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Abstract 

Background- Two potent carbonic anhydrase (CA) inhibitors with widely differing membrane 

permeability, poorly diffusible benzolamide (BZ) and highly diffusible ethoxzolamide (ETZ) 

were assessed to determine whether they can reduce cardiac dysfunction in rats subjected to 

coronary artery ligation (CAL)-induced myocardial infarction.  

Methods and results- Rats with evidence of heart failure (HF) at 32 weeks following a 

permanent left anterior coronary artery occlusion were treated with placebo, BZ or ETZ (4 

mg.kg.day
-1

) for 4-weeks at which time left ventricular function and structure were evaluated. 

Lung weight/body weight (LW/BW) ratio increased in CAL rats by 17±1% vs. control, 

suggesting pulmonary edema. There was a trend for BZ and ETZ to ameliorate the increase in 

LW/BW by almost 50% (9±5% and 9±8%, respectively, versus CAL) (P=0.16, NS). 

Echocardiographic assessment showed decreased LV midwall shortening in HF rats, 21±1% vs. 

control 32±1%, which was improved by BZ to 29±1% and ETZ to 27±1%, and reduced 

endocardial shortening in HF rats 38±3% vs. control 62±1%, partially restored by BZ and ETZ to 

~50%. Expression of the hypoxia-inducible membrane-associated CAIX isoform increased by 

~60% in HF rat hearts, and this effect was blocked by ETZ.  

Conclusions- We conclude that CAL-induced myocardial interstitial fibrosis and associated 

decline in left ventricular function were diminished with BZ or ETZ treatment. The reductions in 

cardiac remodelling in HF with both ETZ and BZ CA inhibitors suggest that inhibition of a 

membrane-bound CA appears to be the critical site for this protection. 

 

Keywords:  heart failure; carbonic anhydrase inhibitors; intracellular pH; myocardial infarction 
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1. Introduction 

Heart failure (HF) remains one of the leading causes of morbidity and mortality worldwide with 

fibrotic remodeling after myocardial infarction (MI) as the most frequently recognized primary 

factor [1, 2]. 

Pathologic cardiac hypertrophy diminishes contractile function and commonly progresses 

to HF [3]. Changes in ion homeostasis, which result from altered expression and/or function of 

the ion transporters NHE1 Na
+
/H

+
 exchanger [4, 5] , AE3 Cl

-
/HCO3

-
 exchanger [6] and NBC 

Na
+
/HCO3

- 
cotransporter [7], and their associated regulatory partners (carbonic anhydrases, CA) 

[8, 9], contribute to hypertrophic growth. Experimental and clinical studies demonstrate the 

pathophysiological role of increased NHE1 activity during cardiac ischemia/reperfusion injury 

and post-injury hypertrophy [10, 11]. The proposed cascade of undesirable events, involving 

NHE1, AE3, and NBC activation, has been attributed to an increased intracellular Na
+
 load [6, 

12-14] , and subsequent increase in intracellular Ca
2+

 concentration ([Ca
2+

]i). Augmented [Ca
2+

]i 

then triggers widely-recognized Ca
2+

-dependent intracellular signaling pathways leading to 

cardiac hypertrophy [15-18]. 

Interestingly, we have identified a role for CA in the hypertrophic growth of cultured 

cardiomyocytes exposed to phenylephrine (PE), angiotensin II (AngII), or endothelin 1 (ET1) [8]. 

Treatment of hypertrophically-stimulated cardiomyocytes with the freely diffusible potent CA 

inhibitor, ethoxzolamide (Cardrase, ETZ) diminished the hormonally-induced hypertrophy and 

reversed it after once established. These effects appear to involve enhanced intracellular Na
+
 and 

Ca
2+

 loading [8]. Furthermore, cultured myocytes of CAII-deficient mice did not respond to the 

same pro-hypertrophic stimulation, suggesting a role of CAII in promoting cardiac hypertrophy 

[19]. 
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We recently reported that failing human hearts (of ischemic and non-ischemic origin) in 

non-diabetic patients are characterized by increased CAII and CAIV expression [9]. Moreover, 

myocardial CA activation was found to be present in human diabetic ischemic cardiomyopathy 

(HDIC) [20]. Indeed, CAI and CAII isozymes are overexpressed in HDIC, and the increased 

myocyte expression of CAII is associated with the NHE1 Na
+
/H

+
 exchanger 

hyperphosphorylation in this specific diabetic HF condition [20]. Therefore, on the basis of these 

findings it is tempting to speculate that CA inhibition with existing drugs could be rapidly 

implemented and would be therapeutic for diabetic patients with post-MI HF. Because CA 

overexpression is identified as a marker of the hypertrophic human heart that progresses towards 

failure [9], CA inhibition might be an appropriate strategy to moderate the hypertrophic cascade.  

The CAIX isozyme is expressed in the mammalian heart [21], localizing to the  t-tubules 

of cardiomyocytes [22]. CAIX, whose gene has a hypoxia inducible factor (HIF) responsive 

element in its promoter region, is overexpressed in hypoxic tumors and is essential in promoting 

tumor growth and metastasis [23, 24].  However, CAIX expression is not limited to cancer, but 

may be also induced in other pathological situations associated with ischemia, fibrosis, vascular 

remodeling, inflammation or metabolic disturbances such as heart failure that lead to activation 

of the HIF pathway. In the setting of heart failure changes in mitochondrial metabolism lead to 

possibly injurious reactive oxygen species (ROS) generation and a greater reliance of glycolytic 

metabolism [25]. CAVB isozyme is a mitochondrial CA involved in cellular metabolism [26] and 

could be altered in the failing heart. 

The functional benefit of CA inhibition has not been evaluated in cardiac dysfunction 

after experimental MI. In the present study we examined the effect of CA inhibitors on rat heart 

function and collagen deposition following MI and subsequent pathological hypertrophic 

remodeling, induced by left anterior descending coronary artery ligation (CAL), and we 
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investigated a potential link of CAIX and CAVB with the development of heart failure following 

myocardial infarction. 
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2. Methods 

Protocols that involved rats were submitted to, reviewed and approved by the Animal Welfare 

Committee of La Plata School of Medicine and performed in accordance with the Guide for the 

Care and Use of Laboratory Animals (Argentine Republic Law N° 14346), concerning animal 

protection. 

2.1. Animals  

A total of 52 three-month old male Wistar rats, originally derived from Charles River Breeding 

Farms (Wilmington, Mass) were used in these studies. All animals were housed under identical 

conditions and had free access to standard dry meal and water.  

2.2. Experimental protocol and group assignments 

Myocardial infarction (MI) was produced in 16 three-month old Wistar rats by permanent 

ligation of the left anterior descending (LAD) coronary artery, according to a method previously 

described [27]. Thirty six age-matched rats that did not undergo CAL were maintained under 

identical housing conditions and served as controls. Briefly, the 16 rats subjected to surgery were 

fully anesthetized by an i.p. injection of Euthanyl (sodium pentobarbital, 35 mg.kg
-1

) and then 

quickly intubated and ventilated with ambient air using a positive-pressure respirator (Model 680, 

Harvard). A left thoracotomy was performed via the fourth intercostal space, and the lungs 

retracted to expose the heart. The LAD coronary artery was ligated with a 7-0 silk suture near its 

origin. Acute ischemia was deemed successful when the anterior wall of the left ventricle became 

cyanotic. Atelectatic lung regions near the heart were re-inflated by increasing positive end-

expiratory pressure, and the thoracotomy site was closed in layers. The animals were then 

allowed to recover from anesthesia and separated into three experimental groups. All animals 
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survived the surgery and the myocardial infarction and none died before reaching the time of pre-

planned terminal measurements either at 3 or 36 weeks. Similar observation of survival and 

degree of MI achieved by CAL in rats has been reported before [27, 28]. Table 1 provides 

detailed information about group assignments, the number of animals used, the treatments given, 

and the measurements made in each group. The condition of the animals was monitored on a 

daily basis. Four rats subjected to CAL-induced MI were used only to determine the infarct size 

and degree of myocardial damage attained at 3 weeks post MI and to assess echocardiographic 

estimates of LV function at 1 and 3 weeks post MI. These rats were euthanized at three weeks 

later and the heart was removed for histological studies. All of these parameters obtained at 3 

weeks post MI in this group were used for comparison with the functional and histological status 

of the hearts of the remaining animals subjected to CAL and maintained for 36 weeks. 

2.3. Carbonic anhydrase inhibitors treatment in rats subjected to sustained CAL 

Of the 12 rats with CAL and taken out to 36 weeks, 6 had no treatment. Three of these only had 

pathological examination and the other three additionally had echocardiography and 

immunoblotting for CA VB and CAIX (described below). The remaining six were either treated 

with the potent freely diffusible CA inhibitor ethoxzolamide (6-Ethoxy-1, 3-benzothiazole-2-

sulfonamide; ETZ) (n= 3) or the poorly membrane-permeable potent CA inhibitor, benzolamide 

((5-(benzenesulfonamido)-1, 3, 4-thiadiazole 2 sulfonamide; BZ)) (n= 3) [29, 30].  
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The structures of the two drugs are given below. 

 

 

      Ethoxzolamide      Benzolamide 

                                        

2.4. Echocardiographic examination 

Rats were studied echocardiographically under light anesthesia (35 mg.kg
-1

 Euthanyl IP) by two-

dimensional M-mode echocardiography with a 7-MHz transducer at the beginning and at the end 

of protocol. Measurements were performed according to the American Society of 

Echocardiography leading-edge method [31].  

Functional midwall shortening (MS) and endocardial fractional shortening (EFS) were calculated 

as follow: 

MS (%) = [LVDD + ((IVSDTh + PWDTh)/2)] - [LVSD + ((IVSSTh + PWSTh)/2] *100 

                                              [LVDD + ((IVSDTh + PWDTh)/2)]    

 

EFS (%) = (LVDD – LVSD) *100 

                             LVDD 

2.5. Pathologic studies 

At the end of the study, body weight was determined and the animals were euthanized under 

ether anesthesia. The hearts were removed and trimmed of pericardium, fat and blood vessels. 

The atria were removed and the right and left ventricles were weighed on an analytical balance. 
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Whole heart weight/tibia length (HW/TL) ratio (mg.mm
-1

) was measured as indicator of cardiac 

hypertrophy. Lungs were carefully separated and patted dry before weighing.  

2.6. Measurements of infarct size 

The hearts were immersed in 10% buffered formaldehyde for 48 h and sectioned transversally to 

the main axis and embedded in paraffin. Three m tissue sections were stained with hematoxylin-

eosin and trichrome. Scar size and infarcted wall thickness were determined on Masson´s 

trichrome stained sections with a morphometric analysis system (Image ProPlus 4.5, Media 

Cybernetics, Rockville, MD, USA). 

2.7. Histological analysis of collagen deposition 

For interstitial fibrosis determination, 3- to 4-m thick -sections of each heart were cut from apex 

to base and the left ventricles evaluated for collagen deposition. The tissue slides were processed 

for paraffin embedding and stained with Masson's trichrome. Sections were imaged at 40x, 200x, 

and 400x magnification by bright field microscope (LX71 Olympus, Tokyo, Japan). The 

percentage of collagen was calculated as the sum of collagen areas divided by the total LV area 

(myocytes + collagen).  

2.8. Immunoblot analysis 

At the end of the experimental protocol, rat heart samples were harvested and ventricles dissected 

out. Tissue was disrupted in PBS Buffer (140 mM NaCl, 3 mM KCl, 6.5 mM Na2HPO4, 1.5 mM 

KH2PO4, pH 7.5), containing protease inhibitors (PI, MiniComplete Tablet, Roche). After 

disruption, ventricular lysates were prepared by addition of SDS-PAGE sample buffer, heated at 

70 °C, 3 min, and centrifuged 10 min at 16,110 x g. Protein was quantified and 100 μg of protein 

subjected to 12% SDS-PAGE. Protein samples were transferred to PVDF membranes and then 
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incubated with mouse anti-CAIX (M75) monoclonal antibody (1:3000 dilution), which recognize 

the proteoglycan-like attachment domain of CAIX [32], goat anti-CAVB antibody (goat 

polyclonal R-20; Santa Cruz Biotechnology; 1:500), or mouse anti-gliceraldehyde 3-phosphate 

dehydrogenase (GAPDH) antibody (1:1000 dilution). Immunoblots were then incubated with 

donkey anti-mouse conjugated to horseradish peroxidase (HRP) (1:2000), or donkey anti-goat 

conjugated to HRP (GE Healthcare, Little Chalfont, UK; 1:2000), as appropriate. Blots were 

visualized and quantified using ECL reagent and a Bio-Rad Image Station. 

2.9. Design and statistical analysis 

As experiments were performed on rats of similar age and identical genetic and domestic 

background, data from individual experiments and observations (images of left ventricle sections 

demonstrating collagen deposition, Figure 5) were pooled for statistical analysis. The number of 

experiments as a basis for statistical analysis is shown in the figures. Experiments were carried 

out in a double-blind fashion. Data were compared using Student's t-test when control group and 

CAL group were compared before treatment, or Kruskal-Wallis Nonparametric ANOVA test 

followed by the Dunn´s Multiple Comparisons post hoc test for multiple comparisons when an 

overall significance was established, and when control, CAL, and CAL+ETZ, and CAL+BZ, 

groups where compared after treatment. GraphPad InStat TM Software was used for statistical 

analysis. Data are expressed as mean ± SEM. P < 0.05 was considered a threshold for statistical 

significance. 
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3. Results 

3.1. Effect of sustained left coronary artery ligation  

The scar size and infarct wall thickness were determined by Masson trichrome staining (Fig. 1). 

Morphometric analysis of hearts measured in 3-month old Wistar rats not subjected to CA 

inhibitor treatments showed that the CAL surgical procedure provoked a mean infarct size at 3 

weeks post CAL of 21±1% (Fig. 1B, n= 4) consisting of collagen scar tissue replacement of 

normal tissue (Fig. 1A), and infarct wall thinning (1C, n= 4), which is in agreement with previous 

observations [27]. In addition, echocardiographic recordings performed in rats exposed to MI 

demonstrated a significant reduction in the left ventricular endocardial shortening function (~70% 

relative to control) compared to data obtained in same animals before the MI occurred (n= 4, ) 

(Fig. 1D). Thus, the data demonstrate that CAL-induced MI changed cardiac morphology and 

function 3 weeks after the procedure and would predict further deterioration with longer follow-

up.  

Myocardial infarction was produced in rats by CAL and maintained for a total of 36 

weeks. A group of non-infarcted rats were maintained for 36 weeks and used as control group. At 

32 weeks, CAL rats were kept up to additional 4 weeks without treatment, or were treated with 

the freely diffusible CA inhibitor, ETZ, or the poorly membrane-permeable CA inhibitor, BZ. 

Thirty two weeks after ligation, the hearts of infarcted rats had a slightly increase in the left 

ventricular systolic diameter (LVSD), and left ventricular diastolic diameter (LVDD) (Fig. 2 and 

Table 1). In addition, the infarcted hearts showed a reduction in the interventricular systolic 

thickness, compared to control (Table 2). The posterior wall systolic thickness was also reduced 

in infarcted animals versus control (Table 2).  
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A modest increase in HW/TL (mg.mm
-1

) ratio of 24±0.4 in CAL vs. 21±0.4 in controls 

was detected at the end of the study (36 weeks after CAL), which suggests that the ischemic 

insult promoted moderate myocardial hypertrophy in the surviving ventricular zone (not shown). 

No significant difference in heart rate between the experimental rat groups was observed during 

the treatment (not shown). 

3.2. Effect of CA inhibition on heart function and cardiac parameters, after sustained left 

coronary artery ligation 

With the aim of establishing a dose capable of improving evidence of heart dysfunction after 

CAL-induced MI in rats, in a pilot study we treated 4-month old spontaneously hypertensive rats 

(SHR) with ETZ 4 mg.kg
-1

.day
-1

 for 4 weeks and the systolic blood pressure (SBP) was evaluated 

by the plethysmographic tail-cuff method. The SBP did not change in control SHR after 4 weeks 

(190±2 mmHg vs. 188±1 mmHg, n= 4), however, ETZ significantly reduced SBP in SHR after 4 

weeks (188±2 mm Hg vs. 167±1 mm Hg, before and after treatment, respectively (n= 4, data not 

shown). Having found a dose yielding a possibly relevant cardiovascular effect we chose 4 

mg.kg
-1

.day
-1

 of ETZ or BZ for treatment of rats after prolonged MI. 

As mentioned above, LVSD was increased in infarcted hearts at 32 weeks (Table 2, Fig. 

2B), and worsened (became greater) over the next four more weeks (Fig. 2A, 2B). At this stage, 

LVDD also progressed modestly to increase the chamber size at end-diastole (Fig. 2C). In 

addition, the lung weight/body weight ratio (LW/BW, mg.g
-1

) increased significantly in CAL 

rats, suggestive of pulmonary edema and a transition to HF (Fig. 3). These architectural 

rearrangements of the wall and chamber in CAL rats were accompanied by decreased midwall 

shortening and decreased endocardial fractional shortening of the left ventricle (Fig. 4). 
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The CA inhibitors ETZ (slightly) and BZ (significantly) decreased the augmented LVSD 

found in infarcted rat hearts (Fig. 2A, 2B). Interestingly, ETZ and BZ reduced the augmented 

LVDD in CAL rats to control levels and even further (Fig. 2C). In support of these above indices 

and a reduction in lung water accumulation as a consequence of heart failure, there was a trend 

for BZ and ETZ to ameliorate the increase in LW/BW observed in CAL rats (17%) by almost 

50% (9±5% and 9±8%, respectively), but this did not reach statistical significance (P= 0.16) (Fig. 

3). Left ventricular function estimated by midwall shortening (Fig. 4A and 4B) and endocardial 

shortening (ES) (Fig. 4C and 4D), was significantly reduced in CAL rats after prolonged MI, to 

approximately 60% relative to control (Fig. 4B and 4D, respectively). ETZ and BZ improved the 

heart function of rats subjected to CAL measured echocardiographically by MS and ES (Fig. 4A-

D). 

3.3. CA inhibition and cardiac fibrosis after sustained left coronary artery ligation 

Cardiac fibroblasts, which rapidly proliferate following Ml, are primarily responsible for the 

deposition of extracellular matrix (ECM). ECM deposition in infarcted hearts was assessed, using 

Masson's trichrome staining of histological sections of the hearts (Fig. 5A). The interstitial 

fibrotic area of CAL rats increased significantly compared with control animals (1.9±0.4% for 

control vs. 7.5±1.1% for CAL) (Fig. 5A, 5B). Treatment with ETZ reduced ECM deposition by 

roughly 50%, with a fibrotic area of 3.9±0.8%. Equally, BZ also significantly reduced cardiac 

collagen deposition 3.4±0.8% (Fig. 5B), proving as well the efficacy of a poorly-membrane 

diffusive CA inhibitor on cardiac remodeling after acute MI. Thus, CAL induced an increase in 

interstitial fibrosis, which was reversed by 4-weeks of BZ and ETZ therapy. 
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3.4. Altered CAIX protein expression in failing hearts 

Similar to the increase expression of CAIX protein in hearts of rats subjected to chronic hypoxic 

conditions [33] and in cultured cardiomyocytes exposed to physiological or chemical hypoxia 

[34], we found that whole heart lysates obtained from hearts after the experimental protocol 

revealed the expression levels of CAIX after prolonged CAL-induced MI and heart failure, and 

after ETZ and BZ treatments.  

Whole heart lysates obtained from harvested hearts after experimental protocol were used 

to quantified CA expression. Herein, immunoblots revealed the expression levels of CAIX which 

might be altered upon prolonged CAL-induced MI and heart failure, and after ETZ and BZ 

treatments, in adult rats (Fig. 6A). Expression was quantified by densitometry of the 

immunoblots and values were corrected for loading differences by normalization to GAPDH 

levels. CAIX expression was significantly increased with CAL-induced heart failure, but this 

response was blunted by the CA inhibitor, ETZ in CAL-rats (Fig. 6B). Furthermore, the potent 

CA inhibitor with reduce membrane permeability, BZ, prevented the increase in CAIX 

expression elicited by CAL (Fig. 6B). Conversely, expression of CAVB protein (a mitochondrial 

CA) did not change after CAL (Fig. 6C).  
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4. Discussion 

In this study, we examined two CA inhibitors with broadly different membrane permeability, 

ETZ and BZ, on heart function and histology in rats subjected to permanent CAL. Our major 

findings are: 1) Both ETZ and BZ showed a trend towards reduction of pulmonary edema; 2) BZ 

reduced the modest increase in LV diastolic dimension in CAL-infarcted rats and ETZ and BZ 

decreased the extent of LV systolic diameter enlargement in infarcted rat hearts; 3) ETZ and BZ 

minimized the decrease in left ventricular midwall shortening, and left ventricular endocardial 

shortening (to some extent) observed in HF as measured by echocardiography; 4) BZ and ETZ 

reversed the interstitial fibrotic remodeling of the heart long following CAL; and 5) the hypoxia 

inducible isoform of CA, CAIX, which increases after sustained CAL-induced MI, might be 

involved in the pathophysiological response of the failing heart caused by CAL. 

Heart failure is a particularly difficult problem and no single drug or drug class is capable 

of providing complete symptomatic relief or halting deterioration. Clinically, the standard loop 

diuretics have clear benefits in congestive heart failure (CHF) and remain the most potent drugs 

available to relieve symptoms and treat edema [35]. Historically, the membrane permeant CA 

inhibitor ACTZ was the first oral diuretic used  severe CHF [36], but it and other CA inhibitors 

such as ETZ are very much weaker diuretics and may only reduce body weight by 1-2% [36]. CA 

inhibitors were soon supplanted by the more potent loop diuretics and other diuretics acting more 

distally in the nephron [37]. Presently, CA inhibitors are used in CHF mainly to offset the 

metabolic alkalosis that often develops with chronic use of loop diuretics.  

Despite their limited use as first line management of CHF for the past several decades, 

CA inhibitors have not been examined for actions beyond their diuretic effect as extensively as 

other drugs used in HF, such as beta blockers, mineralocorticoid antagonists, and afterload 
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reducing (vasodilating) agents. However, given the fact that there is CA in the myocardium, there 

may be other salutary effects of CA inhibition [38].  

Critical hemodynamic changes in HF arise from ventricular remodeling, which is 

common with chronic dysfunction of the heart, and they vary with the cause of HF [39]. ECM 

remodeling, a determinant of ventricular morphology, occurs with development of fibrosis 

following MI and is a marker of early necrosis [40]. If not prevented, this can lead to thinning of 

the ventricular wall and further impairment of pump function. Here we observed that increases in  

systolic and diastolic left ventricle chamber dimensions with reduced ventricular function after 

sustained CAL-induced infarction in adult rats could be attenuated by treatment with two 

different CA inhibitors. The equivalence and perhaps even slight superiority of BZ over ETZ, 

suggests that the critical site of CA inhibition is on the extracellular domain, where several 

membrane bound CA isoforms may assemble intimately with trans-membrane ion exchangers, 

such as NHE1, AE3 and NBC transporters  [8, 22, 41]. We have earlier shown that CA acts to 

supply critical H
+
 or HCO3

- 
to these exchangers that then cause intracellular alkalization and 

hypertrophic signaling [42]. 

CA II, CA IV, and CAXIV are increased in ventricles of hypertrophic or failing rat and 

human hearts [9, 41]. However, expression of CAIX and CAVB has not been explored in these 

pathological conditions. The CAIX gene is under control of the hypoxia-inducible transcription 

factor (HIF-I) [24]. In addition, hypoxia induced- increases in another HIF (HIF-2α) stimulate 

miR-210 and CAIX expression, both of which drive fibroblast proliferation in idiopathic 

pulmonary fibrosis (IPF) [43]. Silencing HIF-2α inhibits the hypoxia-mediated increase in miR-

210 expression and blocks IPF fibroblast proliferation. We suggest that inhibition of cardiac 

fibrosis in the failing hearts of rat subjected to CAL could be possibly due to inhibition of 

hypoxia-inducible CAIX expression and/or function. However, this hypothesis needs further 
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examination using selective CAIX inhibitors, genetic knockdown or knockout manipulations.  

Lastly, we found no changes on the expression of the metabolically-linked mitochondrial CAVB 

in the hearts of HF rats suggesting that CAVB activity is not involved in the pathological 

remodeling of the infarcted heart, and seems to be irrelevant in the context of the experiments 

performed herein.  However, studies with specific inhibitors of this isozyme would be much more 

informative in elucidating its role in the pathologic heart.      

Previously, we demonstrated that CA works with the AE3 Cl
-
/HCO3

-
 exchanger and 

NHE1 Na
+
/H

+
 exchanger to promote cardiac hypertrophy [8], as is found in heart failure. 

Carbonic anhydrases catalytically produce HCO3
-
 and H

+
 for efflux by AE3, and NHE1, 

respectively. In addition, NBC Na
+
/HCO3

-
 cotransporter couples to carbonic anhydrases, which 

provides the HCO3
-
 substrate, maximizing the activity of the transporter [44]. AE3 and NHE1 

activity promote hypertrophy and increases in expression of the CA enzymes in cultured rat 

cardiomyocytes [8]. Sustained NHE1/AE3/NBC activation is itself pro-hypertrophic as the 

elevation of [Na
+
]i promoted by these transporter could in turn activate the reverse mode of the 

Na
+
/Ca

2+
 exchanger, catalyzing an increase in the cytosolic Ca

2+
 levels. Elevated Ca

2+
 is a 

consummate hypertrophic signal, working through the calcineurin/NFAT signaling cascade. 

Recently, it was demonstrated that AE3 gene deletion prevents cardiomyocyte hypertrophy and 

reduces the rate of pHi recovery in cardiomyocytes, reinforcing the importance of AE3 in 

cardiovascular pH regulation and the development of cardiomyocyte hypertrophy [45].  To 

interfere with the hypertrophic cascade present in heart failure we propose that CAs represent 

targets for anti-hypertrophic therapy. The membrane permeant CA inhibitor, ETZ, which targets 

the CA-AE3, CA-NHE1, and likely the CA-NBC, complexes, intervenes in the feed-forward 

cascade, preventing and reversing agonist-induced cardiomyocyte growth [8]. Interestingly, 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 18 

cardiomyocytes from CAII-deficient mice do not respond to prohypertrophic stimulation, 

supporting a role of CAII in promoting cardiac hypertrophy [19].  

Several stressors as a consequence of MI such as sympathetic activation, pro-hypertrophic 

factors, cardiac muscle over-stretch, linked hyperactivity of NHE1 and subsequent Ca
2+

 overload 

lead to cardiac hypertrophy [for review, see Cingolani [46]]. Likewise, some of these same 

factors promote increased CA expression with concomitant Ca
2+

 disturbance as observed in 

experimental models [8, 19], as well as in human hypertrophic and failing hearts [9].  By 

inhibiting CA and slowing the rate and magnitude at which the membrane NHE1 alkalinizes the 

cell, activates Ca
2+

 signaling [47] and initiates hypertrophy [48, 49] ETZ or other CA inhibitors 

may be therapeutic in limiting catecholamine-driven remodeling and detrimental hypertrophy, 

major causes of heart failure development [8, 19]. Figure 7 provides a schematic representation 

of these critical factors and events. 

 We have shown that chronic treatment with two different CA inhibitors reduces 

myocardial fibrosis in a rat model of chronic LAD occlusion and improves LV function 

compared to control. In a similar fashion, CA activation in the hearts of diabetic patients is 

detectable and associated with increased NHE1 expression and myocyte hypertrophy [20].  

Furthermore, in a model of ischemia-reperfusion injury in the rat heart we have preliminary 

evidence that ETZ reduces total infarct volume and lessens the decline in LV ejection fraction 

(Alvarez et al, in submission).   The expression of CAIX as we have shown in the hypoxic and 

ischemic myocardium is a hypoxia inducible factor (HIF) responsive gene also expressed in 

cancers and is growth-promoting.  Selective inhibition of this isozyme might be useful when 

specific CA IX inhibitors, now in phase 3 clinical studies, become available.  

 Our study has several limitations that warrant discussion. The first was the effect of CA 

inhibitors modulating blood pressure, in rats treated with ETZ and BZ by a month. It is 
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conceivable that the benefits we observed may have been in part due to reduced afterload, such as 

found with other drugs having arterial vasodilating properties. While CA inhibitors have not been 

generally useful as vasodilators by acting directly on vascular smooth muscle CA isoenzymes 

[37], this possibility cannot be ruled out.  

 Diuretics reduce peripheral and pulmonary edema in CHF and the reductions in 

LW/BW ratios with ETZ and BZ (Fig. 3) are consistent with a reduction in lung edema or a 

greater fractional reduction in lung water than that of total body water. However, in the case of 

BZ, body weights with treatment after CAL were no different than the untreated controls (Table 

2), suggesting little if any important diuretic effect. The ETZ group in contrast was somewhat 

heavier than controls (Table 3), so the reduction in the LW/BW ratio with both drugs points 

much more strongly to improved cardiac function rather than any significant diuretic effect. 

Ideally the use of an equally mild non-CA inhibiting diuretic would have served as a better 

control for any effect of diuresis. 

 The other possibility we did not control for is the likely metabolic acidosis that all CA 

inhibitors cause from their action in the kidney to cause bicarbonate losses. We do not think that 

the benefits we found could be explained by metabolic acidosis, because an acidotic state usually 

evokes increased sympathetic activity [50], which itself places a burden on the injured heart and 

may lead to hypertrophy and fibrosis [51]. 

5. Conclusions 

In a rat model of prolonged MI, CA inhibition by BZ and ETZ initiated in a context of 

established HF improves cardiac function, limits interstitial fibrosis and prevents LV remodeling, 

suggesting that CA blockade might be a therapeutic option in the treatment of HF, particularly if 

cardiac-specific CA inhibitors could be developed. By virtue of their differences in intracellular 
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penetration, the inhibition of membrane bound CA isozymes, in particular CAIX (BZ and ETZ), 

rather than intracellular cytosolic isozymes (ETZ only) appears to be the critical site of CA 

inhibition in the reduction of post infarction cardiac dysfunction and fibrotic remodeling. Thus, 

CA inhibition with existing and newly optimized drugs could be quickly implemented to: 1) 

inhibit the CA enzymes whose activity and expression increase as hypertrophy worsens;  and 2) 

prevent the overt activation of membrane transporters (primarily NHE1, but also NBC, and AE3 

transporters) involved in pathologic cardiac conditions. 
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Figure Legends 

Figure 1. Myocardial infarction in untreated rats induced by coronary artery ligation 

Histological analysis of rat heart sections and echocardiographic measurements 3 weeks after 

myocardial infarction, in rats. A, Magnified image of left ventricle stained with Masson´s 

trichrome. B, Percentage of infarct area in the whole left ventricular area. C, Wall thickness of 

infarct area. D, Left ventricular endocardial fractional shortening measured in CAL rats, before 

and 3 weeks after procedure. Data are presented as mean ± SEM. *P < 0.05, n = 4. Scale bar = 1 

mm. 

Figure 2. Effect of carbonic anhydrase inhibition on left ventricular chamber dimensions 

after coronary artery ligation in the rat heart 

Myocardial infarction was produced in rats by CAL and maintained for a total of 36 weeks. A 

group of non-infarcted rats were maintained for 36 weeks and used as control. At 32 weeks, CAL 

rats were kept up to additional 4 weeks without treatment, or were treated with the CA inhibitor, 

6-ethoxzolamide (ETZ), or treated with the CA inhibitor, benzolamide (BZ). A, Representative 

echocardiograms obtained at the end of the experimental protocol in control, CAL, CAL + ETZ, 

and CAL + BZ rats. Overall results of the left ventricular end systolic (B) and left ventricular end 

diastolic (C) dimensions determined in control, CAL, CAL + ETZ, and CAL + BZ rats, before 

(32 weeks) and after treatments (36 weeks). *P < 0.05 vs. control; **P < 0.05 vs. CAL. Values 

are mean ± S.E.M. Brackets on top of bar indicate number of animals analyzed. LVDD, left 

ventricular diastolic dimension; LVSD, left ventricular systolic dimension; IVSDTh, 

interventricular diastolic thickness; IVSSTh, interventricular systolic thickness; PWDTh, 

posterior wall diastolic thickness; PWSTh, posterior wall systolic thickness. 
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Figure 3. Effect of carbonic anhydrase inhibition on lung fluid content after coronary 

artery ligation in the rat heart 

Bar graph of the effect of ETZ and BZ on dry lung weight/body weight, after 4 week of treatment 

in MI and control rats. *P < 0.05 vs. control. Values are mean ± S.E.M. Brackets on top of bar 

indicate number of animals analyzed. 

Figure 4. Effect of carbonic anhydrase inhibition on left ventricular function after coronary 

artery ligation in the rat heart 

Left ventricular function measured by echocardiogram in control and CAL rats, before and after 

CA inhibition treatment. A, Left ventricular midwall shortening measured in control, CAL, CAL 

+ ETZ, and CAL + BZ rats, before (32 weeks) and after treatments (36 weeks). B, Summary of 

percentage of midwall shortening relative to control, measured after treatments (36 weeks). C, 

Left ventricular endocardial fractional shortening measured in control, CAL, CAL + ETZ, and 

CAL + BZ rats, before (32 weeks) and after treatments (36 weeks), as indicated. D, Summary of 

percentage of left ventricular endocardial fractional shortening relative to control, measured after 

treatments. *P < 0.05 vs. control. 
**

P < 0.05 vs. CAL. Values are mean ± S.E.M. Values in 

parentheses on top of bars indicate number of animals analyzed. 

Figure 5. Effect of the carbonic anhydrase inhibitors 6-ethoxzolamide and benzolamide on 

collagen deposition after sustained coronary artery ligation in the rat left ventricle 

A, Representative left ventricle sections stained with Masson's trichrome viewed at a 

magnification of 40x, 200x, and 400x, from control (a-c), CAL (d-f), CAL + ETZ (g-i), and CAL 

+ BZ (j-l)  rat hearts. The fibrotic area is stained in blue and the viable area red. E, Collagen 

deposition was quantified by automated image analysis and expressed as percentage of tissue 
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area. Values are mean ± S.E.M; n= 5-15 images, corresponding to 3 different hearts for each 

group. *P < 0.05 vs. control; 
**

P < 0.05 vs. CAL. 

 Figure 6. Effect of 6-ethoxzolamide on carbonic anhydrases IX and VB protein levels and 

effect of benzolamide on carbonic anhydrase IX protein level, after sustained coronary 

artery ligation  

A, Whole heart lysates were prepared from rat hearts, which were controls, CAL, CAL treated 

with 6-ethoxyzolamide (ETZ), or CAL treated with benzolamide (BZ). Immunoblots of the heart 

lysates were probed with antibody against CAIX (top), CAVB (bottom) and GAPDH (top and 

bottom), as indicated. B, Summary of the expression level of CAIX, normalized to GAPDH and 

quantified by densitometry. C, Summary of the expression level of CAVB, normalized to 

GAPDH and quantified by densitometry.  Values are mean ± S.E.M., n = 3. *P < 0.05, compared 

to control. Arrow head indicates position of proteins. 

Figure 7. Proposed model of the possible effect of carbonic anhydrase inhibitors on 

combined action of NHE1 Na
+
/H

+
 exchanger and carbonic anhydrase in promoting cardiac 

hypertrophic and heart failure  

Adrenergic stimuli, pro-hypertrophic factors, cardiac muscle over-stretch, and MI, linked 

hyperactivity of the Na
+
/H

+
 exchanger NHE1 and subsequent Ca

2+
 overload to cardiac 

hypertrophy [46]. Some of the same factors promote increased CA expression with concomitant 

Ca
2+

 disturbance as observed in experimental models [8, 19], and in human hypertrophic and 

failing hearts [9].  Inhibition of CA would slow the rate and magnitude (red arrow) at which the 

membrane NHE1 alkalinizes the cell. In this context, increased NHE1 activity would lead to an 

increase in the cytosolic Na
+
, which activates Ca

2+
 signaling via cytosolic Ca

2+
 rise through the 

Na
+
/Ca

2+
 exchanger (NCX) [47], and initiates hypertrophy [48, 49]. Thus, CA inhibitors may be 
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therapeutic in limiting catecholamine-driven remodeling and pathologic hypertrophy, as well as 

ischemia reperfusion damaged and metabolically linked diabetic cardiomyopathy, two major 

causes of heart failure development [8, 19]. 
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Table 1.  Experimental design – Three month-old Wistar rats 

 

Number of 

animals 

 

 

Experimental 

procedure 

 

 

Treatment 

 

Length of 

study 

 

Studies performed/ 

analysis 

 

24 

 

None 

 

None 

 

36 weeks 
 

    Echo – week 1 

    Echo – week 36 

 

12 

 

None 

 

None 

 

36 weeks 
 

    Echo – week 32 

    Echo – week 36 

    Histology 

    Pathology 

    Immunoblotting (WB) 

 

4 

 

CAL 

 

None 

 

3 weeks 
 

    Echo – week 1 

    Echo – week 3 

    Histology 

    Pathology 

 

3 

 

CAL 

 

None 

 

36  weeks 
 

    Pathology 

 

3 

 

CAL 

 

None 

 

36 weeks 
 

    Echo – week 32 

    Echo – week 36 

    Histology 

    Pathology 

    Immunoblotting (WB) 

 

3 

 

CAL 

 

ETZ 

 

36 weeks 
 

    Echo – week 32 

    Echo – week 36 

    Histology 

    Pathology 

    Immunoblotting (WB) 

 

3 

 

 

CAL 

 

BZ 

 

36 weeks 
 

    Echo – week 32 

    Echo – week 36 

    Histology 

    Pathology 

    Immunoblotting (WB) 

CAL, ligation of the left anterior descending coronary artery; ETZ, 6-Ethoxy-1, 3 benzothiazole-

2-sulfonamide; BZ, 5-(benzenesulfonamido)-1, 3, 4-thiadiazole 2 sulfonamide; Echo, 

echocardiographic examination; WB, Western Blot  
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Table 2. Baseline cardiac parameters 32 weeks after coronary artery ligation but before initiation 

of treatment 

 

 

 

Cardiac parameter 

 

 

Control 

Group (n=12) 

 

Infarct/Untreated 

Group (n= 12) 

 

Infarct/Carbonic 

anhydrase 

inhibitors Group 

(n= 6) 

 

LVDD (mm) 

 

6.15±0.15 

 

6.35±0.17 
 

6.26±0.28 

 

 

LVSD (mm) 

 

2.81±0.16 

 

3.60±0.18* 
 

3.51±0.30* 

 

 

IVSDTh (mm) 

 

1.62±0.03 

 

1.53±0.08 
 

1.50±0.10 

 

 

IVSSTh (mm) 

 

2.36±0.17 

 

1.77±0.10* 
 

1.73±0.10* 

 

 

PWDTh (mm) 

 

1.67±0.04 

 

1.74±0.06 
 

1.68±0.06 

 

 

PWSTh (mm) 

 

2.93±0.07 

 

2.86±0.09 
 

2.67±0.09* 

 

LVDD, left ventricular diastolic diameter; LVSD, left ventricular systolic diameter; IVSDTh, 

interventricular diastolic thickness; IVSSTh, interventricular systolic thickness; PWDTh, 

posterior wall diastolic thickness; PWSTh, posterior wall systolic thickness; P < 0.05 vs. control 

group;  Values are mean ± SEM. 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 42 

Table 3. Body weight in control and infarcted rats, after coronary artery ligation and before (32 

weeks) and after treatments (36 weeks) 

 

 

 

 

 

Control 

Group 

n = 6 

 

Before      After 

 

 

Infarct Group 

n = 6 

 

 

 Before       After 

 

 

Infarct/ETZ 

Treated Group 

n = 3 

 

 Before       After 

 

 

Infarct/BZ 

Treated Group 

n = 3 

 

Before      After 

 

 

Body 

weight    

(g) 

 

499±9 

 

489±16 

 

520±11 

 

523±14 

 

535±19 

 

547±38 

 

509±9 

 

494±16 

n = number of animals; Values are mean ± SEM. 
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Highlights 

♦ In heart failure rats after prolonged myocardial infarction, carbonic anhydrase inhibition (CAI) 

by benzolamide (BZ) and ethoxzolamide (ETZ) improves cardiac function. 

♦ The potent CA inhibitors BZ and ETZ limit interstitial fibrosis and prevent heart remodeling, in 

heart failing rats. 

♦ Inhibition of membrane-bound CAIX isozyme appears to be the critical site of CAI in the 

reduction of post infarction cardiac dysfunction and fibrotic remodeling. 


