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We report on the fabrication and characterization of metal/insulator/metal capacitor like devices,

with both rectifying and hysteretic features. Devices are formed by two junctions, Ti/HfO2 and

Co/HfO2. Each junction exhibits highly repetitive hysteretic I-V curves with a sharp transition

from a high to a low resistance state (3–4 orders of magnitude jump). The opposite transition (from

low to high) is induced by polarity reversal. The rectifying non-crossing characteristics of the I-V

branches denote their potential use as a multifunctional device, acting as a built-in rectifier and

memory cell in a single device. Based on the phenomenological model description by Zazpe et al.
[Appl. Phys. Lett. 103, 073114 (2013)], we propose a circuital equivalent representation supported

on switchable rectifying junctions. By exploring different electrode connections, we disentangle

the role of the bulk transport in HfO2 devices. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4861167]

Devices relying on the possibility of tuning their response

with different stimulus are the focus of intense research.

Magnetic, electric, optical, and tensile fields usually determine

the overall response of multifunctional materials, enhancing

their scope and fruitfulness. Here, we study a different kind of

multifunctionality, namely the possibility to assess two

different abilities on the same device, their tuning being

determined by the occurrence of the driving stimulus. The

sequence of applied voltage pulses, i.e., their recent history,

modulates either the retention or rectifying capabilities of

the device under study.

Metal/insulator/metal capacitor-like structures are prom-

inent candidates for flash memory replacement technology,

as the Resistive Switching mechanism appealing features

(speed, downscaling, retention, endurance) evolve into a

mature technology, coined Resistive Random Access

Memory (ReRAM).1,2 When transition metal oxides consti-

tute the insulator between the metal electrodes, a huge vari-

ety of mechanisms emerge for describing memory devices

with both standard and novel capabilities, evidencing the

richness of this family of compounds.3,4

Rectifying metal/oxide junctions based on TiOx,5 ZnO,6

and on TaO2-x (Ref. 7) have been recently described, where

upon appropriate oxygen vacancy accumulation the interface

is switched to a non-rectifying resistive device.8 The prob-

lem of sneak currents in ReRAM devices integrated in cross-

bar arrays could be dealt with by the use of memory–diode

devices (memdiodes).9 Here, we explore rectifying HfO2

based devices, having the additional built-in capability of a

memory cell, both properties being tunable through electric

stimulus. Specifically, in this work we propose a concen-

trated parameter equivalent circuit to model device’s electri-

cal response. Also, we explore an alternative electrode

configuration to check the correctness of the simple model

proposed.

Samples consist of Ti(20 nm)/HfO2(20 nm)/Co(35 nm)

structures fabricated using standard methods. The Ti com-

mon bottom electrode was deposited by sputtering on top of

Silicon/SiO2(150 nm) substrates. Hafnium oxide films were

deposited by Atomic Layer Deposition. Varying growth

parameters allowed to determine the optimized conditions

for obtaining highly repeatable electric response.10 For the

samples to be reported here, grazing incidence X-ray diffrac-

tion revealed a monoclinic phase.11 Top electrodes of Co

capped with Pd were further created by optical lithography

and sputtering (area 200 � 200 lm2 and spacing of 200 lm).

In this way, in a single chip we have the common bottom

electrode, hereafter referred as BE, and several top electro-

des, designated as TEn, being n the electrode index. A

Keithley 4200 source and measurement equipment con-

nected to a standard probe station was used to electrically

test devices in a shielded box at room temperature.

Figure 1 depicts a typical I-V curve obtained by sweep-

ing voltage pulses in a two terminal electrical configuration

(bias was applied to TE1, while BE was grounded). After

fabrication, devices are found in High Resistance (HR) state,

which abruptly switches to a Low Resistance (LR) state in a

SET operation when applying a positive voltage VSET� 5 V.

A steep 3–4 order of magnitude jump is observed. Further

increasing the stimulus produces a smooth response. Upon

decreasing the stimulus, the I-V curve exhibits huge hystere-

sis with a smooth dependence. Further cycling with positive

voltages reproduces the LR state. A remarkable feature

emerges as soon as polarity is reverse. Notice that, even

when the positive cycle finished in a LR state, the negative

voltage cycle starts in a new HR state. In other words, the
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device seems to react to a positive-negative voltage transi-

tion as if it was a rectifier changing from direct to a reverse

bias regime. From that HR state on, the description of the

negative voltage cycle is completely analogous to that of the

positive cycle. That is to say, a SET transition occurs when a

negative VSET voltage is attained (VSET��5 V) and a simi-

lar overall response is encountered when increasing/decreas-

ing the voltage amplitude. Interestingly, when another

positive cycle is started right after a negative cycle, the

device presents a HR state again. Therefore, not only the rec-

tifying effect has changed its polarization but also the device

has been RESET to HR because of the negative excursion

(recall the former positive cycle ended in a LR state). We

say the device’s hysteretic I-V response is non-crossing

because the negative (positive) HR branch follows the posi-

tive (negative) LR branch.

The presence of two independently rectifying junctions,

which are alternatively activated upon sweeping different

polarities, gives rise to the above described non-crossing

behaviour of the I-V data. When positive stimulus is applied

to the TE (i.e., at the HfO2/Co junction), oxygen vacancies

are accumulated near the BE (the Ti/HfO2 junction) that

switches from HR to LR at �5 V. Upon polarity reversal, the

rectifying character of the TE comes into play; at � �5 V,

the oxygen vacancies driven to the HfO2/Co junction pro-

duce the switching from HR to LR. Recently, a model based

on switchable HfO2/metal interfaces was used to thoroughly

describe electrical response of similar samples.10

Interestingly, the response of the LR state at the highest

fields studied here for both polarities (namely 615 V) is a

relatively high resistance (�3 � 107 X), and does not show

any signature of dielectric breakdown though the acting elec-

tric field surpasses 109 V/m. Besides, the LR state exhibits a

highly non-ohmic character: by fitting I-V data with the

expression V� Ia gives a� 1/2.7 for both positive and nega-

tive polarities.

We explored both HR and LR states by checking remnant

states with a reading bias voltage of þ3 V. Figure 2 exhibits

the response of the sample to a pulsed write/erase protocol.

Voltage stimulus corresponding to a SET/read/RESET/read

sequence was applied around 200 times, with an ON/OFF

ratio of 3–4 orders of magnitude, and negligible degradation.

These findings promote the multifunctional capabilities of

Ti/HfO2/Co structures as rectifying and retentive devices. The

above described behaviour can be qualitatively modelled,

with a circuital equivalent representation, assuming that each

metal/oxide interface behaves like a hysteretic rectifying junc-

tion, which can be turned into a (non-ohmic) resistive device

upon appropriate SET/RESET operations. Besides, the bulk

contribution of the HfO2 layer is also to be considered.

Therefore, this transverse configuration (contacting TE1

and BE) is modelled as two (switchable) diodes in an opposite

polarity configuration (i.e., back to back series connection)

with a series resistance in between them, as depicted in Fig. 1

(right inset). The diodes represent both injection barriers,

while the resistance stands for the bulk HfO2 contribution.

Hereafter, this model device will be referred to as an

element. For small positive voltage, one diode is forward

biased, while the other one, which is reverse biased, prevents

the current flow giving rise to the HR state. At VSET, the

reverse biased diode becomes a conducting non-ohmic resist-

ance and the LR state of the element is mainly limited by the

bulk resistance. Upon decreasing the applied voltage, the LR

state remains active, as the diode switched irreversibly into a

non-ohmic resistance (see the small insets in Fig. 1).

For negative voltage, the role of both diodes is inter-

changed, with a similar qualitative overall response: as soon

as polarity is inversed, the formerly switched diode at BE

switches back (as vacancies are expelled), and the diode at

TE remains reverse biased until the negative VSET is reached,

switching it to a non-ohmic resistance.

In order to experimentally check the correctness of such

concentrated parameter equivalent circuit, we tested a mea-

surement configuration consisting of two such elements in a

serial connection. The series12 configuration can be per-

formed on a single sample, as the metallic BE is common to

all devices, and connects transverse devices as depicted in

Fig. 3 (right inset). Top electrodes acting as Bias and Ground

are labelled TE1 and TE2 contacts, respectively.

Fig. 3 shows a comparison of measurements performed

in the transverse and in the series configurations. The

FIG. 1. I-V measurement of a Ti/HfO2/Co device using the TE1 and BE elec-

trodes at room temperature. Arrows indicate the sense of sweeping. Note the

non-crossing character of the I-V curve. Insets: scheme of the measurement

configuration (left) and a modelled element (right). Small insets near data

points depict the status of the modelled element (see text for details).

FIG. 2. Reading at þ3 V after write/erase pulsed operations, exhibiting the

switching capability of the Ti/HfO2/Co device. The following sequence of

pulses (100 ms of duration) of different amplitudes was applied at room tem-

perature: SET (þ10 V)/read (þ3 V)/RESET (�3.5 V)/read (þ3 V).
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general trend of both measurements displays steep SET tran-

sitions and a smooth saturation behaviour for the LR states.

Quantitative changes are observed: the VSET{series} and the

VSET{transverse} values are þ10 V and þ5 V for positive

polarity, and �8 V and �5 V for negative polarity, respec-

tively. Besides, the saturation resistance value (say, resist-

ance at 15 V) is higher in the series connection than in

the transverse one. These extra contributions are clearly

related to the presence of two elements in a back to back

series connection, which renders the overall device harder

to switch.

A shorting path through the bulk HfO2 may also link

these elements. To test for such possibility, we performed

series measurements of distant top electrodes in order to

deliberately increase this suspected linking bulk resistance

contribution. Several TE1–TEn measurement configurations

were studied, where “n” is a label that stands for numbering

neighbouring devices, each one separated from the following

one by a spacing of Dx¼ x(TEnþ1) � x(TEn)¼ 200 lm, and

adding a link contribution RL.

Figure 4 depicts the resistance data for different series
measurements, as extracted from the current measured at

þ15 V. The resistance of these different configurations is

reported as a function of the distance between the top elec-

trodes TE0 � TEn.

At n¼ 0, the depicted measurement is the transverse
configuration (i.e., data obtained using contacts at TE0 and

BE). It is reported for comparison, giving the appropriate

quantitative scale range. For n> 1, as the distance between

electrodes increases, R(n) increases smoothly, reaching the

saturation level for n> 4. The dependence shown in Fig. 4

supports a scenario where elements are connected not only

through the common BE but also through a bulk linking path

that becomes significant for small n. Although as the series

connection increases top electrodes’ distance, remaining cur-

rent flow through this path is reduced.

Note that we can safely rule out the possibility of a sur-

face contamination, which could establish a non-bulky path:

the switch at the BE in the I-V data of the series configura-

tion is indeed observed at a value VSET{series}, which is

greater than the VSET{transverse} one. This fact confirms that

a fraction of the injected current traverses perpendicularly

two elements and does not short circuit both TEs through the

surface of the device.

We performed a fitting of the data assuming a concen-

trated parameter equivalent circuit13 in which a fixed RL

value is added “n” times when measuring at position “n”

(see Fig. 4 inset). The fitting expression was obtained by

solving the equivalent circuit as a function of “n.” The

obtained expression is R(n)¼ P1�n/(P2�nþ 1)þ P3, where

P1, P2, and P3 are parameters relating RL to the other

non-ohmic resistance values.13 From the fitting procedure

(which does not include the data at n¼ 0, as it was measured

in the transverse configuration), we obtain RL� 40 MX.

Note that this value is a parameter extracted from the LR

response measured at 15 V, as the LR state I-V data exhibit a

highly non linear behaviour. The obtained RL value is �3

times higher than the transverse resistance (measured at

15 V). This fact allows understanding the initial dependence

with the TE distance in the n< 3 range. As the distance

between electrodes increases, the resistance grows smoothly

reaching a saturation level for larger values (n> 4). These

results validate the rather simple modelling of Ti/HfO2 and

HfO2/Co interfaces as diodes connected through a bulk

resistance contribution, mainly arising from HfO2. The series
connection measurement provided qualitative and quantita-

tive support for this modelling scheme.

The presence of two rectifying junctions connected back

to back suggests new functionalities. In our case, memory

features added to rectifying capabilities in both polarities

may open the possibility to tackle snake-path problems in

crossbar integrated devices without going beyond the 4F2

cell design of standard MIM structures.4,6 Besides, these

HfO2 based devices exhibit low (�0.5 lW) power consump-

tion for each write/read operation, i.e., lower than standard

memory cells based on the resistive switching of bulk

FIG. 3. Comparison of I-V measurements performed in the transverse (open

squares) and in the series (open triangles) configuration for the Ti/HfO2/Co

sample at room temperature. Arrows indicate the sense of sweeping. A

non-crossing behaviour is observed in both cases. Left inset: scheme of the

transverse configuration and the modelled element. Right inset: scheme of

the series measurement configuration and two model elements in series.

FIG. 4. Comparison of the resistance at þ15 V (V/I atþ 15 V) for different

series measurements using the TE0–TEn configurations for the top electro-

des. The measurement TE0 stands for the transverse measurement using

contacts at TE0 and BE. The inset depicts a scheme of the concentrated

parameter model for the series configuration.
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HfO2.14 In our case, the combination of rectifying and reten-

tive features emerges due to the presence of two main

factors. First, the occurrence of a high electric field at the

metal-oxide junctions that drives back and forth the vacan-

cies10 and determines the memristive features of the device,

with an ON/OFF ratio of 3–4 orders of magnitude. Central to

this aspect is the high resistivity of the “bulk” HfO2 material.

The concentrated parameter equivalent circuit presented and

discussed above allowed to disentangle interface from bulk

contributions to the total resistivity of the device. Second,

the unique rectifying capabilities demonstrated by the

Ti/HfO2 and Co/HfO2 junctions, which can be modelled as

rectifying switchable junctions.10

In conclusion, we fabricated and characterized the elec-

trical response of Ti/HfO2/Co multifunctional rectifying

memory devices. They exhibit highly repetitive hysteretic

I-V curves, with sharp SET and smooth RESET transitions,

with non crossing type response. A simple model based on

switchable diodes and resistances was used to account for

this behaviour, obtaining evidence for non-crossing remnant

I-V response and non-trivial HfO2 bulk electronic transport.

The rectifying character with remnant features of these

devices may allow integrating them in a combined way as

multifunctional devices. The use of HfO2 as the insulator

envisages their integration with CMOS standard silicon

based planar technology.
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