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ABSTRACT In this work we studied the actual coverage, distribution patterns and ecologic effects of the introduced oysterCras-
sostrea gigas20 y after their introduction to the Northern Argentinean Patagonia (Bahía Anegada; 39°50�S to 40°40�S and 61°59 to
62°28 W). Using satellite imagery and field and aerial inspections we found 10 oyster beds that cover less than 0.05% of the bay
intertidal (area covered: 36.45 ha). These beds are restricted to intertidal zones with superficial hard substrata (limestone outcrops).
Most epifaunal organisms (the crabsCyrtograpsus angulatus, Chasmagnathus granulatus,the isopodMelita palmata, and the snail
Heleobia australis) showed higher densities inside oyster beds compared with outside and experiments showed that artificially
deployed oyster beds increased the densities of their at three intertidal zones (high intertidal marsh, low intertidal marsh, and low
intertidal with hard substrata) and also increased densities of infaunal organisms (the polychaetesLaeonereis acuta, Nepthys fluviatilis,
and the priapulidPriapulus tuberculatospinosus) at the low intertidal with hard substrata. This may be the result of increasing habitat
structure and refuge for epifaunal organisms, and enhancement of deposition and sediment stability that may benefit infaunal organ-
isms. Densities bird species (Local species:Larus dominicanus, Haematopus palliatus; Regional migratory shorebird:Charadrius
falklandicus; Long range migratory shorebirds:Pluvialis dominica, Calidris canutus, Tringa flavipes) were higher inside oyster beds
compared with similar zones without oysters, which may be the result of higher prey availability. Foraging rate was also higher for
some of these species (P. dominica, C. falklandicus). However, due to the limited availability of hard substratum the aerial distribution
of oysters is small. In conclusion, no negative effects were observed as a result of this introduction. There was an increase in species
abundance and the area was preferred by local and migratory bird species, which also showed higher feeding rates.
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INTRODUCTION

The effect of invasive nonindigenous species on native com-
munities had become a major problem in conservation biology
(Lodge 1993, Mack et al. 2000, Bax et al. 2001, Byers et al. 2002)
mainly because their negative effects on native species, commu-
nities and ecosystems (e.g., Vitousek & Walker 1989, Settle &
Wilson 1990, Vitousek 1990, Spencer et al. 1991, Carlton 1992,
Petren & Case 1996, Juliano 1998, Mack et al. 2000, Byers 1999,
Byers 2000, Byers et al. 2002). Marine ecosystems are especially
vulnerable to invasive species (Carlton 1996) showing some dra-
matic effects on biologic diversity and productivity (Bax et al.
2001). However, little attention has been paid to the role of physi-
cal ecosystem engineer species (sensuJones et al. 1994) as habitat
modifiers when introduced to new habitats. The change of the
physical structure of the ecosystem is not currently accounted for
in the evaluation of invader’s impact (Crooks 2002), but a large
effect in the native community is expected when the invader
change habitat complexity or heterogeneity (Posey 1988, Crooks
& Khim 1999, Crooks 2002, Bruno et al. 2003).
Physical ecosystem engineer species (sensuJones et al. 1994)

that create biogenic structure are known to affect community struc-
ture (Jones et al. 1997). This effect is because biogenic structure
can affect competitive interactions (Fletcher & Underwood 1987),
modify the relative importance of predation (Gilinsky 1984, Orth
et al. 1984, Dean & Connell 1987, Schwindt et al. 2001, Hamilton

& Nudds 2003) and, ameliorate physical stress (Nixon et al. 1971)
and disturbance (Whorff et al. 1995), generally leading to an in-
crease in the density and diversity of associated organisms (Gilin-
sky 1984, Downes et al. 1998, Zühlke 2001, Bolam & Fernandes
2003, but see Kelaher 2003). Oysters are a good example of sub-
strate and structure creators (see Jones et al. 1997, Gutiérrez et al.
2003), serving as refuge for numerous mobile and sessile species
and having a large effect on community structure (Ulanowicz &
Tuttle 1992, Kennedy 1996, Dumbauld et al. 2000, Meyer &
Townsend 2000, Lenihan et al. 2001) but oysters are also a good
example of invasive species in marine and estuarine environments
(Carlton 1992, Reise 1998), usually introduced for aquaculture
purposes (Carlton 1992, Shatkin et al. 1997, Wasson et al. 2001,
Miller et al. 2002). Although ecologic impacts of mollusk farming
are known to be small compared with other forms of aquaculture
(Naylor et al. 2000), there are several examples of native commu-
nity modification as a result ofCrassostrea spp.introduction by
direct competition with native species (Shatkin et al. 1997, Reise
1998), by spreading other invasive species (Carlton 1992, de Mon-
taudouin et al. 1999, Byers 1999, 2000, Wolff and Reise 2002),
diseases (e.g., Grizel & Héral 1991, Mann et al. 1991, Shatkin et
al. 1997, Wolff & Reise, 2002), and by decreasing benthic oxygen
levels (Castel et al. 1989).
The Pacific OysterCrassostra gigas, a species endemic from

Japan, is today the most successful oyster in commercial cultiva-
tion of hatchery-produced seed and is the basis of the largest oyster
fisheries in the world (Mann et al. 1991, Reise 1998).C. gigashas
been extensively introduced outside its native range for culture
purposes, and established in the field (Mann et al. 1991, Carlton*Corresponding author. E-mail: cescapa@mdp.edu.ar
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1992, Shatkin et al. 1997). In South America,C. gigaswas intro-
duced on the Pacific Ocean in Chile and Peru (Winter et al. 1984),
and in the Atlantic in Brazil and Argentina (Pascual & Orensanz
1996, Orensanz et al. 2002). In Argentina, this species was
illegally introduced during 1982 in Bahía Anegada (39°50�S to
40°40�S and 62°10�W; see Figure 1; Orensanz et al. 2002,
Penchaszadeh et al. 2003). A small stock of commercial size of
C. gigas(ca 500 individuals) imported from Coquimbo (Chile),
with gastronomic purposes, were introduced to the southern part
of Bahía Anegada with the purpose of implementing an aqua-
culture production (Orensanz et al. 2002). After a year of experi-
mentation, the remainder small stock was abandoned but they
established in the field (Orensanz et al. 2002, Penchaszadeh et al.
2003).
Although there are several conflicts rising from the invasion of

Crassostrea gigason northern Patagonia, one important concern is
related to conservation of shorebird habitats. The SW Atlantic
intertidals are main stopover sites of migratory shorebirds that
breed in the northern hemisphere and spend their winter in the
southern hemisphere (see Botto et al. 1998). However, the dis-
tribution patterns and coverage extension ofC. gigas on the
intertidal and its effects on the benthic community and shore-
birds remain unknown. In this context, the main purpose of this
research is to evaluate the number, distribution, and extension of
C. gigasbeds today and to evaluate, by sampling and by field
experiments, its effects on the benthic community and shorebird
habitat use.

MATERIALS AND METHODS

The study was performed in Bahía Anegada (Fig. 1; see Spalleti
& Isla 2003 for full description) from December 2001 to Novem-
ber 2003. This is a large embayment (2371 km2) affected by a low
amplitude (�1.5 m) semidiurnal tidal regimen.
Given that oysters showed a wide distribution, an analysis of

satellite imagery were performed to identify oyster beds and evalu-
ate their spatial distribution. The satellite imagery used was re-
corded by Enhanced Thematic Mapper plus sensor on board Land-
sat 7. It records radiation with a nominal spatial resolution of
approximately 30 m for bands 1–7, and 15 m for band 8 (panchro-
matic). Because the tide level is an important factor in saltmarshes
and higher levels can mask some habitats, in this study only the
image with the lower tide level of a pool of satellite images was
selected. The image selected was from 15 January 2002 and was
provided by the Argentinean National Commission of Space Ac-
tivities (CONAE).
To remove the geometric distortions in Landsat imagery, image

was geocoded to a UTM Gauss Kruger coordinate system using a
first order transformation and nearest neighbor resampling. The
root-mean squared error achieved after resampling was lower than
1.5 pixels in all bands. We used map points to geometric correc-
tions. Points were acquired from topographic maps of the Argen-
tinean Army Geographic Institute (IGM; scale 1:50,000).
The south portion of Bahía Anegada was exhaustively searched

by walking and the location of oyster beds and different types of

Figure 1. Location and dimension of oyster beds in Bahía Anegada (Argentina). Large oyster beds are shown in black, and smaller ones are
indicated by arrows. BB, Bahía Blanca and GSM, Golfo San Matías. Low grey represent intertidal habitat.
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environments along the intertidal were registered (position ob-
tained by GPS). A spectral signature analysis of the different kinds
of intertidal habitats (tidal flats, saltmarshes dominated bySpar-
tina alternifloraLoisel and saltmarshes dominated bySarcocornia
perennis(Miller) (formerly Salicornia ambigua) were compared
with the spectral signature of a known oyster bed. Bahía Anegada
intertidal has a mixture of limestone outcrops, sand, silt, and roll-
ing stone bottoms. This variation in substrata, and the variation in
water content as a result of field irregularities, generated a bias
spectral response that did not allow us to perform a correct clas-
sification using common supervised and unsupervised classifica-
tion methods because of greatly overestimated oyster bed cover.
Given this problem, we used a visual analysis of the image, uti-
lizing the Landsat ETM+Panchromatic band (spectral range
520–00 nm), that have a 15 m spatial resolution and allow a good
identification of the known oyster beds.
In the Landsat ETM+Panchromatic band, known oyster beds

have a particular dendritic pattern that make them conspicuous in
the intertidal. This characteristic pattern was used to search for
similar structures to make a preliminary oyster beds map. Then, an
exhaustive aerial inspection (flying between 60 and 100 m altitude
and between 100 and 150 km per hour) of Bahía Anegada coast
and islands was done during low tide to verify the presence of
oyster beds. No new oyster beds were found but some structures
previously identified as oyster beds were discarded. Discrimina-
tion of land, intertidal and water was done using the Idrisi32 Maxi-
mum Likelihood Software module. The final map (Fig. 1) was
done by adding the identified oyster beds to the thematic map.
To study the distribution patterns in relation to intertidal level,

transects (100 m) perpendicular to the shoreline were performed
(spaced by at least 50 m). In each transect, the number of oysters
in 1 m2 were counted every 0.4 m of intertidal height. The null
hypothesis of no differences in oyster densities between tidal lev-
els was analyzed with 1-way ANOVA (Zar 1999). To evaluate the
type of substrate used by oysters, the depth at which the hard
substratum (i.e., limestone outcrops) was located was measured by
pushing a 1.5 m iron stick and noting the buried length of the stick
when it touch the hard substratum, and the number of oysters (m−2)
were counted. The null hypothesis of no relation between hard
substratum depth and oyster densities was analyzed with correla-
tion analysis (Zar 1999).
To evaluate whether there is a relation between oyster beds and

densities of epifaunal organisms, samples of 0.25 × 0.25 m were
assigned inside and outside oyster beds. In each sample, epifaunal
organisms were counted and identified to the lowest taxonomic
level possible. For each taxa, the null hypothesis of no differences
in densities of organisms were analyzed witht-test (or Mann-
Whitney when necessary, Zar 1999). To evaluate if there was any
relation between oyster densities and the densities of the predomi-
nant native grapsid crabCyrtograpsus angulatusDana, a species
that is known to be strongly and positively affected by biogenic
structure (see Schwindt & Iribarne 2000, Schwindt et al. 2001,
Mendez Casariego et al. 2004), a different sample design was used.
The number of oysters and crabs were counted in 83 sampling
units of 1m2, randomly chosen along the intertidal. The null hy-
pothesis of no relation between densities of oysters and crabs were
evaluated with correlation analysis. Similarly, to evaluate the re-
lation between oyster beds and densities of the snailHeleobia
australis, the intertidal substrate was divided into 3 zones (High�
1.3 m above the lower tidal level (ALTL), medium� 0.7 m ALTL
and low� 0.2 m ALTL). In each zone, the number of snails in 25

samples of 0.2 × 0.2 m was counted in pools inside and outside
oyster beds. For each intertidal level, the null hypothesis of no
differences in snail densities between sites was evaluated with
t-test (Zar 1999).
To experimentally evaluate the effect ofCrassostrea gigason

natural community on the high marsh, the low marsh and the low
intertidal with hard substrata, 60 square plots (1 m2), 20 in each
zone, were randomly chosen on January 2002. Each plot was as-
signed to one of the following treatments; (1) artificial oyster bed
or (2) control. Artificial oyster bed treatments were done by trans-
planting oysters from natural oyster beds to the plots. These oys-
ters were washed with seawater to eliminate epifauna before trans-
planting. After 11 mo, epifaunal organisms were counted and clas-
sified on a 0.25 × 0.25 m square from the center of the plot. In each
plot, a core sample (35-cm depth, 15-cm diameter) was also taken.
Infaunal organisms were separated by sieving the samples through
a 0.5-mm screen. Organisms were counted and classified to the
lowest taxonomic level possible. The null hypotheses of no dif-
ferences in densities of organisms of each species between treat-
ments (with and without oysters) for each intertidal zone were
analyzed witht-test or nonparametric Mann-Whitney test (Zar
1999).
One of the main concerns in the region came from the potential

effect of oyster beds on habitat use by birds, mainly neotropical
migratory shorebirds. To evaluate differential use of areas by
shorebirds, 3 sites were selected at the SW part of the bay (Isla
Jabali, Fig. 1 lower right) each one had oyster reefs and nearby
areas without oysters. Each bed had a mean density of 47.4 oysters
m2 (SD� 12.3) and a mean surface area of 1 ha (Borges 2002,
Penchaszadeth et al. 2003). Areas were selected keeping similar
characteristics such as tidal level, slope and compass orientation
(NW-SE) and known to be used by shorebirds. In each area, a
telescope (18 × 36) was used to perform censuses from December
2001 to April 2002 (this period represent the entire migratory
season). In each census, individuals were identified and the per-
centage of them feeding in each area was calculated. Abundance of
each shorebird species was compared between sites and months
with repeated measures ANOVA (Neter et al. 1990). To evaluate
whether there is a relationship between the oyster beds and the
shorebird foraging rate and efficiency, focal observations (using a
18 × 36 telescope) were performed. Each bird was observed for a
period between 5 and 10 min. Before the observations, and based
on a previous sampling, a list of all acts to be recorded was defined
(walk, pause, peck, and capture of item) and maintained during the
study to ensure standardized observations. The number of probes
per minute and the proportion of probes resulting in successful
prey capture were calculated. Differences in rate of consumption
and foraging efficiency between areas were evaluated indepen-
dently for each bird species witht-test (Zar 1999).

RESULTS

A total of 10 oyster beds were detected, 3 of small size (size
range 0.09–0.36 ha), 6 of medium size (size range 1.62–5.67 ha)
and 1 large bed (size 16.38 ha), all of them located in the southern
part of the bay (Fig. 1). Oyster beds cover a total of 36.45 ha,
which is less than 0.05% of the Bahía Anegada intertidal (total
intertidal area� 89,689 ha). Both aerial and walk inspection
reveals that besides the areas colonized by oysters there were no
free superficial hard substrata along the intertidal.

CRASSOSTREAGIGAS INTRODUCTION IN PATAGONIA 3
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Spat were found attached to limestone outcrops, empty shells,
shells of a native small musselBrachidontes rodriguezi
(d’Orbigny) and the basal portion ofSpartina alterniflora.
Oyster densities were higher in the middle and middle to low
intertidal compared with other intertidal zones (ANOVA,
F19,177� 56.404,P < 0.001, Fig. 2). Moreover, there were no
oysters in the low intertidal or in the subtidal. There was a nega-
tive correlation between hard substratum (i.e., limestone) depth
and oyster densities (r2 � 0.597,n � 100,P < 0.001) and there
were no oysters in zones with hard substratum depths higher than
10 cm.
Inside the oyster matrix, the number of juveniles of the crab

speciesChasmagnathus granulatusDana andC. angulatus, and
the number of the polychaeteLaeonereis acuta(Treadwell) and
the isopodMelita palmata(Montagu) were higher inside oyster
beds but the number of the hermit crabPagurus criniticornis
(Dana), the snailHeleobia australis(d’ Orbigny), and unidentified
anemones were higher outside oyster beds (Table 1). There were
no differences in number of the small musselsBrachidontes
rodriguezi (d’ Orbigny) (Table 1).
There was a positive correlation between oyster density and the

density of the crabCyrtograpsus angulatus(r2 � 0.27, df� 43,
P < 0.001). Similarly, densities of the snailHeleobia australis
were higher in pools inside oyster beds along the 3 intertidal
heights compared with pools outside oyster beds (high: t� 9.79,
df � 48, P < 0.001; medium: t� 3.402, df� 48, P < 0.005;
low: t � 2.49, df� 48,P < 0.05; Fig. 3).
In the high marsh, the number of the small mussels (square root

transformed data; t� 8.63, df� 18,P < 0.001), anemones (log

transformed data; t� 2.38, df� 18, P < 0.05) and the crab
Cyrtograpsus angulatus(log transformed data; t� 7.32, df� 18,
P < 0.01) were higher in artificial oyster beds plots compared with
control plots. The amphipodsCorophium sp.and crabs of the
speciesChasmagnathus granulatuswere only present in the arti-
ficial oyster bed plots. In contrast, the number of snails (Heleobia
australis) was higher in the control plots (Z� 2.86, N1 � N2 �

10,P < 0.005). In the low marsh, there were no differences in the
number of mussels between treatments (t� 0.45, df � 18,
P > 0.5). Anemones, amphipods, polychaetes and, the crabs
C. angulatus, C. altimanusRathbun andC. granulatus, were
present only in the artificial oyster bed plots.H. australiswas
present only in control plots. In the low intertidal, mussels and the
crabC. angulatuswere present only in artificial oyster bed plots.
Inside the sediment, there were no differences in the number of
mussels (Z� 1.51,P> 0.1), polychaetes of the speciesLaeonereis
acuta(Z � 1.57,P > 0.1) andNepthys fluviatilisMonro (Z� 0.1,
P > 0.5), and the priapulidPriapulus tuberculatospinosusBaird
(Z � 0.1, P > 0.5) between plots in the high marsh. In the low
marsh, the number of polychaetes (L. acuta) were higher in control
plots compared with artificial oyster bed plots (Z� 1.256, N1 �
N2 � 10,P < 0.05) but there were no differences in the number of
mussels between plots (X1� 22.8, SD� 8.13, X2� 22.4, SD�
11.8; t� 0.09, df� 18,P > 0.9).
The birds present during the study period were the Two Banded

PloverCharadrius falklandicus(Latham), the American Golden
PloverPluvialis dominica(Müller), the Red KnotCalidris canutus
(Linnaeus), the Lesser YellowlegsTringa flavipes(Gmelin), the
American OystercatcherHaematopus palliatusTemminck, and the
Kelp Gull Larus dominicanus(Lichtenstein). For all these species
(Fig. 4), densities inside oyster beds were higher than in the ad-
jacent areas without oysters (American Oystercatcher: t� 2.955,
df � 60,P < 0.005, the Two Banded Plover: t� 5.772, df� 60,
P < 0.001, the American Golden Plover: log transformed data,
t � 12.667, df� 60, P < 0.001) and the Kelp Gull: log trans-
formed data, t� 4.158, df� 60, P < 0.001). The Red-knot
(X � 0.024 ind*m2, SD � 0.0199) and the Lesser Yellowlegs
(X � 0.0023, SD� 0.0049) were only present inside oyster
beds. Foraging rate (Fig. 5) was higher inside oyster beds for the
American Golden Plover (t� 2.172, df� 31,P < 0.05) and for
the Two Banded Plover (t� 2.294, df� 15, P < 0.05) but
there was no difference for the Oystercatcher (Mann-Whitney
U-test, Zadj � 0.759, N1 � 10, N2 � 6, P > 0.1) nor for the
Red-Knot (Zadj � 0.039, N1 � 17, N2 � 5, P > 0.5). There
were no differences in foraging efficiency between sites (Ameri-
can Golden Plover: t� 0.714, df� 31, P > 0.1; Two Banded
Plover: t � 0.864, df� 15, P > 0.1; Red Knot: t� 0.857,

TABLE 1.

Densities of species of epifauna inside and outside oyster beds. Density was expressed as individuals per sample unit (0.0625 m2).

Inside Oyster Beds Outside Oyster Beds d.f. T or Z Value P Observations

Chasmagnathus granulatus 18.67 (7.75) 4.07 (5.35) 28 6.003 <0.001 t-test
Cyrtograpsus angulatus 3.2 (2.14) 0.4 (0.74) 28 5.065 <0.001 t-test, log
Priapulus tuberculatospinosus 0.26 (0.39) 1.24 (0.47) 28 6.26 <0.001 t-test, log
Brachidontes rodriguezi 0.2 (0.77) 1.13 (2.7) 28 1.44 >0.1 M-W
Heleobia australis 3.4 (8.75) 13.07 (10.74) 28 3.038 <0.005 M-W
Laeonereis acuta 1.73 (1.33) 0.67 (0.9) 28 2.19 <0.05 M-W
Melita palmata 1.07 (1.94) 0.13 (0.35) 28 0.79 >0.1 M-W
Unidentified Cnidaria 0.47 (0.52) 3.07 (2.66) 28 2.51 <0.05 M-W

Figure 2. Oyster densities across the intertidal. Squares represent
means and bars standard deviation.
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df � 20,P > 0.1; American Oystercatcher: t� 0.402, df� 14,
P > 0.5).

DISCUSSION

After more than 20 y of introduction, the Pacific oysterCras-
sostrea gigashas established in Bahía Anegada but covers a very
small percentage (�0.05%) of their intertidal area. This contrasts
with previous introductions ofC. gigasaround the world (and in
wide array of environmental conditions), whereC. gigaspopula-
tions expanded in relatively short time (see Shatkin et al. 1997,
Sumner 1980, Reise 1998). However, our evidences shows that in
this area the distribution is limited by the lack of hard substratum,
which is the result of a large sediment discharge from the Colorado
River (see Spalleti & Isla 2003 for details). Although this river
does not discharge now into the bay, the muddy sediments are still
the dominant feature of this area.
We found oysters only in the intertidal zone with higher den-

sities at the middle intertidal. This result contrasts from the pattern
found in other sites, where densities of this species are higher in
the low intertidal (Reise 1998). This pattern can result from the
distribution of hard substrata (limestone outcrops). Oysters were
present only in zones with superficial hard substrata; soft bottoms
cannot support oysters on the surface (Reise 1998). The local
oysterOstreola spreta(d’ Orbigny) (formerly known asOstrea
spreta) also settle on any hard surface (de Castellanos & Cabrera
1957, de Castellanos 1968), and is the dominant settling species in
artificial collection of seed oysters deployed in this area (Borges et
al. 2002). However, survival at the intertidal is low probably due
low tolerance to higher temperatures (Stenzel 1971), even when

clusters ofC. gigasoffer a good settlement site (Penchazadeth
et al. 2003). We have no information on the interaction between
the two oysters, but the distribution pattern may in part be the
results of competition. Thus, any effects ofC. gigason the local
community are restricted to zones with superficial hard substrata
(mainly limestone outcrop) in the middle intertidal.
Densities of the crabsCyrtograpsus angulatusandChasmag-

nathus granulatus, and of the amphipodCorophium sp. and the
isopodMelita palmatawere higher inside oyster beds and, as
expected, experiments indicated densities of epifaunal organisms
were higher in oyster beds than outside of the beds. The impor-
tance of availability of shelter and structure complexity on inter
and subtidal community structure has long been recognized (e.g.,
Barshaw & Lavalli 1988, Fernández et al. 1993a, Fernández et al.
1993b, Gee & Warwick 1994, Moksnes et al. 1998, Lohrer et al.
2000, Robinson & Tully 2000, Jensen et al. 2002). Oyster shells
are an important shelter creator with dramatic effects on crab den-
sities (see Wainwright et al. 1992, Dumbauld et al. 1993, Iribarne
et al. 1995). The relationship betweenC. angulatusand habitat
structure created by an introduced species has also been found in
other SW Atlantic estuary (i.e., Mar Chiquita coastal lagoon) in-
vaded by the reef building polychaeteFicopomatus enigmaticus
Faubel (Schwindt & Iribarne 1999, Schwindt et al. 2001). In this
case, oyster shells can increase crabs density not only by enhanc-
ing recruitment (see Fernández et al. 1993b) but also by decreasing
adult predation risk (Mendez Casariego et al. 2004). In contrast,
densities of the snailHeleobia australisand the hermit crabPagu-
rus criniticorniswere lower inside oyster bed matrix. This can be
because, for these two species, availability of shelter may not be a

Figure 3. Number of individuals of epifaunal species in control plots (1 m2)(empty boxes) and artificial oyster bed plots (dashed boxes) at three
zones of the intertidal. Here and thereafter squares and triangles inside boxes represents medians, limits of boxes are 25th and 75th percentiles,
lines represents 1st and 99th percentiles.
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limiting factor (both species carried their own refuge) and they
may be negatively affected by 3-dimension structure (see Kelaher
2003). Alternatively, predation risk may increases inside the oyster
matrix because the higher abundance of predators such as crabs.
Indeed,H. australisshells are usually found inC. angulatusstom-
ach contents (P. Martinetto, pers. com.).
The increase of epifauna inside oyster bed plots may be the

result of immigration, different mortality and recruitment (Crooks

& Khim 1999). Individuals ofC. granulatusthat occur in oyster
bed plots were only adults suggesting colonization but not recruit-
ment, in contrast, there were recruit and small juveniles of
C. angulatusand all these stages plus adults ofC. altimanussug-
gesting recruitment and colonization.
Densities and foraging rates of shorebirds were higher inside

oyster beds and foraging efficiencies, whereas foraging inside or
outside oyster beds, were the same. Wolff & Reise (2002) linked
the decreases of the oystercatcherHaematopus ostralegusLin-
naeus populations in the European Wadden Sea, with the intro-
duction ofC. gigas,and posterior transformation of mussel beds of
Mytilus edulisd’Orbigny into oyster beds. In addition, bird forag-
ing efficiency, while preying on intertidal invertebrates, are nega-
tively affected by substrate heterogeneity (e.g., Common eiders on
Rockweed beds; Hamilton & Nudds 2003; also Marsh 1986). Nev-
ertheless, our results shows that prey abundance (particularly crabs
and snails) were positively affected by the presence of biogenic
structure created by oysters. Thus, as in mussel cultures (Caldow
et al. 2003), higher prey abundance inside oyster beds may be
influencing bird habitat choice by positively affecting their forag-
ing rate.
Studies on the effect of naturalized pacific oyster beds on

benthic communities also showed strong effects by decreasing O2

on sediments as a result of organic matter enrichment (Castel et al.
1989, Nugues et al. 1996), by outcompeting local bivalve species
(Shatkin et al. 1997, Reise 1998) and, by creating physical struc-
ture on otherwise flat zones (Castel et al. 1989). At Bahía Anegada
the vascular plantSpartina alternifloraand the clumps of the small
musselBrachydontes rodriguezioffer settlement sites for this oys-
ter (Borges 2001, Penchaszadeth et al. 2003). Interestingly, oysters
and mussels can generate layers of settlement, forming clusters
that sometimes can be used as settlement sites byOstreola spreta
(Borges 2001, Penchaszadeth et al. 2003). These changes in the
physical structure of the ecosystem itself, was postulated as one
form in which invaders can have strong ecosystem-level effects
(Bertness 1984, Chapin et al. 1997, Crooks & Khim 1999, Crooks
2002) and is supported by some examples (e.g., Posey 1988; see
also Crooks 2002 for a review). In contrast, other studies show an
increase on macrofaunal abundance as a result of refuge creation
(De Grave et al. 1998).
In summary, based in our observations on the distribution and

coverage of the reefs ofC. gigasand the expansion rates reported
for other areas worldwide, the success of this oyster is low. How-
ever, in terms of the potential expansion, our result may be mis-
leading, given that the distribution is controlled by the availability
of substratum.
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Figure 5. Foraging rate of different bird species compared between
inside (empty boxes) and outside (dashed boxes) oyster shell habitats.

Figure 4. Average counts of number of individuals of different bird
species using inside and outside oyster bed habitats. Circles represent
outliers and asterisks are extremes.
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