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Cacti are important elements of the flora in many ecosystems of the Americas. However, the factors that deter-
mine their richness and composition are not well known, particularly at the regional scale. The aim of this
work was to study the patterns of cactus richness (both species and growth forms) and composition in the Sierras
del Norte mountain range (Cérdoba Province, Argentina). Species presence was recorded at 55 sites covering an
altitudinal gradient from 203 to 970 m. Twenty four species from eight genera were recorded in the area. Total
species richness and growth form richness decreased with increasing altitude. The richness of columnar and
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short columnar species decreased with increasing altitude, whereas richness of globose species increased.
Keywords: Opuntioid richness did not respond to altitude. Species composition was strongly related to altitude.
Alpha and Beta Diversity Gymnocalycium bruchii and Parodia erinacea occurred at sites located at higher altitudes, whereas at sites at
Cactaceae lower altitudes, Gymnocalycium schickendantzii, Stetsonia coryne and Cleistocactus baumannii, among other spe-

Growth forms cies, were present. Our results highlight the importance of altitude in shaping the distribution of species and

Species composition
Environmental gradients

growth forms in the Sierras del Norte Mountains.

© 2014 SAAB. Published by Elsevier B.V. All rights reserved.

1. Introduction

In mountain environments, altitudinal gradients are the main factor
influencing vegetation patterns (Kérner, 2007). As altitude increases,
temperature decreases and irradiance increases, but the effect of alti-
tude on precipitation varies among mountain ranges (Kérner, 2007).
Some studies report a decrease of species with increasing altitude
(Huston, 1994; Rahbeck, 1995; Nogué et al., 2012), whereas other
works indicate that the highest richness is found at intermediate alti-
tudes (Grytnes, 2003; Becker et al., 2007). Regarding growth forms,
there is a general decreasing pattern of trees and increasing patterns
of shrubs and herbs as altitude increases (Pavon et al., 2000). Few
studies investigated cactus species richness patterns along altitudinal
gradients. Mourelle and Ezcurra (1996, 1997) studied richness and 3 di-
versity patterns of cacti but at a very broad geographical scale (e.g. all
throughout Argentina). They found that columnar species richness
was higher with increasing temperature. Other growth forms, such as
globose and opuntioid species, did not respond to variables that could
be associated with altitude (e.g., mean annual temperature). Guerrero
et al. (2011) found a decrease of endemic cactus richness in a sharp
altitudinal gradient in Chile (from 0 to 4000 m). Pavén et al. (2000)
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analyzed the abundance of growth forms along an altitudinal gradi-
ent in central México and found that the abundance of columnar
and globose cacti decreases with increasing altitude. None of these
studies analyzed changes in species composition along altitudinal
gradients.

The mountains of north western Argentina and Bolivia are one of the
three main areas of highest cactus diversity in the Americas, together
with Mexico and north eastern Brazil (G6mez-Hinostrosa and
Herndndez, 2000; Hernandez et al., 2001; Ortega-Baes and Godinez-
Alvarez, 2006). Cérdoba Mountains (Fig. 1) can be considered the
southernmost portion of the mountains of north western Argentina
and Bolivia; the area bears about 31 species of cacti, being the fifth larg-
est vascular plant family by the number of species (Giorgis et al.,, 2011).
With respect to endemisms, from a total of 28 endemic species of
Cérdoba Mountains, 10 (35%) are cacti (Giorgis et al., 2011). Sierras
del Norte, the northernmost range of Cérdoba mountains, bears a high
richness of cacti species and growth forms; this characteristic, together
with an important altitudinal gradient, makes this mountain area and
ideal site to study patterns of species distribution. The aims of this
work were: 1) to determine the species inhabiting the Sierras del
Norte Mountains; 2) to analyze the effect of altitude on species and
growth form richness (number of growth forms and number of species
of each growth form); and 3) to analyze the effect of altitude on species
composition.
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Nomenclature

Hunt (2006)

2. Materials and methods
2.1. Study area

The study area was the Sierras del Norte Mountains, which is the
northernmost range of Cérdoba Mountains (Fig. 1). The vegetation
corresponds to the Mountain Chaco district of the Chaco biogeographic
region (Cabrera, 1976). The vegetation along an increasing altitudinal
gradient varies from woodlands to shrublands and grasslands (Luti
et al., 1979; Giorgis et al., 2011). Due to human disturbances such as
fire and grazing, vegetation has been altered, and original woodlands
have been replaced by grasslands and shrublands (Zak and Cabido,
2002). At the local scale, vegetation depends strongly on substrate, par-
ticularly soil depth and the presence of rocky outcrops (Funes and
Cabido, 1995), which is the main habitat of cactus species (Gurvich
et al., 2006).

The main environmental gradient in the area is the altitudinal one,
ranging from 200 to 1000 m asl. This gradient affects not only tempera-
ture, but also precipitation. Mean annual temperature and precipitation
vary from 19.3 to 16.2 °C and from 450 to 700 mm, respectively. Frosts
are common during winter, particularly at higher elevations (de Fina,
1992).

2.2. Sampling design and data collection

We sampled 55 sites covering the entire altitudinal gradient of the
Sierras del Norte Mountains. The sites were also evenly distributed
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’

Fig. 1. Location of the Sierras del Norte Mountains in Cérdoba province (Argentina).
Sample sites were evenly distributed across the region.

along the whole Mountain Range. Site selection at the different altitudes
was determined visually in the field by the presence of rocky outcrops in
the landscape, where cacti inhabit (Gurvich et al., 2006, 2008; Dutra
Saravia and Souza, 2012). At each site we followed the method of
Hernadndez et al. (2008), with minor modifications. Instead of installing
a transect, we walked across each site for 40-50 min, which represents
an area big enough (about 3 ha) to find all cactus species. For each site,
we recorded all species present, altitude and location with a GPS. Spe-
cies were classified according to their growth forms into globose,
opuntioid, short columnar and arborescent. Unlike in previous classifi-
cations (Mourelle and Ezcurra, 1996), we separated columnar species
into short columnars (species that reach up to 2 m in height) and arbo-
rescent (7-8 m in height). Among arborescent species we included an
opuntioid, Opuntia quimilo, which can be 6-7 m tall, and presents tree
morphology (main stem and developed crown). Species nomenclature
follows Hunt (2006).

2.3. Data analyses

To analyze the effect of altitude on species richness, growth form
richness (number of growth forms present at each site) and richness
within growth forms (number of species of each growth form at each
site), we performed generalized linear models (GLMs). In all cases
GLMs were fitted with a Poisson error structure and log link.

The effect of altitude on species composition was assessed in two
different ways. Firstly, we performed a Non-metric Multidimensional
Scaling (NMDS), using species presence/absence per site matrix and
the Jaccard dissimilarity index. NMDS ordination was done using the
statistical software package “vegan” version 2.0-6 (Oksanen et al.,
2013). NMDS axis were correlated to altitude. The significance of the
correlation was assessed using permutation tests (n = 999). This was
done to analyze the general patterns of species composition in the 55
sites and the relationship between altitude and species composition.
Secondly, we calculated 3 Diversity index (f3; Wilson and Shmida,
1984) to analyze the species replacement along the altitudinal gradient
with the particular aim to explore whether or not species replacement
was gradual along the gradient. To simplify presentation and interpreta-
tion of results, instead of comparing all combinations of the 55 sites we
summarized them into eight altitudinal belts, and then calculated the
index among all pair combinations. We established eight 100 m
elevation belts (from 200 to 1000 m). With this simplified matrix we
calculated the B diversity index proposed by Wilson and Shmida
(1984) between all pairs of altitudinal belts. Wilson and Shmida
(1984) B diversity index is calculated with the formula = (b + ¢) / 2a,
where a = means number of species across all altitudinal belts; b =
number of species that occur in the neighboring belt but not in the
focal one; and ¢ = number of species that occur in the focal belt but
not in the neighboring one. This index was developed for presence-
absence data; it is based on species gains and losses across gradients
(Wilson and Shmida, 1984) and can vary between 1 and 0, with values
close to 0 meaning that both sites have similar species composition. We
then correlated (3 Diversity index with the “distance” among each com-
bination of belts. For neighboring belts we assigned a value of 1, for belts
separated by another belt, a value of 2 and so on.

We also measured Whitakker's > Diversity index (Whittaker, 1960),
which is calculated as, T (Gamma)/a (Alfa), with T being the total
number of species per altitudinal belt and o the mean number of species
per site. This index provides an intra-belt measure of (> Diversity.

All statistical analyses were performed with R 2.15.1 (R Development
Core Team, 2012).

3. Results
A total of 24 cactus species belonging to eight genera were found at

the 55 sites (Table 1), which were located from 203 to 970 m. Eleven
species were globose, five were short columnar, three were arborescent
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Table 1

List of species, subfamily, growth form, relative frequency and altitudinal range, recorded in Sierras del Norte Mountains, Cérdoba province (Argentina).

Species Growth form Relative Altitudinal range (m a.s.l.)
Frequency (%) Min-Max

Subfamily Cactoideae

Cereus aethiops Haworth Short columnar 36 207 926
Cereus hankeanus K. Schumann Arborescent 14.5 203 652
Cleistocactus baumannii (Lemaire) Lemaire Short columnar 14.5 203 565
Echinopsis aurea Britton & Rose Globose 38.2 203 926
Echinopsis candicans (Salm-Dyck) Hunt Short columnar 40 296 968
Echinopsis leucantha (Salm-Dyck) Walpers Short columnar 54 207 754
Echinopsis spiniflora (K. Schumann) Berger Globose 21.8 203 968
Gymnocalycium bruchii (Spegazzini) Hosseus” Globose 73 886 935
Gymnocalycium erinaceum Lambert” Globose 56.4 203 970
Gymnocalycium monvillei (Lemaire) Britton & Rose™ Globose 12.7 849 970
Gymnocalycium mostii (Glirke) Britton & Rose”™ Globose 32.7 346 941
Gymnocalycium quehlianum (F. Haage ex Quehl) Vaupel ex Hosseus™ Globose 12.7 430 797
Gymnocalycium robustum R. Kiesling, O. Ferrari & Metzing* Globose 36 430 437
Gymnocalycium schickendantzii (F. A. C. Weber) Britton & Rose™ Globose 10.9 346 639
Harrisia pomanensis (F.A.C.Weber) Britton & Rose Short columnar 273 203 652
Parodia erinacea (Haworth) Taylor Globose 18.2 837 951
Parodia mammulosa (lemaire) Taylor Globose 25.4 754 968
Stetsonia coryne (Salm-Dyck) Britton & Rose Arborescent 29.1 203 652
Subfamily Opuntioideae

Opuntia anacantha Spegazzini Opuntioid 109 203 652
Opuntia elata Salm-Dyck Opuntioid 18.2 430 951
Opuntia ficus-indica (L.) P. Miller Opuntioid 1.8 633 633
Opuntia quimilo K. Schumann Arborescent 18.2 344 652
Opuntia salmiana Parm. Opuntioid 36 590 652
Opuntia sulphurea Gillies ex Salm-Dyck Opuntioid 782 203 970

* Species endemic to Cérdoba Mountains.

and five were opuntioid. The most frequently found species were
Opuntia sulphurea and Gymnocalycium erinaceum (81% and 56% of the
sites, respectively; Table 1). On the other hand, the least abundant spe-
cies was O. ficus-indica, a non-native species that was found in only one
site. Other species with low presence were Gymnocalycium robustum,
Opuntia salmiana and Cereus aethiops, which were found only at two
sites (4%). Six of the species, all from the genus Gymnocalycium
(G. bruchii, G. monvillei, G. erinaceum, G. mostii, G. robustum and
G. quehlianum), are endemic to Cé6rdoba Mountains, and two of them
(G. robustum and G. erinaceum) are endemic to this range.

The altitudinal range varied among species, even within growth
forms (Table 1). With the exception of arborescent species, all the
growth forms presented at least one species along the entire gradient.
Arborescent species were absent at an altitude of about 600 m. Among
globose species, different patterns were found. Some species, such as
G. erinaceum, had a wide altitudinal range, whereas G. bruchii, Parodia
erinaceae and G. monvillei presented narrow ranges. Arborescent forms
were present only at low altitudes, whereas opuntioids and short
columnar species did not present clear patterns.

Species richness varied from 1 to 11 species per site, with a mean of 5
species. Total species richness, arborescent species richness, and short
columnar species richness were negatively related to altitude (Table 2,
Fig. 2), whereas globose species richness were positively related to alti-
tude. Opuntioid species richness was not significantly related to
altitude.

Cacti species distribution along the NMDS axes responded to an alti-
tudinal gradient (Fig. 3), since altitude was negatively related to axis 1
according to the permutation test (1 = 0.72; p < 0.01). The most char-
acteristic species of the higher sites were G. monvillei, G. bruchii and
Parodia erinacea: all of them globose species. On the other hand, the
sites at lower altitudes were characterized by species such as Stetsonia
coryne, Cleistocactus baumannii and G. schickendantzii, which belong to
different growth forms.

3 diversity varied from 0 to 0.97 among the altitudinal belts
(Table 3). In general, 3 diversity was low between contiguous altitudi-
nal belts, as expected, but particularly at 700 m, 3 increased notoriously,
indicating a sharp change in species composition. Accordingly, > diver-
sity was positively correlated (r> = 0.7; p < 0.001) to the distance
among altitudinal belts (Fig. 4). However, values corresponding to the
sites at 700 m were much higher (Fig. 5).

Fig. 5 shows o, T and Whitakker (3 Diversity index. Beta diversity is
relatively higher in the lower altitudinal belts, high at intermediate
(500-599 and 600-699) belts, and intermediate at the two higher alti-
tudinal belts. T diversity is also higher at intermediate altitudinal belts.

4. Discussion

The cactus flora of the Sierras del Norte Mountains comprises 24
species, which represent 77% of all cacti present in the Cérdoba

Table 2
Generalized Lineal Models (GLMs) performed between Altitude and all Richness variables.
S SE z P 2

Species richness —0.0005 0.0002 —1.928 0.0539 0.67
Arborescent species richness —0.0047 0.0008 —5.695 1.24e —08 0.44
Short columnar species richness —0.0019 0.0006 —3.096 0.00196 0.19
Globose species richness 0.0011 0.0004 2.654 0.00795 0.56
Growth form richness —0.0007 0.0003 —2.021 0.04 0.75
Opuntioid species richness —0.0003 0.0005 —0.51 0.6 0.01

{3, coefficient estimate; SE, standard error; Z, z-statistic; P, probability; r?, R-squared.
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Mountains and about 10% of all species present in Argentina. Moreover,
from the 10 cactus species endemic to Cérdoba Mountains, six are pres-
ent in this range, and two are even endemic to it (G. robustum and
G. erinaceum; Pilbeam, 1995). We found that species richness decreased
with altitude. Many studies highlighted the effect of altitude on plant
species richness (Becker et al., 2007) and found basically two main pat-
terns: a decrease of richness with increasing altitude, and a humpback
relationship, with richness reaching a peak at intermediate altitudes
(Grytnes, 2003; Becker et al., 2007). Particularly in cacti, the only
study that analyzed species richness along and altitudinal gradient is
that of Guerrero et al. (2011), who found a decrease of endemic species
richness as altitude increases. Although those authors did not explain
this pattern, it is likely that the extreme aridity in that area, together
with the fact that coastal areas receive humidity from the ocean, in
the form of fog, would explain the higher richness of species at low alti-
tudes and a sharp decrease as altitude increases.

The decrease in growth form richness with altitude is consistent
with results reported by Pavon et al. (2000). In our study this pattern
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Fig. 3. Triplot and fitted surface of Altitude from a Non-metric Multidimensional Scaling
(NMDS) of the 55 sites x 23 cacti species of Sierras del Norte Mountain, Cérdoba. Stress
values were 0.17 of this data set. Species abbreviations correspond to the first three letters
of the genus and species detailed in Table 1. Each circle represents one site (n = 55).

is explained by the decrease of arborescent and short columnar species
with increasing altitude. These results support the assumption that
growth forms respond differentially to climate, particularly to low tem-
peratures (Yeaton and Cody, 1979; Nobel, 1980a; Nobel, 1982; Mourelle
and Ezcurra, 1996; Flores and Yeaton, 2003). The explanation to this
pattern is that shorter growth forms uncouple their temperature from
that of the air (Kérner, 1999). Due to this phenomenon, low tempera-
tures affect columnar species to a greater extent, reducing their growth
and survival (Nobel, 1980b), which in turn limits their distribution into
colder areas. In the case of species that grow close to the soil surface,
such as globose and some opuntioid species, body temperature can be
much higher than the temperature of the surrounding air, avoiding
the effect of low temperatures, and therefore allowing plants to grow
and persist in colder areas (Kérner, 1999). However, more physiological
studies are needed to confirm that this mechanism explains this pattern.
Unlike previous works that reported a decrease of globose species with
altitude (Pavon et al., 2000), we found an increase. Few studies analyzed
distribution patterns of globose species. Mourelle and Ezcurra (1996)
found that globose species richness was positively associated with
mountain environments. Other studies found that even in mountain
areas, those species are particularly associated with rocky outcrops
(Gurvich et al., 2006; Dutra Saravia and Souza, 2012). The fact that we
found an increase of globose species with altitude suggests that some

Table 3

Beta Diversity index among all combinations of the eight altitudinal belts. For this analysis
we summarized the 55 sites in eight altitudinal belts. Light shaded area indicates low
species turnover (3 < 0.33); dark shaded area indicates high species turnover ({3 > 0.66;
sensu Mourelle and Ezcurra, 1997).

300-399  400-499  500-599  600-699  700-799  800-899 900-1000
200-299 0.28 0.49 0.49 0.56 0.70 0.90 0.83
300-399 0.21 0.14 0.28 0.70 0.90 0.90
400-499 0.14 0.28 0.63 0.97 0.97
500-599 0.14 0.63 0.97 0.97
600-699 0.63 0.97 0.97
700-799 035 0.35
800-899 0.00
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globose species are not tolerant to drier and/or warmer environments.
Probably, the reason why they can support low temperatures is not an
advantage in warmer environments. Martorell and Patifio (2006)
found that globose cactus species inhabiting at lower altitudes are pres-
ent in cliff environments, where temperature is cooler than in surround-
ing flat areas. This result supports the hypothesis that globose species
distribution would be constrained by high temperatures, but further
studies are needed to confirm this pattern. We also found that richness
of opuntioid species did not respond to altitude. To our knowledge, no
study analyzed the distribution of this group in relation to altitude
(Illoldi-Rangel et al., 2012). This group is particularly diverse in South
America, occupying a wide variety of environments, from sea level to
more than 4000 m, and from humid to very dry environments
(Anderson, 2001). Opuntioid species are one of the cacti, or even plant
species, that can tolerate the widest range of temperatures. Opuntia
fragilis, a species that inhabits the prairies of the USA and Canada, was
found to tolerate temperature ranges from 55 to — 196 °C under labora-
tory conditions (Ishikawa and Gusta, 1996).

Very few studies analyzed variations of cactus communities in
relation to environmental variables. Dutra Saravia and Souza (2012)
analyzed species composition of cacti from Southern Brazil in relation
to some environmental variables (e.g., rock and soil) and land use. In
our study we found that species composition was strongly related to
altitude. We can broadly separate two main communities: those at
low and at high elevations, from 200 to 700, and from 700 to 1000 m,
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respectively. This limit coincides with the upper limit of arborescent
species. The communities at high elevation are characterized mainly
by globose species, such as G. monvillei, G. bruchii and P. erinacea. On
the other hand, communities at lower elevation are richer in growth
forms, and are characterized by species such as S. coryne, G. robustum
and Harrisia pomanensis. The mean annual temperature of this bound-
ary area is of about 17.5 °C (de Fina, 1992). Our study highlights the
importance of analyzing the species composition together with other
variables, such as richness or diversity, because, as we show, they
responded differentially to altitude. These results agree with the
diversity analyses. We found that p diversity is generally low between
contiguous altitudinal belts, and high between distant ones. However,
there is a particular point along the gradient, at 500 m, where species
turnover is particularly high. This indicates that changes in species com-
position along the gradient are not gradual. These non-linear patterns
seem to be very common in the response of vegetation to environmen-
tal variables (Hemp, 2006; Danz et al., 2012). Whitakker (> Diversity
index was higher at intermediate altitudinal belts and remained rela-
tively high at higher belts. This pattern could be attributed to a higher
environmental heterogeneity as altitude increases. T Diversity (total
number of species per altitudinal belt) was higher at intermediate
belts, which is a result of the contact of the cactus species occurring at
low and high altitudes.

Although it is not possible to separate the effects of temperature
from those of precipitation, it is more likely that the main patterns
found in our study are related to temperature rather than to precipita-
tion, as we already discussed. However, it is possible that that different
species would respond differentially to the combination of these two
factors. For example, the absence of species below their altitudinal
range could be due the lower precipitation there or the combination
of lower precipitation and higher temperatures (higher evapotranspira-
tion). On the other hand, at higher altitudes the absence of species
typical of lower altitudes is likely due to the lower resistance of those
species to low temperatures. However, cacti are particularly susceptible
to rooting, which is more frequent in humid conditions. So, we cannot
discard that the absence of species typical of lower elevations in higher
ones could be explained by this process. Further studies are needed to
understand the possible mechanisms underlying this pattern. Similar
studies in mountains with different trends in precipitation could also
give clues about the effects of these factors on cactus distribution.

Our results highlight the importance of the Sierras del Norte range in
the conservation of the cactus flora of Cérdoba Mountains. Many species
of this family are under conservation risks (Boyle and Anderson, 2002;
Ortega-Baes et al., 2010), and species from Cérdoba Mountains do not
escape this situation. Although populations of all species found in this
work seem healthy, illegal collection is becoming frequent and human
activities (mainly grazing and wildfires) are probably affecting popula-
tions in the area (Gurvich et al., 2006). However, in the entire range
there is only one Natural Reserve of only 3000 ha, Cerro Colorado
Provincial Reserve, located at a low altitude (from 500 to 700 m). It is
clear that this reserve is not effective in protecting the whole cactus
flora, so more private or public reserves would be needed, taking into
account the different altitudinal belts. Another problem that cacti face
is that imposed by climate change. Climatic models of Central
Argentina predict and increase in temperature, but particularly during
winter, and also an increase in precipitation (Nufiez, 2006), which can
greatly affect species distributions (Téllez-Valdés and Avila-Aranda,
2003).
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