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Abstract
Germination is a crucial step for invasive plants to extend their distribution under different environmen-
tal conditions in a new range. Therefore, information on germination characteristics of invasive plant 
species provides invaluable knowledge about the factors which might contribute to the invasion success. 
Moreover, intra-specific comparisons under controlled conditions will show if different responses between 
non-native and native populations are caused by evolutionary changes or by phenotypic plasticity towards 
different environmental influences.

This paper focuses on the germination of native and non-native Ulmus pumila populations. We ex-
pected that non-native populations would be characterized by their higher final germination percentage and 
enhanced germination rate, which might indicate an influence due to corresponding climatic conditions.

Germination experiments with a moderate and a warm temperature treatment did not reveal signifi-
cant differences in final germination percentage. However, seeds from the North American non-native 
range germinated significantly faster than native seeds (p < 0.001). Additionally, mean time to germina-
tion in both ranges was significantly negatively correlated with annual precipitation (p = 0.022). At the 
same time, this relationship is stronger in the native range whereas mean time to germination in non-
native populations seems to be less influenced by climatic conditions.

Different germination responses of the North American populations could be caused by a fast evolu-
tionary change mediating a higher tolerance to current climatic conditions in the non-native range. How-
ever, our findings could also be caused by artificial selection during the introduction process and extensive 
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planting of U. pumila in its non-native range. Nevertheless, we assume that the faster germination rate of 
non-native populations is one potential explanation for the invasion success of U. pumila in its new range 
since it might provide a competitive advantage during colonization of new sites.

Keywords
Climatic influence, survival analysis, biological invasions, Ulmus pumila

introduction

Introduced species often face different environmental conditions in their new range 
compared to their range of origin. Therefore, non-native species have to overcome sever-
al factors before they can become invasive (Heger and Trepl 2003). Moreover, even after 
becoming established in the new range, there are consistent characteristics which can al-
ter the ongoing invasion spread. For example, germination is crucial for dispersal and to 
establish populations in new sites in order to expand in range (Theoharides and Dukes 
2007, Donohue et al. 2010). Therefore, data about shifts in germination characteristics 
could provide valuable information to predict the success of an invading species.

Differing germination characteristics can be caused by evolutionary changes medi-
ated by corresponding environmental conditions. For example, Eckhart et al. (2011) 
demonstrated that germination patterns in 20 populations of Clarkia xantiana along 
a climatic gradient were linked to the corresponding temperature, mean precipitation 
and variation in precipitation. Additionally, several studies have shown that plant spe-
cies can exhibit differing germination responses which are related to differing habitats 
or biotic influences (e.g. Giménez-Benavides et al. 2007, Jorritsma-Wienk et al. 2007, 
Grondahl and Ehlers 2008). Similarly, shifts in the germination performance towards 
different environmental conditions can also be an important factor during range ex-
pansion in the course of invasion. Brändle et al. (2003) showed that for 31 weedy plant 
species the range size is influenced by the germination niche breadth. Furthermore, 
enhanced germination percentages and rates of invaders compared to their native con-
geners or competitors have been associated with increased colonization success of the 
invaders (Burke and Grime 1996, Muñoz and Ackerman 2011).

Intra-specific comparisons between native and non-native populations are impor-
tant to understand the mechanisms of the invasion process (Hierro et al. 2005). Fur-
thermore, it can be useful to compare native and non-native individuals under a com-
mon environment. Such experiments will allow to distinguish if differences between 
ranges are caused by phenotypic responses towards different environmental conditions 
or by genetic changes (Leger and Rice 2003, Kawecki and Ebert 2004, Erfmeier and 
Bruelheide 2005, van Kleunen et al. 2010). For example, Beckmann et al. (2011) 
found that non-native New Zealand populations of three grassland species show in-
creased germination compared with the native European populations, which may in-
dicate an adaptation to new climatic conditions in the non-native range. Several other 
comparative studies also reported differences in germination between native and non-
native populations of the same species (e.g. Kudoh et al. 2007, Hierro et al. 2009).
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Although more than 300 tree species are classified as invasive, there are compara-
tively few studies on their invasion success (Lamarque et al. 2011, Richardson and Re-
jmánek 2011). Our study addresses the comparison of germination responses between 
native and non-native Ulmus pumila L. (Ulmaceae) populations. The Siberian elm is a 
native tree of temperate regions of East Asia, and occurs northwards up to the dry Gobi 
desert, where it is bound to water surplus sites and oases (Wesche et al. 2011). The 
flowering and fruit set production occur during the late winter to early spring (Wu et 
al. 2003). Each of the wind dispersed fruits (samaras) contains a single seed. The seeds 
lose their viability rapidly after maturity unless placed on suitable germination condi-
tions or dried and placed at low temperatures (Baskin and Baskin 2000). Ulmus pumila 
can grow in a wide variety of habitats (e.g. slopes, valleys, plains), even with cold win-
ters and long summer droughts (Wu et al. 2003, USDA and NRCS 2011). Since the 
Siberian elm performs better under harsh climatic conditions than most other trees, 
it has been planted in several regions outside its native range, e.g. in the semi-arid 
Southwestern United States as a fast growing windbreak or shade tree (Webb 1948, 
Leopold 1980). Furthermore, it is commonly used in elm breeding programs due to 
its high tolerance to the Dutch elm disease (Smalley and Guries 2000, Mittempergher 
and Santini 2004). Today, U. pumila is considered as naturalized or even invasive in 
43 states of the U.S., as well as in Canada (Kartesz 2011, USDA and NRCS 2011), 
Mexico (Todzia and Panero 1998), Argentina (Mazia et al. 2001, Zalba and Villamil 
2002), Spain (Cogolludo-Agustín et al. 2000), the European part of Russia, Esto-
nia and Australia (NOBANIS 2012). Webb (1948) reported that different Chinese 
origins of the Siberian elm are characterized by differing frost hardiness. Therefore, it 
seems possible that specific adaptations towards local environmental conditions allow 
U. pumila to persist over such a wide distribution range. However, to our knowledge 
no information exists if early life cycle traits of U. pumila show such an adaptation and 
if this could contribute to the invasion success.

We focused our study on non-native populations in the Western U.S. and com-
pared their germination performance under controlled conditions to the performance 
of populations from the native range in China. Thereby, we tested the following hy-
potheses: 1) Non-native populations will exhibit an increased percentage of germinated 
seeds. 2) Non-native populations are characterized by a faster germination. 3) Different 
germination responses might be influenced by different climatic conditions. In this 
context, we assume that populations located in regions with less stressful climatic con-
ditions (e.g. higher annual precipitation) show enhanced germination characteristics.

Material and methods

Seed collection

We retrieved samaras (henceforth referred to as seeds) from seven populations from the 
native range (China) and seven populations from the non-native range (U.S.; Figure 1). 
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Seeds from China were collected in May and June 2009 and seeds from the U.S. in May 
and June 2010. We sampled at least 15 trees per population and pooled the seeds within 
populations. Where seeds had already been shed, they were collected from the ground. 
Material was stored in sealed plastic bags at 4°C following recommendations by Grover 
et al. (1963) to maintain seed viability.

Germination experiment

The germination experiment started in January, 2011 and was setup as a completely 
randomized design with eight replicates per population and treatment. Each replicate 
contained 20 seeds which were placed on filter paper in standard Petri dishes. In sum, 
we used 4480 seeds (14 populations × 2 temperature treatments × 8 replicates × 20 
seeds per replicate) in our experiment. The dishes were filled with de-ionized water to 
keep the seeds permanently moist. Wings of the seeds were not removed due to their 
role in facilitating water uptake and in order to avoid seed damage (Rohmeder 1942, 
Namvar and Spethmann 1985). The experiment was performed in RUMED Light 
Thermostats germination chambers (Type 1301; Rubarth Apparate GmbH, Laatzen, 
Germany) under two temperature treatments (20°C/10°C and 32°C/20°C) with a 
photoperiod of 12 h cold white light (1200 Lux) and 12 h darkness. The two tempera-
ture treatments were used to account for the range of maximum temperatures during 

Figure 1. Sampled Ulmus pumila populations in the native range (b, c) and the non-native range (U.S.: a; 
AZ = Arizona, CO = Colorado, NM = New Mexico, UT = Utah). Populations are indicated by gray circles.
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the main germination period of U. pumila (see Appendix 1: Table A1). Germinated 
seeds (visible radicula) were reported and removed every second or third day. After two 
weeks, viability of non-germinated seeds was tested with triphenyl tetrazolium chloride 
(ISTA Tetrazolium Commitee 2008).

Statistics

All statistics were calculated with the software R (version 2.15.0; The R Development 
Core Team 2012). To test if the final germination percentage (logit transformed ac-
cording to Warton and Hui 2011) differs between the accessions and temperature 
treatments, we used a linear mixed model with populations nested in ranges as random 
effect (package nlme, version 3.1-103; Pinheiro et al. 2012). The Akaike Informa-
tion Criterion (AIC; Akaike 1974) was used for model selection. For visualization 
of the germination performance and to extract the restricted mean time to germina-
tion (henceforth referred to as mean time to germination) per population we used 
the Kaplan-Meyer estimates of the germination functions. To test if time to germina-
tion differs between the ranges and temperature treatments, we performed a survival 
analysis using an Accelerated Failure Time (AFT; Bradburn et al. 2003) regression 
following the recommendations of Onofri et al. (2010). We used a right censoring 
of non-germinated, but still viable seeds. Non-viable seeds were excluded from the 
analysis based on the assumption that these were already non-viable at the beginning 
of the experiment (Onofri et al. 2010). We used the AIC values to select the most 
appropriate distribution (exponential, loglogistic, lognormal or Weibull), since AFT 
models assume parametric distributions (Kleinbaum and Klein 2005). Population was 
added as a random effect to test if the model is affected by variation at the population 
level within the ranges. The Kaplan-Meyer statistics as well as the survival analysis were 
calculated with the package survival (version 2.36-12; Therneau and Lumley 2012).

To test if the mean time to germination is adapted to different climate conditions 
between the native and the non-native range (see Appendix 2: Figure A1), we extracted 
climatic information per population (mean annual temperature and annual precipita-
tion; see Appendix 1: Table A1) from the WORLDCLIM database (Hijmans et al. 
2005). The effect of the climatic variables on germination was tested with a multiple 
linear regression. Additionally, we also included the effect of the population origin (na-
tive or non-native range) and the temperature treatment in our model. Selective model 
reduction was based on the AIC values.

Results

At the end of the germination experiment, 80.6 % of the tested seeds were germinated. 
From the non-germinated seeds were 2.1 % still viable (non-native origin: 1.3 %; na-
tive origin: 0.8 %).
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The test for differences regarding the final germination percentage resulted in a 
final model containing only the temperature treatment as fixed effect. Consequently, 
no differences between the two ranges were detectable (F1,12 = 0.416, p > 0.05, Figure 
2). However, final germination percentages for both ranges were slightly lower under 
warm temperature conditions compared to a moderate temperature (F1,209 = 6.513, p 
< 0.05; Figure 2).

Investigation of the time to germination revealed that the most pronounced reduc-
tion of deviance was contributed by the temperature treatment (Table 1). Lower, but 
still significant effects were contributed by the random effect (population), the influ-
ence of the origin of the populations (range) as well as the interaction between range 
and temperature treatment. These results were obtained from a final AFT model with 
best fit for log-normal distribution showed including range as well as temperature as 
predictor variables and population as random effect. The enhanced germination rates 
under warmer temperatures as well as the differences between the two ranges are visu-
alized in Figure 3.

Figure 2. Final germination (%) of Ulmus pumila seeds from native and the non-native ranges. No dif-
ferences were found between the two ranges (F1,12 = 0.416, p > 0.05). Germination percentage was signifi-
cantly decreased under warmer temperature treatment (F1,209 = 6.513, p < 0.05; significant differences are 
shown by different letters above the boxes).



Germination performance of native and non-native Ulmus pumila populations 59

Considering the mean time to germination supports our result of the AFT model 
regarding a faster germination at higher temperatures (F1,23 = 88.83, p < 0.001) and in 
the non-native range (F1,23 = 14.48, p = 0.001). We also found a significant negative 
relation between mean time to germination and annual precipitation (F1,23 = 5.98, p 
= 0.022) as well as a significant interaction between range and annual precipitation 
(F1,23 = 9.46, p = 0.005). This interaction shows that native populations with less an-
nual precipitation are characterized by increased mean times to germinate. In contrast, 
non-native populations show only weak response in their mean time to germination 
towards corresponding annual precipitation conditions (Figure 4). These results were 
obtained from the multiple regression model retaining population origin, temperature 
and annual precipitation as predictor variables after stepwise model selection (multiple 
R² = 0.84, p < 0.001).

table 1. Analysis of deviance results for the AFT model. The results show the differences in the time to ger-
mination of Ulmus pumila under consideration of range and temperature treatment (df = degrees of freedom).

Source df Deviance Residual df -2 × loglikelihood p
Null model 3627 15151.90

Range 1 165.75 3626 14986.25 <0.001
Temperature 1 1691.68 3625 13294.47 <0.001

Frailty (population in range) 12 673.16 3615 12621.30 <0.001
Range × temperature 1 6.34 3614 12614.96 0.012

Figure 3. Kaplan-Meyer curves of the germination functions for the non-native and native origins of 
Ulmus pumila. Curves are shown for the two temperature treatments (a: 20°C/10°C; b: 32°C/20°C). 
Censored data is symbolized by final crosses at the curves. The curves show the probability that seeds will 
germinate. Therefore, the germination probability has to be 1.0 at time = 0 because all seeds are non-
germinated and have consequently the chance to germinate.
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Discussion

Our results revealed a slightly lower final germination of U. pumila seeds at higher 
temperatures. This could be caused by an earlier and stronger infestation by mold fungi 
at the 30°C/20°C temperature treatment (personal observation), because these warmer 
temperatures provide better growing conditions of mold fungi. For example, Barnett 
et al. (1999) showed for Pinus palustris that germination can be reduced by pathogenic 
fungi. However, we assume that these slightly differences show no relevant effects under 
natural conditions, because the final germination will be still high enough to support a 
colonization of U. pumila in regions with high temperature regimes, since seeds are pro-
duced in very high numbers. Furthermore, we found only a very low amount of non-
germinated but still viable seeds. Consequently, we exclude that population growth and 
persistence of the Siberian elm might be supported by a generated seed bank, which 
would be also contrary to the already mentioned short life span of U. pumila seeds.

Contrary to our hypothesis, the invasion success of U. pumila in North America 
does not seem to be based on an enhanced final germination percentage. However, 
we have evidence for enhanced times to germination in non-native populations. We 
propose that the fast germination is one of the contributing drivers for the invasion 
success of U. pumila because it could provide advantages during inter-specific com-
petition in the colonization processes (Donohue et al. 2010). This hypothesis is sup-
ported by results in other studies such as a grassland experiment by Milbau et al. 
(2003) which revealed that regenerative traits, like germination time, are correlated 

Figure 4. Relationship between mean time to germination and annual precipitation per Ulmus pumila 
population (a: 20°C/10°C; b: 32°C/20°C). To emphasize the different responses between the two ranges 
(non-native range: triangles; native range: circles), trend lines per range are shown (non-native range: 
dashed line; native range: solid line).
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with invasiveness. Furthermore, Seiwa (2000) showed that early-emerging seedlings of 
Juglans ailanthifolia are characterized by greater height than later-emerging seedlings 
due to a longer exposition to favorable light and temperature conditions before they 
are crowded by other species.

Additionally, we found that mean time to germination in both ranges seems to 
be influenced by climatic conditions such as annual precipitation (i.e. mean time to 
germination decreases with increasing annual precipitation). We assume that this 
relationship is based on less stressful germination conditions for the Siberian elm 
under climatic conditions with more rainfall since annual precipitation can be con-
sidered as a general measure of environmental quality (Philippi 1993, Hierro et al. 
2009). However, the significant interaction between range and annual precipitation 
indicates that annual precipitation conditions show a stronger influence to the mean 
time to germination in native populations. In contrast, mean time to germination 
of non-native population seems to be less influenced by the annual precipitation 
conditions. Therefore, it might be possible that non-native populations are charac-
terized by a higher tolerance towards different precipitation conditions compared 
to native populations. For example, evidence of germination rates related to differ-
ent moisture regimes was shown for Pinus ponderosa in central Oregon (Weber and 
Sorensen 1992). Further, Maron et al. (2004) showed that such processes are also 
possible for introduced plants. In this context, it is often suggested that rapid evolu-
tionary change is supported by standing genetic variance or genetic mixing (intra- or 
inter-specific; Lavergne and Molofsky 2007, Prentis et al. 2008, Dormontt et al. 
2011). Genetic studies have also shown that non-native U. pumila populations in 
the Eastern and Central U.S. are characterized by genetic diversity levels which are 
comparable to native populations (Zalapa et al. 2009, 2010). Furthermore, it was 
demonstrated that a high proportion of these populations contain hybrids between 
U. pumila and U. rubra and that hybridization leads to a significant increase of 
genetic variability. As shown by Abbott et al. (2003), hybridization can lead to the 
introgression of traits which might affect the fitness of introgressants or their toler-
ance to novel habitats. For example, Rieseberg et al. (2007) were able to identify that 
introgression processes may supported range expansion of Helianthus annuus. How-
ever, genetic investigations are needed for our sampled populations of U. pumila 
in the Western U.S. to gain more detailed knowledge on the genetic diversity and 
eventually hybridization processes.

In contrast to natural evolutionary processes, the pattern of different germination 
reactions in our studied populations could also be caused by human-mediated selec-
tion of successful lineages during introduction (Donohue et al. 2010). For example, 
Chrobock et al. (2011) found evidence that cultivated non-native species germinate 
earlier and more successfully than related native species which indicates a human-
mediated selection for these traits. Therefore, non-native species that escaped from 
cultivation and became invasive might be characterized by enhanced germination 
characteristics mediated by artificial selection. Such a type of selection could have in-
fluenced the germination performance of U. pumila due to selection during the intro-
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duction process and extensive planting in the U.S. afterwards (Webb 1948, Leopold 
1980, Mittempergher and Santini 2004). Consequently, further research approaches 
should also consider seeds or seedlings obtained from commercial suppliers to test for 
eventually human-mediated selection. Further, we are not able to exclude that the 
revealed differences between non-native and native populations are influenced by ma-
ternal effects. According to Moloney et al. (2009), a bias by maternal effects could be 
avoided by using second-generation offspring. However, long generation times render 
the implementation of this approach very difficult for woody plants. Therefore, we 
suggest that genetic investigations are needed to proof our assumption that the dif-
ferent germination patterns between non-native and native populations are caused by 
evolutionary change rather than maternal effects.

Additionally, it should be considered that our results could be biased by two me-
thodical factors. First, differences between both ranges might be caused by different 
sampling years (seeds from the native range: 2009; seeds from the non-native range: 
2010). We assume that this factor induced only a negligible influence to our results, 
because Grover et al. (1963) observed that Siberian elm seeds did not show any dif-
ferent viability during the first two years of the storage conditions used for our study. 
Nevertheless, we strongly recommend the usage of seeds from the same sampling year 
for further comparative germination experiments to provide uniform test conditions. 
Second, it could be argued that our replicates per population and treatment are just 
pseudoreplicates due to their spatially non-independence. However, we exclude that 
the observed differences in germination resulted significantly from technically differ-
ences among the used germination chambers, because both chambers are of the same 
model type produced by a high quality manufacturer, both chambers had the same ba-
sic conditions (e.g. same light equipment), and both chambers are frequently cleaned 
and fumigated. Nonetheless, a repeated switching of the temperature treatment and 
the corresponding replicates in further germination experiments as applied by Zuloa-
ga-Aguilar et al. (2011) could help to improve the experimental design of such studies, 
and to reduce possible different test conditions.

It should also be mentioned that several other studies have shown that changed 
germination characteristics are often linked to changed post-germination traits as well 
(Donohue et al. 2010). Erfmeier and Bruelheide (2005) studied non-native Rhododen-
dron ponticum populations and showed that genetic shifts influenced the germination 
and the growth performance. Therefore, colonization success of non-native U. pumila 
populations could be based on both an increased germination rate and a better growth 
performance than native populations. In order to accept this hypothesis, research on 
coevolution between germination and post-germination traits is needed.

Our work suggests that changed germination characteristics could be one of the 
drivers for the invasion success of U. pumila. However, further research (i.e. genetic 
analyses and growth experiments) is needed to find genetic evidence for our assump-
tion and if the assumed evolutionary change of germination responses also influenced 
other early life cycle traits of non-native populations of the Siberian elm.
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Appendix 1

Table A1: Location and climate information of the sampled Ulmus pumila popula-
tions. (doi: 10.3897/neobiota.15.4057.app1) File format: PDF.

Explanation note: Location and climate information of the sampled Ulmus pumila 
populations in China and the U.S. Maximum (max.) temperatures for the months May, 
June and July are provided to show the temperature range during the main germina-
tion period (lowest and highest values are italicized). Climatic information was extracted 
from the WORLDCLIM database (Hijmans et al. 2005).

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) 
is a license agreement intended to allow users to freely share, modify, and use this Dataset 
while maintaining this same freedom for others, provided that the original source and 
author(s) are credited. 
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Appendix 2

Figure A1: Comparison of climatic conditions between the Chinese and North Ameri-
can locations of Ulmus pumila. (doi: 10.3897/neobiota.15.4057.app2) File format: 
PDF.

Explanation note: Comparison of climatic conditions (a: mean annual temperature; 
b: annual precipitation) between the Chinese and North American locations of Ulmus 
pumila. Wilcoxon rank sum tests were used to test for differences between both ranges. 
Mean annual temperatures are significantly higher for locations from the U.S. (W = 7, 
p < 0.05). Annual precipitation is marginal higher in the invasive populations compared 
to the native populations (W = 9, p = 0.05). Significant differences are symbolized by 
different lowercases above the boxes.

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) 
is a license agreement intended to allow users to freely share, modify, and use this Dataset 
while maintaining this same freedom for others, provided that the original source and 
author(s) are credited. 
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