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Abstract. In this work we present a novel approach that uses digital inpainting to preprocess intravas-
cular ultrasound (IVUS) images to reduce the impact of undesired features. Then, we automatically
segment the arterial wall with active contour models. IVUS is a catheter-based medical imaging tech-
nique that produces cross-sectional images of blood vessels. Segmentation of vessel wall is particularly
useful to study many coronary artery diseases, such atherosclerosis. Being IVUS a good technology to
analyse the anatomy of the arterial wall, the modality may present several artifacts, such as shadows
or catheter ring-down, that may difficult further processing. To deal with these artifacts, in this paper
we consider an exemplar-oriented inpainting algorithm that replaces the corrupted information by using
the unaltered neighbourhood. To determine the impact of this preprocessing step, segmentation results
over inpainted and non-inpainted IVUS are presented. The images are compared with manually outlined
contours, showing that the inpainting method promotes continuity of the arterial wall and improves the
segmentation performance.
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1 INTRODUCTION

Intravascular ultrasound (IVUS) is a medical imaging technique for vascular diagnosis. It is
based in a catheterism with an ultrasound transducer which captures axial images of the vessels.
The capture is performed during the mechanical pullback of the transducer at a very slow con-
stant speed (between 0.5mm to 1mm per second). IVUS technology provides high resolution
images with speckle noise, typical of ultrasound images (Abbott and Thurstone, 1979; Loizou
and Pattichis, 2008).

IVUS is a study that allows studying the three layers of the arterial wall. Unlike angiography,
it provides not only information about the lumen but also about the tissues of the arterial wall
and atherosclerotic plaque. Regarding this, IVUS is a good complementary study to angiog-
raphy. The first arterial tunica, known as intima, is in contact with the arterial lumen, where
the blood flows. It is composed by elastic fibers which have high echogenicity. The second
layer or media tunica, envelops the intima. It is constituted by muscular cells, and it has lower
echogenicity than the intima. Finally, the adventitia is composed by connective tissue and elas-
tic fibers, and it is more echogenic than the intima and media.

Since the 1990s, intima - media thickness (IMT) has been the standard measure to evaluate
the progression of atherosclerotic cardiovascular disease. In order to automatically compute
this indicator it is necessary to have a robust segmentation algorithm of the vessel wall. IVUS
provide valuable anatomical information in that sense. However, due to the high noise level of
the ultrasound images and the presence of artifacts, the vessel wall segmentation is not a trivial
task and overcoming the artifacts becomes a challenge (Molinari et al., 2010). In particular, the
segmentation complexity in IVUS images is given by echographic reflexions, probe artifacts
and atherosclerotic plaque (Balocco et al., 2014). Consequently, the detection and processing
of such artifacts allow the segmentation algorithm to avoid inaccurate edge detection due to
partial occlusion of the vessels.

In this context, we present a method to preprocess IVUS images that aims to reduce the
impact of artifacts in further vessel wall segmentation. The method is called inpainting and
consists in modify and fill corrupted or missing data with existing information in the image.
Two different sources of IVUS images provided by Balocco et al. (2014) are used. On the one
hand, a set was acquired using Boston Scientific iLab IVUS equipped with a 40 MHz catheter
Atlantis SR (Set A). On the other hand, a set was acquired using Volcano Corporation Si5
equipped with a 20 MHz Eagle Eye monorail catheter (Set B). Section 2 presents the common
obstacles that affects automatic or semi automatic layers segmentation. Section 3 shows the
inpainting method. Furthermore, a media-adventitia segmentation technique is presented in
Section 4 which is used in Section 5 to show the positive effects of inpainting method for vessel
wall segmentation. Finally, in Section 6, we analyse the obtained results and present some final
remarks about the viability of the method.

2 OBSTACLES IN IVUS SEGMENTATION

Besides speckle noise, vascular ultrasound images are often degraded by different kind of
artifacts which affect image quality. These artifacts are generated by several sources such as the
catheter itself or other endoluminal devices (stents), plaques, defects in the acquisition system
or in the operator manipulation, among others. All this negative effects are frequently found,
sometimes combined, in the IVUS images and make the processing a difficult task. In addi-
tion, bifurcations and side vessels may interfere the automatic segmentation. In this section
we describe the most frequent difficulties when segmenting lumen-intima and media-adventitia
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(a) (b)

Figure 1: Shadow artifact - marked in solid yellow line (a) Boston Scientific Imaging (b) Volcano Corporation
Imaging

interfaces.

2.1 Shadow artifact

Shadows in this images are produced when the ultrasound beam can not penetrate an object.
As the information behind the occlusion can not be retrieved, the ultrasound system displays a
black region. As a consequence a shadow effect is observed in the image. Even when this effect
can help detecting structures or foreign bodies (e.g. stones in a gallbladder), when it comes to
vessel layers segmentation it interferes with the detection of the interfaces between them.

There are different causes of this artifact in the IVUS images. For example, in the case of
rotational transducers, there are certain positions where the guidewire of the device obstructs
the beam signal, resulting in misleading dark regions. This situation is called guidewire artifact
(Katouzian et al., 2012). Vessel structures can produce shadows as well. For instance, a plaque
with a calcium build-up also produces a shadow due to its high echogenicity. Because of the
most of the signal is reflected, the calcification appears as a highly bright region with a much
darker region next to it (Taki et al., 2008). The Figure 1 presents examples of shadow artifacts.

2.2 Side vessel

In some regions the ultrasound beam penetrates beyond the tissues of the wall that surround
the catheter and traces of the adjacent vessels are found. The most discernible of this traces is
the lumen which is shown as a low intensity region due to its low echogenicity (Figure 2). This
dark region that appears where high intensities are expected (corresponding to the adventitia) is
a challenge to segmentation algorithms.

2.3 White dots

Horizontal and vertical white dots are used as a ruler by the specialists while viewing an
IVUS study (Figure 3). These characteristics are saved over the image and are persisted, for ex-
ample, in the DICOM files and distributed data sets. These artifacts difficult many segmentation
algorithms, like active contours (Balocco et al., 2014).

Mecánica Computacional Vol XXXIII, págs. 2703-2716 (2014) 2705

Copyright © 2014 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar
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Figure 2: Side Vessel - marked in solid yellow line (a) Boston Scientific Imaging (b) Volcano Corporation Imaging

Figure 3: White dots artifact
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(a) Boston Scientific (b) Volcano Corporation

Figure 4: Bifurcation - marked in solid yellow line (Boston Scientific Imaging)

2.4 Bifurcations

A bifurcation is a section where the artery diverges into two branches: a main vessel and a
lateral vessel with a lower diameter. In hemodynamics, this artifact plays a very important role
because the turbulent flow at this point stimulates the plaque evolution (Alberti et al., 2012). In
IVUS images, this side branch is shown as a discontinuity of the arterial wall (Figure 4). The
ambiguous definition of the vessel in presence of a bifurcation may cause substantial differences
between automatic and manual segmentations.

3 INPAINTING

3.1 Background

Image inpainting was firstly introduced by (Bertalmio et al., 2000). Its purpose is to modify
an image and fill the corrupted or missing regions with existing information from surround-
ing area in a visually plausible way. Since that first approach, a wide variety of related al-
gorithms emerged. In general, any of this techniques need to cope with two main problems
when applying inpainting: completing the structure and completing the texture. In the litera-
ture, conventional schemes proposed for image inpainting can be divided into two categories:
texture-oriented (Efros and Leung, 1999) and structure-oriented (Bornard et al., 2002). On the
one hand, the texture-oriented scheme generates the target region with available sample textures
from its surroundings. This approach is specifically useful for the images with large texture ar-
eas. On the other hand, the structure-oriented scheme obtains the missing regions via data
fusion techniques, such as the bilinear interpolation. As shown in (Bornard et al., 2002), the
linear structures (i.e., edges or object boundaries) can be preserved and propagated to the target
regions. However, since most images are not composed of pure texture or pure structure, bet-
ter results are expected for those taking advantages of both schemes. Taking this into account,
an exemplar-based inpainting technique was adapted to medical imaging (Manterola and del
Fresno, 2013). In this proposal, the visible parts of the image (i.e. the non-corrupted sectors)
serve as a source set of examples to infer the target regions. Additionally, the filling order is de-
cided by a predefined priority function to ensure that the linear structures will propagate before
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texture filling to preserve the connectivity of objects boundaries. Therefore, it is more likely
that these structures are preserved and, at the same time, the texture is correctly replicated.

3.2 The algorithm

The core of the algorithm is a isophote-driven process. As showed in Figure 5(a), R is the
target region to be filled and δR is its contour. It is expected that this boundary evolves inward
as the algorithm proceeds. This is the reason it is called the "fill front". Furthermore, I − R,
that remains fixed throughout all the execution, is the source region from which the candidates
patches are taken. Let us focus on a single iteration to show how the different components
interact and how the exemplar-based synthesis is addressed. Assume that the square Ψp centered
in the point p, in Figure 5(b) is to be replaced. The exemplar that best matches the missing patch
is taken from the source region, chosen amongst the candidates Ψq and Ψq′ , as they lie on the
continuation of the same image edge (see Figure 5(c)). The strategy to pick this best candidate
will be explained later (for further details, see (Manterola and del Fresno, 2013)). Once this
process is finished, the chosen patch Ψq is copied over Ψp (see Figure 5(d)) and the algorithm
continues until R is empty.

Let us now analyse in a general way the region filling algorithm. The only parameter that
needs to be provided by the user is the region R to be replaced. From this region is straightfor-
ward to deduce the source region I − R. Once all this is determined, the algorithm proceeds
automatically.

Each pixel of the image has two associated values: the confidence which reflects how sure
we are about the pixel value and its correspondent colour which is empty if it is still unfilled.
Moreover, each patch along the frontier δR has a priority value that is updated in every iteration
and determines the patch which is the best candidate to be filled. Afterward, the algorithm
iterates over three steps until every pixel has been filled:

1 - Compute exemplar priorities. The priority value assigned to each patch in δR deter-
mines which one is going to be filled. The patches with the highest priorities are those who are
on the continuation of strong edges or that are surrounded by pixels with high confidence values.
For a patch Ψp centered at the point p ∈ δR, a priority Pr(p) is defined as P (r) = C(p) ∗ S(p)
where C(p) is the confidence term and S(p) is the strength term. As can be observed in Figure
5(b), the confidence and the strength can be defined as:

C(p) =

∑
q∈Ψp∩(I−R) C(q)

|(∇Ip)⊥
, S(p) =

∣∣∇I⊥p ∣∣ · np

α
, (1)

where |Ψp| is the area of Ψp, α is a normalization factor, np is a unit vector orthogonal to the
front δR in the point p and ⊥ denotes the orthogonal operator. The priority P (p) is computed
for every border patch, with distinct patches for each pixel on the boundary of the target region.
During initialization, the function C(p) is set to C(p) = 0∀p ∈ R, and C(p) = 1∀p ∈ I − R .
The confidence term C(p) may be thought of as a measure of the amount of reliable information
surrounding the pixel p.

2 - Propagate texture and structure information. Once all priorities on the δR have been
computed, the patch Ψp with highest priority is found. It is then filled with the patch having the
least sum of squared differences. Having found the source exemplar Ψq, the value of each pixel
of Ψp is copied from its corresponding position inside Ψq. This achieve the propagation of both
structure and texture information from the source I − R to the target region R, one patch per
iteration.
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(a) (b)

(c) (d)

Figure 5: (a) Objective Region R and source region I−R (b) Filling order parameters. (c) Candidate patches Ψp′

and Ψp′′ . (d) Patch restored.

3 - Update confidence values. After the patch Ψp has been filled with new pixel values, the
confidence C(p) is updated.

4 MEDIA-ADVENTITIA SEGMENTATION

The segmentation algorithm, based in Lo Vercio et al. (2013), consists of two steps: first,
an approximation of the arterial wall is performed using texture analysis (Haralick et al., 1973)
and active contours or snakes (Kass et al., 1988; McInerney and Terzopoulos, 2000); second,
a modified version of the snake is used to detect the media-adventitia interface considering an
anisotropically diffused image (Perona and Malik, 1990).

Active contours are widely used for segmenting medical images (McInerney and Terzopou-
los, 1996). Furthermore, they provide an extensible framework to detect objects with unclear
boundaries in noisy images. The model consists in a parametric closed curve X(u, v) =
(x(u, v), y(u, v)) which is deformed by the action of internal forces (associated with the curve
X) and external forces (associated with the image I). The deformation process stops when the
curve no longer changes with further iterations.

The evolution of each node of the curve X follows the first-order ordinary differential equa-
tion of motion:

γiẊi + aαi + bβi = ρi + fi (2)

where Ẋi is the velocity of the nodeXi, αi and βi are the stretching (Equation 3) and the bending
force (Equation 4) at Xi, respectively. The parameter a controls the stretching deformation
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while b controls the bending deformation,

αi = (Xi −Xi−1) + (Xi −Xi+1) (3)

βi = (αi − αi−1) + (αi − αi+1). (4)

The external forces are the inflation ρi and the edge attraction fi. ρi is a binary function
which determines if the curve goes forward or backward in the normal direction ni. fi is a force
associated with the gradient (edges) of the image I . The parameters q and p control the impact
of the external forces in the curve evolution.

The Euler method is applied to Equation 2 to update the positions of the node Xi from time
t to t+ ∆t according to

X t+∆t
i = X t

i −
∆t

γ
(aαt

i + bβt
i − qρti − pf t

i ). (5)

The Equation 5 iteratively proceeds until the displacement of every node does not exceeds a
given error tolerance. The method ensures convergence when the initial contour is placed close
enough to the object boundary.

Active contours present a challenge when applied to IVUS segmentation because of the high
noise that obstructs the evolution of a curve from the catheter to media-adventitia interface. To
overcome this issue, a two-step segmentation is proposed: first, a contour close to the arterial
wall is obtained. Second, the media-adventitia segmentation is performed.

4.1 Initial approximation

The lumen has lower intensities than media and adventitia, but it suffers from speckle noise.
This effect is visible as bright and dark spots (Loizou and Pattichis, 2008). A texture-based filter
is performed to reduce the impact of the noise in the external forces of the curve. This filter
uses grey level co-occurrence matrices (GLCM). The GLCM contains the probability of co-
occurrence of two grey intensities in a particular or multiple directions (Haralick et al., 1973).
In the present work, a GLCM is computed over a square region of radius r centred in the pixel
I(x, y). Being N the possible grey-tone in the image (typically 256), each pixel of the image is
transformed into:

I∗(x, y) =
N−1∑
i=0

(
N−1∑
j=0

(i2 + j2)P (i, j)) (6)

where P (i, j) is the probability of occurrence of the intensities i and j in the selected directions
obtained from the GLCM.

Then, a region-growing is performed using the textured image I∗. The method incorporates
to the region R the pixels with lower I∗(x, y) than a tolerance T starting from an initial set of
points, known as seeds. In this case, the seeds are automatically placed around the circumfer-
ence of the catheter to avoid the interference of the ring-down artifact (Katouzian et al., 2012)
and the sections where the catheter is touching the arterial wall (Balocco et al., 2014). The
region-growing can stop near intima if it has a high contrast with the lumen, or can stop near
adventitia if intima and media present low contrast with each other.

The snake method is used to obtain a smoothed border of R. As in the previous seed placing,
the initial curve is a circumference placed around the catheter. The external forces of the snake
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are defined as

ρi =
{ ni if Xi ∈ R
−ni if Xi 6∈ R

(7)

fi = ∇I∗i . (8)

4.2 Final segmentation

Computed a curve close to the arterial wall, a precise segmentation of media-adventitia in-
terface can be performed. The original image I is filtered using anisotropic diffusion which
homogenizes noisy regions and enhance its contours (Perona and Malik, 1990). In this step, the
diffused image I ′ guides the external forces.

On the one hand, as the adventitia presents higher intensities than the media and lumen,
positive gradient in the outgoing radial direction is expected. On the other hand, low or nega-
tive gradient values arise beyond the adventitia because the signal maintains high values or is
attenuated by the distance from the transducer. Therefore, the inflation force ρ is defined as

ρi = Fini (9)

where F = ∇I ′. To generate a more precise segmentation of the media-adventitia interface, the
curve is adjusted to the maximum gradient change. Therefore, the external force f is given by

f = ∇F. (10)

5 RESULTS

The segmentation algorithm presented in Section 4 was used for segmenting IVUS images
before and after application of inpainting in the presented obstacles. The tests were performed
using two sets of IVUS images from different commercial instrumental commonly used in clin-
ical practice. The obstacles and reference segmentations were marked by trained observers.

Figure 6 shows the application of the inpainting in a particular case of an IVUS image cor-
responding to Set A. These images usually have at least two features: the shadow artifact and
the presence of dots (which are stored over the image). Furthermore, the selected image has a
large side vessel. It can be observed in Figure 6(b) that the inpainting process managed to erase
the white dots. Figure 6(c) shows the segmentation of the original image, in which the active
contour is misguided because of the artifacts. Finally, Figure 6(d) shows the segmentation over
the inpainted image where the segmentation is not affected by the presence of white dots and
shadow artifact.

Figure 7 depicts the application of inpainting for an IVUS image corresponding to Set B. In
this case, the guidewire is disposed inside the array of transducers avoiding the guidewire arti-
fact. However, the selected image presents a shadow artifact which is filtered with the inpainting
algorithm (Figure 7(b)). Figure 7(c) illustrates the segmentation result over the unprocessed im-
age, in which the active contour can not cope with the shadow artifact. Figure 7(d) displays the
resulting segmentation without interference of the artifact.

Figure 8, corresponding to Set B, illustrates the improvement of the segmentation in the pres-
ence of a bifurcation. The inpainting fills the sector where the bifurcation produces a missing
region in the image (Figure 8(b)). It can be seen in Figure 8(c) how the external forces try to
inflate the curve in this section of the image, and its counteraction with the internal forces. Even
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(a)

(b)

(c)

(d)

Figure 6: (a) Original image (b) Inpainted image (artifacts marked in yellow dashed line) (c) Original image
segmentation (automatic segmentation in solid yellow line, specialist segmentation in solid red line) (d) Inpainted
image segmentation
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(a)

(b)

(c)

(d)

Figure 7: (a) Original image (b) Inpainted image (artifacts marked in yellow dashed line) (c) Original image
segmentation (automatic segmentation marked in solid yellow line, specialist segmentation marked in solid red
line) (d) Inpainted image segmentation
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(a)

(b)

(c)

(d)

Figure 8: (a) Original image (b) Inpainted image (artifacts marked in yellow dashed line) (c) Original image
segmentation (automatic segmentation marked in solid yellow line, specialist segmentation marked in solid red
line) (d) Inpainted image segmentation

when the improvement in the segmentation result is not considerable in this case, Figure 8(d)
shows a smoother transition, produced by the the inpainting process. The filled area stops the
evolution of the active contour.

6 DISCUSSION AND CONCLUSIONS

An inpainting method for IVUS segmentation improvement has been presented. The method
have been applied in the region where IVUS artifacts are presented. Finally, the resulting image
has been tested using a particular segmentation algorithm.

In the field of photography or cinema, it is sufficient that the result of the inpainting procedure
be visually plausible whereas in medical imaging this is not enough. Considering that it is
difficult to know with certainty what really was the corrupted or missing region, there is a
limitation concerning the application of this technique, especially when the resulting image is
used for diagnosis. In this work, as there is not a specific medical validation, the result of this
restoration was used for improving segmentation and simulation.

The inpainting method proved to be effective erasing white dots, replacing them not arbitrar-
ily as in Balocco et al. (2014). In our case, the inpainting process searches for the best patch that
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ensures continuity of the corresponding object boundaries without losing texture information.
The method also showed a good performance removing undesired shadows. In any case there
is a smooth continuation of the boundaries and a coherent texture filling. Finally, the inpainting
performs well to fill with a coherent texture the region marked as side vessel.

It was shown that white dots and shadows interfere with the evolution of a snake-based
method as described by Balocco et al. (2014). The removal of white dots and shadow artifact
had a positive effect for the segmentation algorithm applied.

Another issue to analyse is the performance of the active contours when bifurcations occur.
In these situations, the external forces compete with the internal forces to decide whether to
incorporate or not the sector as part of the artery. However, when applying the inpainting
method in the bifurcation, the segmentation becomes more similar to the ground truth.
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