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Conoscopic interferometry for crystal characterization is a very well-known technique with increas-
ing applications in different fields of technology. The advantage of the scheme proposed here is
the introduction of a polarization modulator that allows the recovery of the phase information
contained in conoscopic interferograms. This represents a real advantage since the most relevant
physical information of the sample under study is usually contained in the phase of the fringe
pattern. Moreover, this technique works successfully even when there are no visible fringes. The setup
employed is a simple conoscopic interferometer where the elements under study correspond to two
birefringent crystal slabs and a commercial mica wave plate. It allows the crystals to be characterized
and the wave plate retardance to be measured as a function of the angle of incidence. The modulator
itself consists of a single tiltable crystal plate which, by means of phase shifting techniques, permits
the recovery of a phase map for each sample. It is inexpensive and it can be easily calibrated, so it
works with a wide range of phase shifting interferometry algorithms. We show that our scheme is
easily adaptable to algorithms that require either a low or high amount of interferograms. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4947134]

I. INTRODUCTION

There are many methods for crystal characterization.
Some of them are based on the interaction of the crystal
samples with neutrons, X-rays, and electrons. For example,
by using X-ray diffraction, Laue patterns can help determine
the orientation of crystallographic axes.1 There are also many
properties that can be extracted from the crystals using electron
diffraction techniques by means of Kikuchi patterns.2 How-
ever, an optical examination of a crystal might yield useful
information, which may prevent the use of a more detailed but
expensive and time-consuming method.3 Birefringent crys-
tals have long been studied by means of conoscopic inter-
ference techniques.4–9 Furthermore, conoscopic techniques
have several applications like multipurpose rangefinders,10

surface inspection,11 differential interference contrast micros-
copy,12 visualization of polarization properties of optical vor-
tex beams,13 and waveplate characterization.14 Accordingly,
conoscopic fringe patterns are theoretically described with
different levels of approximation by means of the phase shift
introduced between the beams that propagate through a crystal
sample.15–17 However, the analysis techniques for conoscopic
interference patterns described in the bibliography are gener-
ally based on very simple methods such as fringe counting or
isochromates visualization.

In this work, we present a simple birefringent phase shifter
that acts as a polarization modulator and we apply it to phase
measurement in conoscopic setups by means of phase shifting

a)Electronic mail: fveiras@fi.uba.ar. URL: www.fi.uba.ar/laboratorios/
glomae.

interferometry (PSI). We propose a birefringent polarization
modulator (BPM) that can be used as a phase shifter in inter-
ferometers where the input signal splits into two linear orthog-
onal polarizations. The experimental design can be generally
adapted to different interferometers leading to a number of
different applications. As an example, crystal characterization
is the natural application of this modulator.

First, we briefly describe the experimental setup and the
phase retrieval techniques that can be applied to conoscopic
interferometry. Then, we explain the working principle of the
BPM and its operation in a conoscopic interferometric scheme
as a phase shifter for PSI. The proposed methodology is tested
by means of experimental results and theoretical calculations.
We analyze the operation of two different BPMs along with
different PSI algorithms for the characterization of a quartz
crystal and a commercial mica retarder.

II. EXPERIMENTAL SETUP

The conoscopic measurements are based on the interfer-
ence between ordinary waves and extraordinary waves due to
an optically anisotropic sample when it is illuminated by a
cone of light (convergent or divergent). The proposed cono-
scopic setup is shown in Fig. 1, where the impinging laser
beam is expanded and transmitted through the birefringent
plate or device under test (DUT). Due to its simplicity and
robustness, the preferable method to achieve this is grinding
an interface before the crystal sample.4–6,14,16 Some DUTs can
have their first interface ground (at x = 0) but some samples
can be severely damaged and a piece of ground glass must be
interposed before the DUT. In order to simplify the analysis,
we assume that the samples considered are uniform crystals.
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FIG. 1. Experimental conoscopic scheme (top view). From left to right:
Camera (CCD), Screen, Analyzer (A), Device under test (DUT), Diffuser,
Birefringent polarization modulator (BPM) mounted on a rotating stage at an
angle αD from the impinging beam, polarizer (P), laser (He–Ne).

Even in the most sophisticated experimental setups,
the crystal sample is placed between the polarizer and the
analyzer.9 We keep the analyzer (A) and polarizer (P) in the
scheme but add an extra birefringent plate (BPM) behind
the polarizer to act as polarization modulator similar to the
tilting stage proposed in Ref. 7. Due to its own birefringence,
depending on the angle of incidence (αD), this plate adds an
extra phase shift between the interfering beams which can
be controlled by means of a tilting stage. As a result, the
fringe pattern moves according to the phase shift between
components, allowing the identification of a number of
properties.18 However, we go further in order to obtain a phase
map of the sample under study. This procedure not only allows
us to clean the interferogram from unwanted illumination
effects (removing almost everything but phase information)
but also to characterize a crystal sample by means of the
phase shift introduced. Thus, a comparison with theoretical
calculations or an angular performance measurement of a
polarization device, such as a retarder, can be accomplished.

A large numerical aperture (NA) cone of light is trans-
mitted through the DUT in order to obtain as much phase infor-
mation as possible. That is, the phase information is contained
in a wide angle conoscopic interference pattern of high NA.
However, the proposed experimental scheme allows us to work
without high NA lenses since we collect the interferogram on a
screen of coordinates (y, z) located behind the analyzer. Nev-
ertheless, the basic scheme and the processing techniques can
be fulfilled by means of an optical system with high NA lenses.

It should be noted that the complete interferometric setup
corresponds to a common path interferometer and thus leads
to a high level of immunity to ambient perturbations. For

this experimental setup, the branches of the interferometer are
superposed in space but only separated by their polarization.

In Sec. III, we present the phase retrieval problem asso-
ciated to conoscopic interferometry and we explain how to
extract the phase from the interferograms by means of PSI
techniques assisted by a BPM.

III. INTERFEROMETRIC PHASE ESTIMATION

As reported in Refs. 4, 5, and 16–19, the interferograms
corresponding to uniaxial crystals have a strong dependence
on the direction of the optical axis, z̆3 (given by θ, Fig. 2(a)).

The conoscopic interferograms show different phase
distributions ∆φ(y, z) which naturally lead to different ways
of recovering the phase. In the case of a quartz plate with its
optical axis at θ ≈ 45◦ (Fig. 2(b)), the interferograms have
a significant spatial frequency component.17 Moreover, the
phase recovery technique allowed by this frequency compo-
nent is so simple that we benefit from it to develop a phase
demodulator.14 These interferograms can be easily processed
by means of the Fourier transform method (FTM)20 without
the need of using the birefringent phase modulator. Each row
of pixels from Fig. 2(b) can be processed separately using the
Fourier transform and consequently filtering around the carrier
frequency or directly by means of the Hilbert transform. The
final phase map is therefore built by means of a 2-D phase un-
wrapping process that might be assisted by median smoothing.

The problem of phase retrieval arises in the case of more
complicated interferograms, as in the case of hyperbolic fringe
patterns (Fig. 2(c)). It gets even worse if there are no visible
fringes: for example, in the case of thin mica wave plates
(Fig. 2(d)). To overcome these limitations, we propose to
employ a birefringent phase shifter that allows the introduc-
tion of phase shifts between the interfering beams and conse-
quently the application of PSI algorithms.21

In general, PSI algorithms determine the unknown phase
∆φ(y, z) over the pupil plane by calculating the arctangent of
the ratio between two weighted summations (i.e., two linear
combinations) of N phase shifted interferograms22–24

∆φ(y, z) = arctan


N
i=1 niIi(y, z)N
i=1 diIi(y, z)


, (1)

where ni and di are the weights of the i-th recorded phase
shifted interferogram Ii(y, z) for the summation in the numer-
ator and the denominator correspondingly.

FIG. 2. (a) Detail of the DUT (e.g., uniaxial crystal). Conoscopic interferograms (plane (y,z), arbitrary units) obtained with different DUTs: 3 mm thick quartz
plates (b) θ ≈ 45◦ and (c) θ ≈ 0◦, (d) commercial mica wave plate.
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A. Phase shifting techniques with uniaxial crystal
tilting plates

PSI techniques are based on the introduction of phase
shifts by means of a phase shifter. For a polarization interfer-
ometer, we propose to use a birefringent polarization modu-
lator (BPM) as a phase shifter, which consists of tilting a
plane–parallel uniaxial crystal plate. The tilting of the bire-
fringent plate is performed around the vertical axis of the
optical setup by means of a rotating stage Newport RVS80CC
(Fig. 1). The birefringent plate is fixed to the rotatory stage
and its optical axis is adjusted perpendicularly to its rotation
axis (vertical axis). This way, we obtain mode separation.
The ordinary waves can be associated to s-polarized incident
waves, and the extraordinary waves to the p-polarized ones. We
adjust the polarizer P close to 45◦ from the horizontal plane in
order to evenly split the incoming light into these modes. The
phase shift between them can be varied by rotating the BPM
to different angles. Accordingly, the polarization state after the
BPM changes.

One of the BPMs we employ consists of a quartz crystal
with its optical axis cut at θ ≈ 45◦ from its interfaces. As the
BPM rotates, the phase shift between these orthogonal modes
varies according to17,25

∆φθ=45◦
s−p (αD) ≃ 2πH

λv
[A + B sin αD] , (2)

where A and B remain constant for a given wavelength and are
defined in Ref. 17. For small angles, the phase shift introduced
varies linearly with the angle of incidence on the BPM, αD.
However, there are other crystals which, due to their phase
shifting features, can be of interest to build a BPM.17,25 For
example, crystals with their optical axis at 90◦ from their inter-
faces are very attractive since there is no need for alignment
due to their symmetry. The phase shift introduced depends on
the angle of incidence according to

∆φθ=90◦
s−p (αD) ≃ 2πH

λv
CZ sin2 αD, (3)

where CZ remains constant for a given wavelength and is also
defined in Ref. 17. It might be tempting to introduce absolute
phase values instead of relative phase shifts since, according

to the above equation, ∆φs−p(αD → 0) → 0. However, in the
proximities of the isotropic point, the effects of linear birefrin-
gence can be very low in comparison with other characteristics
such as optical activity or chirality.26,27

In Eqs. (2) and (3), λv corresponds to the wavelength
employed and H to the thickness of the BPM. In addition, A,B,
and CZ remain constant for a given wavelength and are defined
in Ref. 17.

Both the BPM and the crystal under study are placed with
their y principal axes parallel to the vertical axis. Thus, the
BPM modifies the phase shift between the transmitted beams
in the conoscopic setup. Consequently, the interference over
the plane of detection can be written as

I(y, z,∆φs−p) = a(y, z) + b(y, z)
× cos

�
∆φ(y, z) + ∆φs−p(αD)� , (4)

where∆φ(y, z) corresponds to the unknown phase information
associated to the crystal under study. This allows the applica-
tion of a wide range of PSI algorithms.

Unlike other birefringent phase shifters such as azimuth-
ally rotated wave plates, the BPM proposed here allows deeper
phase modulations that even exceed the 2π interval. There are
many PSI algorithms that do not require an accurate control
of the phase shifts introduced. However, this BPM can be
easily calibrated, so it can be used with several algorithms that
require different quantities of interferograms. In Sec. IV, we
show experimental results obtained with different types of PSI
techniques performed by different BPMs.

IV. EXPERIMENTAL RESULTS

A. Phase shifting interferometry without accurate
control of the phase shift

First, we apply this technique by means of one of the
BPMs, which consists of a plane parallel quartz plate with
its optical axis perpendicular to its interfaces (Eq. (3)). The
DUT is another 3 mm thick plane–parallel quartz plate with
θ ≈ 0◦. We interpose a ground interface very close to the first
interface of the crystal plate, at a distance of (62 ± 5) mm
from the screen. The size of the screen is (10.5 ± 0.1) cm

FIG. 3. (a) Angles of incidence αD versus step number (75 steps). (b) Pixel intensity variation versus step number for three different pixels: (300,300) blue
squares, (400,100) red circles, and (30,30) green crosses.
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FIG. 4. Phase recovery sequence for uncalibrated phase shifts. DUT: 3 mm thick plane–parallel quartz plate with θ ≈ 0◦. λv = 632.8 nm. Examples over the
interferograms obtained in steps 39 and 59, respectively. Interferograms registered (arbitrary units between 0 and 255): (a) Step 39. The angle of incidence
αD = 14.53◦ on the BPM. (b) Step 59. The angle of incidence αD = 16.74◦ on the BPM. (c) and (d) Cosine of the phase. (e) and (f) π modulus phase [rad].
(g) and (h) 2π modulus phase [rad].

and is discretized in an 800 × 800 pixel matrix. We vary the
angle of incidence αD on the BPM from 9◦ to 16◦ with a
spacing between measurements, which allows us to obtain a
fully sampled sinusoid (Fig. 3). The phase shift introduced,
∆φs−p(αD), grows monotonically and the horizontally polar-
ized wave is increasingly delayed (since ne > no). This phase

shift introduced between these orthogonal components has a
global impact on all of the pixels of the interferogram (Eq. (4))
and modifies the fringe pattern.14,18

We follow the procedure indicated in Ref. 28 in order
to recover the phase map of the DUT. Unlike classical PSI
algorithms, the one proposed there does not need the phase
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shift step length as a parameter. Fig. 3(b) shows that there
are more than forty samples for each period. Moreover, the
mean phase step can be estimated by means of the signals of
Fig. 3(b). Since the phase shift introduced is monotonic, the
intensity over each pixel of coordinates (y, z) is approximately
sinusoid (Fig. 3(b)) and allows the determination of a(y, z) and
b(y, z) (Eq. (4)). Pixels belonging to the center of Figure 2(c),
such as pixel (300,300) (Fig. 3(b)), have a mean value a(y, z)
and an amplitude b(y, z) higher than those in pixels from
the periphery (e.g., pixel (400,100)). Distant pixels such as
(30,30) also indicate noticeable presence of noise.

The global impact of the phase shift ∆φs−p(αD) intro-
duced by the BPM over the interferogram (Eq. (4)) can be
appreciated in Figs. 4(a) and 4(b). Those interferograms corre-
spond to two different angles of incidence αD on the BPM
corresponding to steps 39 and 59, respectively.

We capture a sequence of 75 interferograms for a
monotonically growing phase shift ∆φs−p(αD) and apply
the following procedure to them (Fig. 4). By means of
the estimations of a(y, z) and b(y, z), and Eq. (4), we
obtain the cosine of the phase ∆φ(y, z) + ∆φs−p(αD) for each
interferogram (Figs. 4(c) and 4(d)). Those matrices are [−1,1]
valued and by means of the arc cosine we recover the π
modulus phase (Figs. 4(e) and 4(f)). Taking advantage of the
monotonic phase shift introduced, it is possible to obtain the
2π modulus phase (Figs. 4(g) and 4(h)) and then unwrap
the phase. In order to minimize the presence of noise (which
is higher in the peripheral pixels), we apply median filters
on the sine and cosine of the 2π modulus phase. We also
restrict the phase map to a central area of 600 × 600 pixels

and run the unwrapping algorithms developed in Ref. 29 and
available on Ref. 30. We take an arbitrary pixel for phase
reference and average the unwrapped phase corresponding to
60 interferograms (Figs. 5(a) and 5(b)).

The results presented in Fig. 5 are comparable to those
obtained with the formulas in Ref. 17 for the measured sizes
and distances, with λ = 632.8 nm, no = 1.54, and ne = 1.55
(Fig. 5(d)). The estimated value of θ corresponds to −1.5◦

with a sensitivity of 0.1◦. Unlike the results in Ref. 31, the
angle between the hyperbola asymptotes and the z axis for
a quartz plane–parallel plate with θ close to zero coincides
with that predicted in Ref. 17. Due to the complexity of the
phase shift formulas for uniaxial crystals, a pixel by pixel
fitting procedure would require a more accurate control of
the experimental parameters in order to reduce experimental
uncertainties (for example, dimensions or distance measure-
ments). Consequently, a quantitative comparison between the
interferograms of Figs. 5(c) and 5(d) such as the root mean
square of the difference or the structural similarity index32

would validate the model quantitatively.
In order to determine characteristic parameters such as θ

or the principal refractive indices, different fitting procedures
can be applied. The experimental setup presented here repre-
sents an advantage, since it enables to work directly with the
phase information ∆φ(y, z). However, this phase information
itself corresponds to valuable information regarding the DUT,
particularly about the phase shift that it is capable of intro-
ducing. This is a very important feature for the evaluation of
phase retarders and the technique presented here is applied to
a commercial wave plate (Fig. 2(e)).

FIG. 5. DUT: 3 mm thick plane–parallel quartz plate with θ ≈ 0◦. λv = 632.8 nm. Unwrapped phase map ∆φ(y, z) [rad]: (a) (y,z) 2-D colormap and (b) 3-D
representation. I (y, z) Reconstructed interferogram [arbitrary units]: (c) Based on experimental data. (d) Theoretically generated interferogram for a 3 mm thick
quartz plate θ =−1.5◦.
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B. Classical phase shifting interferometry

In this experiment, the DUT is a commercial mica wave
plate (Melles Griot 02WRM009 Mica Retarder Type, 1/4
WAVE 50 mm, K1788) which has a presumable slight angular
dependence on the phase shift introduced. Accordingly, in
Fig. 2(d) we can observe small phase variations across the
conoscopic interferogram. In order to determine these phase
variations, we first apply a 4-step PSI algorithm with a step
size of π/233 by means of the θ ≈ 45◦ BPM (Eq. (2)). It should
be noted that a calibration of the BPM14 or a self-calibrating
algorithm is needed. The interferograms of Figs. 6(a)-6(d)
have a relative phase shift of π/2 as indicated in Table I.

By means of these interferograms the phase can be recov-
ered by

∆φ(y, z) = arctan


I4(y, z) − I2(y, z)
I1(y, z) − I3(y, z)


. (5)

Figure 6(e) shows the angular dependence of the phase
shift introduced by the wave plate. This figure shows a fluctu-
ation around normal incidence that differs from the expected

TABLE I. Phase shifts introduced by the BPM θ ≈ 45◦.

Ii(y, z) αD (deg) ∆φs−p(αD)−∆φs−p(αD = 0◦)
I1(y, z) −0.8 −π/2
I2(y, z) 0 0
I3(y, z) 0.8 π/2
I4(y, z) 1.6 π

smooth behavior (central zone in red). This is due to the defor-
mation of the intensity signal I(∆φs−p) for the pixels belonging
to this region. Figure 6(f) shows the intensity variations for
different pixels of the interferogram as ∆φs−p is increased
by means of the BPM. The blue squares correspond to the
intensity for a pixel from the central zone which exhibits severe
nonlinearities. In the case of peripheral pixels (red circles
and green crosses) the intensity variations remain closer to
sinusoids despite the higher levels of noise. A deeper study
on the origin of these nonlinearities is still pending. However,
it is known that PSI algorithms with fewer interferograms are

FIG. 6. DUT: Commercial mica wave plate λv = 543.5 nm. (a)–(d) Four registered interferograms Ii(y, z) with relative phase shifts of π/2. (e) Phase recovered
by means of the four-step PSI algorithm ∆φ(y, z) [rad]. (f) Intensity variation as a function of the phase shift ∆φs−p for three different pixels: (600,500) blue
squares, (300,300) red circles, and (230,230) green crosses.
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more sensible to these nonlinearities as well as to phase shifter
calibration errors. That is, the higher the number of interfer-
ograms in the algorithms, the more robust they get against
different perturbations such as phase shifter errors or nonlin-
earities in the detection system. The properties of different
PSI algorithms have been thoroughly studied.34,35 Generally
speaking, as we increase the number of interferograms, it
is possible to make a selective filtering over I(∆φs−p). This
allows us to compensate for certain systematic and random
errors, which can be analyzed by its Fourier representation. A
complete and adequate review of these techniques is presented
in Ref. 23. There, the authors identify the application of PSI

algorithms with the filtering process in the reciprocal space and
subsequently analyze them according to their frequency repre-
sentation. Accordingly, the weights of each interferogram (i.e.,
ni and di in Eq. (1)) can be adjusted to cancel the higher order
harmonics that do not follow the sinusoidal variation. Then,
it is still possible to properly recover the phase information
even with these distorted signals without modifying the exper-
imental scheme.

There is a variety of PSI algorithms that require more
interferograms in order to improve the recovered phase. We
apply an 11-step PSI algorithm with a step size of π/335,36 by
means of the θ ≈ 45◦ BPM (Eq. (2))

∆φ(y, z) = arctan


√
3(−I0 − 2I1 + 4I3 + 5I4 − 5I6 − 4I7 + 2I9 + I10)

I0 − 2I1 − 6I2 − 4I3 + 5I4 + 12I5 + 5I6 − 4I7 − 6I8 − 2I9 + I10


, (6)

where Ii = Ii(y, z). By means of this algorithm, we cancel the
harmonics of I(∆φs−p) that affect the pixels in the central zone
and recover the complete phase information over the region of
interest (Fig. 7).

As can be seen in Figs. 6(a)–6(d), there are no distinguish-
able fringes. Accordingly, in Fig. 7 there are relatively small
phase variations across the phase map. Since the phase does
not exceed 2π, there is no need for phase unwrapping.

The results obtained give a measurement of the phase vari-
ations against the direction of incidence. The phase shift grows
if the incidence is oblique over a plane which is approximately
horizontal and diminishes over a vertical plane (Fig. 7). The
measurements can be expressed as a function of the direction
of incidence by considering that the distance from the ground
plate to the screen is 5.8 cm and the pixel size is 0.054 mm. The
maximum angle of incidence on the DUT is 24◦ approximately
(i.e., a numerical aperture N A ≈ 0.4). If the plane of incidence
is the vertical plane, it is possible to reach a phase shift of
0.70 rad. Conversely, if the plane of incidence is horizontal,
the phase shift introduced may reach a maximum difference
of 0.56 rad regarding the phase shift for normal incidence.
The phase recovered is referenced to an arbitrary constant and

for a complete characterization of the retarder performance it
should be fixed to the phase shift for normal incidence.14 The
retarder is rather insensitive to the angle of incidence, since
the phase shift variations between the central zone and the pe-
riphery do not exceed 0.70 rad. However, this difference might
become relevant if working with highly divergent beams.

The procedure followed in Subsection IV A does not
require a calibration of the phase step. Instead, in Subsec-
tion IV B, the phase step introduced by the BPM requires
specific phase shift values. Thus, the phase step and the cor-
responding tilting angles (αD) can be determined by means of
the intensity signals of Fig. 6(f). However, this determination
can also be performed with fewer measurements by means of a
birefringent phase demodulator as the one described in Ref. 14.

The experimental results show that the conoscopic scheme
in conjunction with the proposed BPM is suitable for crystal
characterization and angular characterization of the retar-
dance. In order to achieve this, we employ PSI algorithms
with different complexities by means of this BPM. It allows
us to work either with or without calibrated phase shifts. As
we increase the number of steps, we are able to mitigate the
effects of nonlinearities of the CCD. However, if the dynamic

FIG. 7. DUT: Commercial mica wave plate λv = 543.5 nm. Phase recovered by means of the 11-step PSI algorithm ∆φ(y, z) [rad]. (a) 2-D phase map. (b) 3-D
representation.
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range is restricted to a linear zone, algorithms with fewer
interferograms can also be applied.

It would be desirable to estimate more characteristic
parameters of the DUTs such as their thickness and their
principal refractive indices as well as the different distances
involved in the experiments. Due to the apparent complexity
of the fitting problem, we have left the full characterization
of crystal samples open for future analysis. Nevertheless, we
believe that the methods proposed here are very useful for
angular characterization of crystal samples and phase retarders.

V. CONCLUSIONS

We have shown the capabilities of a method based on
PSI algorithms that is suitable for crystallographic studies
and retardance measurement of polarization control devices.
The methodology proposed here allows the extraction of the
phase information contained in conoscopic interferograms
with different phase distributions. Moreover, the experimental
scheme and processing techniques can be easily implemented
for optical crystallographic studies with relatively economical
laboratory equipment.

There are still a number of further studies and improve-
ments to carry on. In particular, those related to the influence of
different experimental parameters on the recovered phase map.
For example, the diffuser has proven to be a robust and reliable
method to obtain a high N A beam which, combined with
the rest of the experimental setup, is immune to vibrations.
However, a complete study of capabilities and limitations of
the experimental setup remains to be performed.

Consequently, this work sets the basis for future studies
and developments. In addition, the presented BPM can also
be employed as a phase shifter in different interferometric
schemes. In this case, the base interferometer employed should
have its arms separated by their polarization. For interferome-
ters such as Michelson or Mach–Zehnder, the phase shift can
be introduced by means of the BPM after the recombination
of the reference and test beams (i.e., in a common path zone
before detection). However, beam displacement due to the
tilting of the plate should be taken into account or compensated
for. The obtained results demonstrate the capabilities of the
phase shifter, which is actually a polarization modulator.
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