous work reported for DHFR 

inhibitors, the QTAIM analysis gave very interesting results when it was applied to this 

molecular target [5]. Therefore in the next stage of our study we performed a QTAIM analysis 

of all the complexes in order to find a new descriptor for this series. 

 

QTAIM Analysis 

The Figure 7 shows the sum of the ρ(r) values corresponding to the interactions of the Pyr 

system and C6 and/or N7 side chains obtained for the different inhibitors analyzed here. The 

different moieties of each type of inhibitor are showed in Figure 8. The sum of the ρ(r) values 

for all the interactions of one part of the inhibitor (i.e., the Pyr ring system and the C6-side 

chain) provides a measure of the anchoring strength of such moiety of the inhibitor to the 

binding pocket. Figure 7 clearly shows that the classical inhibitors (MTX, 1  and 2) bind to the 

enzyme with similar strength through both parts of the molecule, the Pyr system and the C6-

side chain. Non-classical inhibitors reported by Gangjee et al. (compounds 3-13) bind their 

Pyr portions with similar strength to that of the classical inhibitors, but the anchoring through 

the C6-side chain is much weaker in these inhibitors with respect to the classical ones. 

Regarding the inhibitors reported here (compounds 14b-e and 15b-f), on average, these 

compounds are more weakly bonded to the binding pocket than the rest of the inhibitors. 

Analyzing the anchoring strength of each part of these compounds to the binding pocket, it 

can be observed that the equivalent Pyr systems are more weakly bonded to the pocket than 
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more weakly H-bonded to the active site in these new compounds than in the rest of the 

inhibitors. In contrast, the C6- and N7-side chain from compounds 14a-e and 15a-f are on 

average more strongly bonded to the binding pocket than the C6-side chain from the non-

classical inhibitors. 

 

Figure 7 

 

Figure 8 

 

 

 

 

MTX Gangjee´sinhibitors 

Compounds of Series 14 Compounds of Series 15 
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The electronic density ρρρρ(r)  as a molecular descriptor for the L-R affinity 

The QTAIM study allows not only analyzing quantitatively each interaction but also getting a 

correlation using the calculated ρ(r) values and the IC50 data obtained in our laboratory. For 

this purpose, we have considered the ρ(r) value obtained from the QTAIM analysis as a 

molecular descriptor in order to use them as independent variables in the multivariable lineal 

regression analysis (for details about this analysis see the method section).  

Of the 25 total compounds under study, 22 were used for the construction and calibration of 

the model, while the remaining three (compounds 7, 14c and 15c) were left to test it. 

Therefore it should be noted that a model of up to 20 amino acids was obtained. Thus, we 

obtained the corresponding correlations using different number of amino acids. In the Figure 

9, it can be appreciated that the utilization of 7 amino acids is enough to get a very good value 

of R2 and increasing the number of them does not significantly improved the correlation. In 

the Table 2, the main results obtained for models using different numbers of amino acids 

(from 3 to 8) are summarized. Importantly, all the models showing significant correlations 

maintain the same four amino acids (Val8, Ala9, Leu67 and Arg70), indicating that they are 

essential to discriminate the L-R affinity among these compounds. The model possessing only 

three amino acids maintains only two of these amino acids and has a significantly lower value 

of R2 (see the first column of Table 2). Although the model with eight amino acids has a high 

value of R2, however its power of prediction is lower with respect to the model of seven 

amino acids (see the third column in Table 2). These results indicate that the model 

considering seven amino acids would be the most robust in order to analyze this series 

maintaining a reazonable number of aminoacids. 

 

Figure 9 
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Table 2. R2, R2
val and S values obtained from the models employing from 3 to 8 amino acids. 

 

Number 
of 

residues 
Residues 

Considering all 
compounds Excluding MTX, 1 y 2 

R2 (*) S(*) R2
val

(**)  R2 (*) S(*) R2
val

(**)  

3 Leu67, Arg70 and Tyr121 0.80 0.48 0.98 0.66 0.40 0.93 

4 Val8, Ala9, Leu67 and Arg70 0.86 0.42 0.99 0.75 0.35 0.97 

5 Val8, Ala9, Asn64, Leu67 and Arg70 0.90 0.37 0.99 0.79 0.34 0.97 

6 Val8, Ala9, Asn64, Leu67, Arg70 and 
Thr136 0.92 0.33 0.99 0.88 0.26 0.98 

7 Val8, Ala9, Asn64, Leu67, Arg70, 
Val115 and Thr136 0.93 0.32 0.99 0.90 0.25 0.99 

8 Val8, Ala9, Thr56, Asn64, Leu67, 
Arg70, Val115 and Thr136 0.94 0.30 0.94 0.91 0.25 0.96 

 
(*) Calculated R2 y S values from the corresponding model. 
(**)  Calculated R2 value for the 3 compounds (7, 14c and 15c) used to validate the model. 

 

The mathematical model of 7 amino acids was tested using the three compounds which do not 

form part of the initial statistical analysis. As can be seen in Table 3, the predicted activities of 

these compounds do not differ from the experimental results, showing the high predictive 

power of the developed model. The residues included in this model are: Val8, Ala9, Asn64, 

Leu67, Arg70, Val115 and Thr136. The first two ones interact with the main ring of the 

ligand (Pyr ring) through hydrogen bonds with the atoms of their backbones. Asn64 presents 

polar interactions with different groups located on the phenyl ring. In the case of Leu67, this 

residue displays hydrophobic interactions with the phenyl ring and different non polar groups 

located on it. It is important to note that the interaction of Arg70 with the ligands allows the 

differentiation between classical and non-classical compounds. This residue is able to form a 

salting bridge with the α-carboxilate group of classical inhibitors, which is a very strong 

interaction. In a minor degree, Arg70 presents MI with polar groups of the non-classical 

ligands. Val115 and Thr136 can establish hydrogen bond interactions with amino groups 

located in the Pyr ring. Some residues like Glu30, Phe31 and Phe34, which produce important 

interactions, have not been considered in this model. This is because all the interactions 
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do not allow us to differentiate the ligands in terms of their activities within the series. Most 

of the interactions previously described might be well appreciated in Figure10 in which the 

molecular graph obtained for MTX  is shown. Molecular graphs were analyzed for the 

different complexes studied here. We only show that obtained for MTX  as an example in 

which the main interactions might be appreciated (Figure 10). 

 

Table 3. Activity values (theoretical and experimental) obtained for compounds 7, 14c y 15c 
 

Compound 
-log IC50 

Error (%)  
Theoretical Experimental 

7 (*) -0.50 -0.46 8.79 

14c -1.46 -1.80 18.88 

15c -1.57 -1.64 4.08 

(*) Compound reported in reference 16 

 

Figure 10 

 

 

The next step was to determine whether this model using the electron density as molecular 

descriptor can only discriminate between compounds with different affinities, or by otherwise 

it is also possible to distinguish between compounds that have similar affinities. To test the 

model, the three classical inhibitors were removed from the test group, resulting in just a very 

slightly diminution of the R2 (0.90). It should be noted that the R2 testing the model was 0.99 

showing that the model is able to maintain not only a high correlation value but also an 

excellent predictive power. This result is extremely important as it shows that this model 

using the ρ(r) as molecular descriptor can be used to predict the activity of compounds with 

similar affinities in this series. This result is highly satisfactory as it allows us to achieve the 

main objective of our work; this is we are able to differentiate between compounds that have 

Glu30 

Phe34 

Gln35 

Asn64 

Lys68 

Phe31 

Leu67 

Arg70 

Val8 
Val115 

Ile60 
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note when we use this type of approach is that just one molecular descriptor has been used 

and therefore we can easily understand the physical-chemical behavior of the different L-R 

complexes. In this sense it is possible to determine which are those amino acids that might 

perform stabilizing or destabilizing interactions on the various complexes and what is more 

important is that such information can be obtained quantitatively. 

 

CONCLUSIONS 

There are many techniques and approaches to study the postdocking problem. While many of 

these techniques are able to distinguish between compounds that have high affinity with 

respect to those with low affinity for the receptor, unfortunately most of these techniques have 

failed when they have to distinguish between compounds with similar affinities. 

In this paper we have succeeded in what we fail in our previous report [5]. In this case we 

have been able to get an excellent correlation between the electronic densities obtained from a 

QTAIM study with the experimental data. It is important to note that through this study is 

possible to differentiate the L-R affinity even though the compounds possess similar 

affinities. Very important additional information obtained through this type of study is that it 

is possible to visualize which amino acids are involved in the interactions determining the 

different affinities of the ligands. Such information is crucial when we are interested in the 

design of new specific ligands. Some additional benefits that may be mentioned for this 

approach are: the technique is relatively simple, easy to interpret and not too demanding about 

the computing time. However, a somewhat limiting aspect of this type of study is that the 

QTAIM study is highly dependent on the optimized geometry and therefore the 

conformational variability can be a serious problem. In the particular case of DHFR this is not 

too problematic due to the structural characteristics of the active site of the enzyme. It is well 

known that the DHFR binding pocket is relatively narrow, with little space for the ligand and 

therefore does not lead to large conformational changes at least in comparison with others 

more flexible binding sites. These features of the active site have allowed that with care in the 

calculations (four conformations for each complex were considered), it is possible to obtain 

highly satisfactory results. Clearly, if the characteristics of the active site are different it is 

necessary to check whether this technique is effective exactly with this procedure or if it is 

necessary to consider more carefully the issue of conformational variability of the various 

complexes.  

In summary, in this paper we have shown that the electron density obtained from a QTAIM 

analysis is an excellent descriptor of molecular interactions that stabilize and destabilize the 

formation of the L-R complex. If this information is used properly, it is possible the 
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when they show similar affinities. The possibility of using this postdocking technique on 

other binding sites with different structural characteristics is currently being studied in our 

laboratory. 
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Figure 1. Structural features of the compounds reported by Gangjee et al. (1-13) and Tosso et 

al. (14a and 15a). Each IC50 value is indicated in parenthesis. 

 

Figure 2. Surface of the active site of DHFR (light blue). MTX  (yellow sticks), NADP+ (grey 

sticks) and the protein (magenta ribbon) are also represented. Leu22 and Trp24 were not 

considered in the surface for clarify. 

 

Figure 3. Correlation obtained from LIE calculations. The x-axis denotes relative energies 

(∆∆G), and the y-axis denotes the inhibitory activity value of each compound (-log IC50). 

 

Figure 4. Correlation obtained from semi-empirical calculations. The x-axis denotes PM6 

relative energies, and the y-axis denotes the inhibitory activity value of each compound (-log 

IC50). 

 

Figure 5. Correlation obtained from ab initio calculations. The x-axis denotes ab initio 

(RHF/6-31G(d)) relative energies, and the y-axis denotes the inhibitory activity value of each 

compound (-log IC50). 

 

Figure 6. Correlation obtained from DFT calculations. The x-axis denotes DFT (PBE1PBE/6-

31G(d)) relative energies, and the y-axis denotes the inhibitory activity value of each 

compound (-log IC50). 

 

Figure 7. Charge density values for the total interactions of the Pyr ring system (orange 

stacked bars) and the C6 and/or N7 side chains (green stacked bars) for the inhibitors at the 

binding pocket. The repulsive short C-H···H-C contacts were not included. 

 

Figure 8. Schematic representation of each moiety of the different inhibitors. The main ring 

(Pyr ring) of the compounds is indicated in orange.  

 

Figure 9. R2 values of each obtained correlation employing different number of residues. 

 

Figure 10. MTX (in orange sticks) at the DHFR binding site (in green sticks). Also the 

elements of the topology of the electron density are shown: yellow sticks represent the bond 
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of the structure most of the interactions of water molecules are not shown. 

 

Scheme 1. Synthesis of imine and guanine derivatives. 
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Highlights 
 

The electronic density obtained from a QTAIM analysis used as molecular 
descriptor. A study performed in a new series of DHFR inhibitors 

 

Rodrigo D. Tosso, Marcela Vettorazzi, Sebastian A. Andujar, Lucas J. Gutierrez, Juan C. Garro, 
Emilio Angelina, Ricaurte Rodríguez, Fernando D. Suvire, Manuel Nogueras, Justo Cobo and Ricardo 
D. Enriz 

 
Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de 
San Luis, Chacabuco 915, 5700 San Luis, Argentina 

 
 

• A new series of guanine and imine derivatives has been synthesized. 

• The activities of the new compounds were evaluated against human DHFR. 

• MD simulations, QM calculations and QTAIM analysis were performed. 

• An excellent correlation between theoretical and experimental data was obtained. 


