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Highlights 

 Barrier properties of thin sol‐gel coatings were improved with clay nanoparticles. 

 Self‐healing effect was achieved with addition of Ce(III) ions in sol‐gel films. 

 Clay nanoparticles and the cerium salt enhance corrosion protection of the mild steel. 

 

 

Abstract 

 

The development of a new environment-friendly anticorrosive coating for mild steel substrate 

is afforded in this work. The combined use of cerium, as a self-healing agent, and clay 

nanoparticles, as improvers of the barrier properties, was considered to the development of 

new anticorrosive sol-gel coatings. Nanostructured hybrid films were synthesized by the sol–
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gel route from tetraethoxysilane (TEOS) and 3-glicidoxipropyl-trimetoxisilano (GPTMS)  

using laminar nanoclays (Laponite Na+
0.7[Si8Mg5.5Li0.3H4O24]-

0.7) to improve mechanical and 

barrier properties, and Ce(NO3)3•6H2O as a supplier of Ce(III) to provide an inhibiting effect 

in the event of coating failure. Carbon steel plates, AISI 1010, were used as substrates. Prior 

to the application of the coating, samples were treated with a phosphoric acid 2 % v/v in order 

to improve coating adherence. 

In order to evaluate cerium effect, electrochemical behaviour of films containing Laponite and 

cerium salts (TGL-Ce) were compared with films containing only Laponite (TGL) by means 

of potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) 

measurements using a 0.35 wt% NaCl solution. Microstructural characterization and surface 

analysis of substrates and sol-gel coatings were performed by optical microscopy and by XPS 

techniques. The use of nanoclays allowed to achieve a significant improvement of the 

anticorrosive behaviour of the cerium doped coating at the same time that enhances the 

physical integrity of the coatings under immersion tests. 

 

Keywords: mild steel; cerium; corrosion; silanes. 

 

 

1. Introduction 

Since the adoption of new regulations towards protection of the environment, in the field of 

the industrial anticorrosive products, the use of chromate based coatings is highly limited, 

being, at the moment, only permitted for the aeronautical industry, were the high performance 

of the chromate conversion coatings (CCC) is, at the moment, the only that provides the 

necessary safety criteria. So, the development of new environment-friendly high performance 

anticorrosive coatings is a hot topic for the scientific researchers due to the increasing demand 
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from the industrial field. Is in this framework were the called self-healing coatings take wide 

importance thanks to their possibility of present a long-term anticorrosive protection with the 

use of safer compounds as the based on lanthanides elements like Ce and La [1,2]. 

The sol-gel science is a very promising alternative to allow us to reach a functional material 

coating that fulfills the high demands of the industrial field, as it is the high physicochemical 

and thermal stability and its possibility to incorporate almost any kind of functional additives 

as organic compounds and ionic salts [3,4]. Furthermore, sol-gel coatings are compatible with 

a variety of substrates and can be applied as very thin coatings. The development of a three-

dimensional silica network as the main component of the coating structure can offer a well 

densified material with extremely good barrier properties [5,6,7,8,9]. For this reason, the 

research in the sol-gel field for anticorrosive coatings is worldwide extended. Nevertheless, 

the addition of ionic salts, behind conferring the desired functionality, usually carries to a 

detrimental of the barrier properties by its function as network modifiers. Then, to produce a 

Ce-functionalized self-healing coating, the use of multilayer coatings is a common strategy in 

order to reach both the barrier and self-healing properties. The barrier properties of sol-gel 

coatings can be substantially improved by controlling the crosslinking density of its structure 

or by incorporation of denser nanoparticles that, at the same time, work as mechanical 

reinforcement. Even so, the structural modification introduced by lanthanide compounds on 

the silica network leaves an open path to the water diffusion through the coating [10]. 

In the recent years, the development of new nanocomposites was highly explored by the use 

of nano-clays thanks to its highly availability and economical convenience. Those 

nanoparticles are highly employed as rheological modifiers in the industry of cosmetic and 

paints and, at the same time, their use as load for composite materials can improve both the 

mechanical and barrier properties[11,12,13]. However, the use of clay nanoparticles in the 

field of sol-gel thin coatings is an area that has not been extendedly analyzed[14,15,16]. The 
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synthesis of a sol with an appropriated load of well exfoliated clay nanoparticles, and its 

deposition as a coating by the dip-coating process, could carry to the development of a high 

performance sol-gel material. This combination of material and deposition process is able to 

produce a matrix were the clay particles remain perfectly aligned with the substrate increasing 

the diffusive pathway for the corrosion process and a direct diffusive pathway for the active 

Ce ions towards the presence of an occasional defect or damage in the coating to confer the 

desired self-healing property.  

In this work, we present a novel strategy to provide a single-layer sol-gel coating with 

improved barrier and self-healing properties through the nano-structuring of its organic-

inorganic hybrid matrix with the use of exfoliated synthetic nano-clays as potential prime 

coatings.  

2. Experimental 

2.1. Synthesis and deposition 

Three different sols were synthesized in order to analyse the anticorrosive behaviour of 

cerium-doped coatings with a stratified laminar structure: an epoxy-silica hybrid sol (TG), a 

hybrid sol loaded with laminar nanoparticles (TGL) and a hybrid sol with laminar 

nanoparticles and cerium dopping (TGL-Ce). Hybrid sols were synthesized from the 

hydrolytic condensation of tetraethoxysilane (TEOS, Aldrich 99%) and glycidoxypropil-

trimetoxysilane (GPTMS, Aldrich 98%) in acidic media using concentrated HNO3 as 

catalyser. In order to incorporate the laminar nanoparticles in the precursor solution, 

hydrolysis of TGL sol was performed in presence of an aqueous suspension of a synthetic 

exfoliated clay nanoparticles (Laponite S482 ®, Rockwood Specialties, Inc.). CeNO3 was 

used as supplier of cerium. In every case, TEOS/GPTMS molar ratio was kept to 60/40, 

Laponite was incorporated at a 0.5 wt % in respect to condensed silica and Ce(III) was added, 

from cerium nitrate, to attain a Ce/alkoxides molar ratio of 5/95. 
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Precursor sols were deposited by the dip coating process on AISI 1010 mild steel plates 

previously degreased and treated with phosphoric acid following a reported procedure [17][ in 

order to improve the coating adhesion. After deposition, coated substrates were thermally 

treated at 120 ºC in air atmosphere during 2 hours. Figure 1 shows a schematic representation 

of the samples preparation. 

 

2.2. Coatings Characterization 

Morphology of the obtained coatings was analyzed through optical microscopy (Olympus, 

PMG3, Japan) in reflectance mode. Coating thickness was determined by mechanical 

profilometry (KLA TecnorTM D-100) on samples with a slope performed on the film by 

scratching immediately after deposition and before the thermal treatment. Every measurement 

was performed at five different points for every sample composition.  

Coatings wettability was analyzed through contact angle measurements performed with a 

contact angle goniometer (Ramé Hart model 500) with DropImage Advanced Software. A 5 

µL drop of bi-distilled water was applied on coatings at 20 ºC and a waiting time of 60 s was 

employed for every measurement. The process was repeated 4 times for every sample. 

X-ray photoelectron spectroscopy (XPS) was performed with a TFA Physical Electronics Inc. 

spectrometer using non- and monochromatised Al Kα radiation (1486.6 eV) and a 

hemispherical analyzer. The monochromatised radiation used for high-resolution spectra 

yields a resolution of 0.6 eV, as measured on an Ag 3d5/2 peak. These spectra were used to 

differentiate the chemical environment of various species, whereas spectra obtained using the 

non-monochromatised variant were used for quantifying the chemical composition. A take-off 

angle (detection angle) of 45° with respect to the surface plane was used. The energy 

resolution was 0.5 eV. Survey scan spectra were recorded at a pass energy of 187.85 eV, and 

individual high-resolution spectra at a pass energy of 23.5 eV with an energy step of 0.1 eV. 
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During the analysis a small shift was observed which was compensated by neutraliser. The 

values of binding energies were then aligned to carbon peak C 1s at 285.0 eV. The XPS 

measurements were repeated at several spots on the sample surface; the results were found to 

be similar. Representative measurements are reported. 

 

2.3. Electrochemical behavior 

Corrosion resistance was evaluated by means of a potentiodynamic polarisation test and 

electrochemical impedance spectroscopy (EIS) measurements in 0.35 wt.% NaCl solution 

prepared from p.a. grade chemicals (Sigma-Aldrich) and bidistilled water (Millipore, 18.2 

MΩ cm). All measurements were carried out at room temperature (20 ± 1 °C) using a typical 

three-electrode configuration, with a saturated calomel electrode (SCE, Radiometer 

Analytical, France) as the reference electrode, a platinum wire of convenient area as counter 

electrode and the material to be tested as the working electrode. The latter was placed at the 

bottom of the cell, exposing an area of 3.54 cm2. Electrochemical impedance spectroscopy 

(EIS) was performed at sweeping frequencies from 50,000 to 0.01 Hz and modulating 10 mV 

(rms) around the corrosion potential (Ecorr). EIS fitting was performed using Zview software 

[18]. Potentiodynamic polarisation curves were scanned from −0.7 V to 1 V at a rate of 2 

mV/s. All potentials in this work are referred to the saturated calomel electrode (0.241 vs 

Standard hydrogen electrode, SHE). 

 

3. Results and Discussion 

Transparent and colorless sols were obtained after the hydrolytic condensation. The dip 

coating process carried out to homogeneous, smooth and cracks free coatings. Independently 

of composition, all coatings were around 2µm thickness. Table 1 presents the thicknesses of 

coatings after thermal densification process.  
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3.1. Coatings Characterization 

Surface wettability of coatings, determined through the contact angle of water drops, 

showed the same behaviour for the three compositions analysed, presenting a rather 

hydrophilic characteristic, in every case, with contact angle values lower than 90 º. Table 2 

display the results of contact angle measurements obtained at 20 ºC. Besides the known 

hydrophilic property of clays, its incorporation to the formulation of TGL coating does not 

produced a change, in respect to TG coating. The relatively small amount of the employed 

clay nanoparticles used to provide the stratified structure was not enough to introduce any 

change in the wettability of the coatings. The contact angle resulting for the films is adequate 

to provide wettability in the event of applying a top coat on this films acting as primer [19]. 

Despite that three kind of coatings present the same thickness and the same wettability 

degree, after immersion of the samples in 0.35 wt% NaCl water solution at room temperature 

during 24 h a clear difference was observed between samples with and without clay 

nanoparticles. Figure 2 shows the micrographs of mild steel samples with TG, TGL and TGL-

Ce coatings after 24 h immersion. Although generally no change in transparency nor colour 

was observed after immersion, TG samples presented a slight trend to blistering that was not 

observed in clay nanoparticles containing samples, as TGL and TGL-Ce. Due to the high 

transparency and colourless of the hybrid sol-gel coatings, the scratched microstructure of the 

grinded substrates can be clearly observed. 

The superficial composition of sol-gel coatings was also analysed before and after 24 

h of immersion through XPS. Figure 3 shows the high resolution spectra for Si 2p and O 1s. 

Both before and after 24h immersion in 0.35 wt% NaCl water solution, silicon 2p spectra of 

all the samples, Figures 3 a) and b), present a single peak around 102.6 eV without evident 

shifts as result of the different compositions or immersion time. This band in Si 2p XPS 
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spectra is characteristic of silicon bonded to carbon and/or oxygen as in silicones or hybrid 

organic-inorganic sol-gel samples.[20,21,22]. Analysis of the oxygen 1s spectra of all the 

samples not exposed to immersion, Figure 3 c), presented a single peak near the 532.6 eV, 

which is related to the bonding of oxygen with silicon (Si-O-Si) present in silica and silicones  

[20,21,23] which is consistent with the observed in silicon spectra of the same samples. So, 

the results obtained for just coated samples allows to determine that those are physically 

integer and that neither the incorporation of clay nanoparticles nor cerium salt has any evident 

effect on the silicon and oxygen atomic neighbourhoods. After 24 h immersion in the aqueous 

solution, Figure 3 b), the single peak of O 1s for TGL-Ce sample remains technically 

unchanged, while the spectra for TGL and TG samples present significant differences in 

respect to their respective initial conditions. While the peak related to silicon oxide remains as 

the dominant one, the immersion of TGL sample carried to the evolution of a shoulder peak at 

530 eV, which is characteristic of Fe2O3. This observation could be considered as an evidence 

of a partial exposition and oxidation of the mild steel substrate as a consequence of a kind of 

loosening of the integrity of the TGL coating. In the case of TG sample, the immersion in the 

aqueous solution during 24 h produced a more pronounced change in the O 1s spectra. The 

peak corresponding to the silicon oxide, at 532.6 eV, was completely overlapped and only a 

near single peak at 531.6 eV, attributed to iron hydroxide, was observed.  

As it could be expected from the observed in O 1s spectra, the analysis of Fe 2p3/2 XPS 

spectra, Figure 4, presented the characteristic peak attributed to Fe(II) and Fe(III) oxides, at 

711.3 eV, for both TGL and TGL-Ce samples [24]. In the case of TG sample, an evident 

contribution of the Fe metal peak, at 707.7 eV, is also observed, indicating a coating 

degradation that leave a partially uncovered metal surface.  

Those XPS results allows to argue that the three analysed samples behaves in a 

different way with the immersion in the aqueous solution, being the TG sample, without 



 9

Laponite nor cerium, the most susceptible one to undergo a detrimental damage. In the same 

way, the incorporation of Laponite, in TGL sample, carried to an improvement of the 

protective properties of the coating. On the other hand, if well the analysis of cerium is not 

easy to perform due to the XPS 3d spectra of cerium compounds present satellites peaks 

related to energy-gain (the so-called “shake-down” states) [24], it is clear that its 

incorporation, in sample TGL-Ce, produced the coating with the best performance in 

immersion. Table 3 shows the quantification the atomic compositions of the analysed samples 

obtained from its XPS surveys. 

 

3.2. Electrochemical behaviour 

 Figure 5 shows anodic polarization curves of the coated system after 2h immersion in 

NaCl 0.35%m/v. It can be observed that all coated samples show a decrease in current density 

when compared with the bare alloy. Furthermore, clay nanoparticles containing coatings 

show even lower current density than the ones without clay nanoparticles.  TGL and TGL-Ce 

coatings presented similar values of current density around corrosion potential but TGL show 

lower range of pseudopassivity compared with TGL-Ce. The reduction of anodic current 

density indicates that the anodic dissolution process of the steel is inhibited by the coating 

This can be associated to a reduction of the area available for the anodic and cathodic 

reactions for the presence of the film, since the electrochemical reaction take place in the 

defects [25]. Since TGLCe curve slopes change respect the bare substrate this can be and 

indicative that the silane barrier with cerium could act as a chemical barrier [26]. 

 Figure 6 show the EIS results after 2h immersion in NaCl 0.35%m/v in the form of 

Bode plots where the effect of clay nanoparticles incorporation can be analysed. Clay 

nanoparticles containing coatings (TGL and TGL-Ce) show total impedance values more than 

one magnitude order higher than the ones without clay nanoparticles (TG) and even higher for 
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the bare steel (P).  TG shows two time constants, one at high frequencies that can be 

associated to the coating and other at low frequencies related to the underneath corrosive 

process [21,27,28,29]. Conversely, the EIS response corresponding to the TGL and TGL-Ce 

coatings only depicts one time constant related to the coating evidencing a good barrier effect 

of the films. As the coating thickness for the three compositions are very similar, the 

reduction in the impedance modulus can be attributed to an area effect where clay 

nanoparticles are probably blocking the electrolyte access to the substrate.  

Figure 7 shows the polarization curves after 24 h immersion in NaCl 0.35%m/v. It can be 

observed that TGL and TGL-Ce coatings present low values of current density, even lower 

than for 2 h of immersion for the TGL-Ce coatings. In opposition, coatings without clay 

nanoparticles show some kind of deterioration of the film since their response is very similar 

to the bare steel. The same effect can be seen in the EIS results (Figure 8). TG coatings 

present a drop in the phase angle and in the impedance modulus in the high region frequency 

when comparing with the 2 h immersion system, denoting the failure of the coating after 

immersion. Contrariwise, TGL-Ce coatings present a rise in the impedance modulus and 

phase angle comparing the same period of immersion. This behaviour is probably associated 

to the obstruction of defects due to cerium compound since this rise is not observed for the 

system without Ce.  

To get a better insight of the coating performance, EIS data were fitted by mean of equivalent 

circuits using Zplot for Windows [18].  

Model employed use Constant Phase Elements (CPE) instead of capacitances when phase 

angle was different from -90º. The impedance for the CPE, ZCPE, element can be written as 

[30]:  

 jQ
ZCPE

1
   (1) 
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where Q (pseudocapacitance) and  are the CPE parameters, independent of frequency, j is 

the current density and  the frequency. As Q cannot represent the capacitance when  < 1, it 

can be related with the effective capacity (Ceff) of the coating, applying a surface distribution 

of the elements [31]: 






















1

/1 .

posol

posol

coat
RR

RR
QCeff   (2) 

In the equation, Rsol is the solution or medium resistance and Rpo is the resistance of the 

electrolyte in the coating pores. In the present work Ceffcoat  was calculated for the high 

frequency part of the impedance spectra, assuming a parallel array between the CPE of the 

coating and the Rpo in the electric circuits [32]. Also, CPEdl describes the inner layer between 

the bottom of the pores and the metal substrate. Rp is the polarization resistance in direct 

contact with the metal. Table 4 shows the electrical parameters values to the EIS results 

presented in Fig. 6 and 8 and Ceff calculation using eq 2. It is generally accepted the the pore 

resistance Rpo is a measure of the porosity and degradation of the coating and the increase of 

coating capacitance Ceffcoat with time can be related to the water uptake into the film. Besides, 

the polarization resistance Rp, and double layer capacitance Cefdl can be related to the 

delamination of the coating and the presence of a corrosión phenomena [33].  

It can be observed at the beginning of the immersion that TG, TGL and TGL-Ce present high 

resistance and low Ceffcoat of all the coating but there is a decrease in the resistance and an 

increase in the Ceffcoat of the coating for TG and TGL after immersion due to the developments 

of pathways in the silane film (Figure 9 a and b). These pathways are much developed for the 

coating without clay nanoparticles than for TGL evidencing the isolating features of the clays. 

At the bottom of the pores is where the corrosion issue takes place as it is evident from the 

value of Ceffdl for the TG films together with a decrease in Rp resistance that can be associated 

with an increase in the exposed area (Figure 9 c and d). The increase in the in time of the 
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capacitance is observed for all the three coatings but in less degree for the TGLCe. This is  

probably due to the presence of hydrated cerium compounds precipitated in de defects, that 

increase the resistance but  have different permittivity than the intact film. When comparing 

the effect of the cerium with the film without it, it can be observed that the presence of cerium 

in the coating enhance coating performance probably due to precipitation of cerium 

hydroxides as evidenced in the shift of the Rpo parameter.   This was previously observed by 

Naderi et al [34] in their work with sol-gel coating containing montmorillonite clay 

nanoparticles and cerium nitrate on aluminium and in our previous work [17].  

The action of cerium in the film has been extensively studied onto many substrates.  Hinton 

[35] suggested that cerium hydroxides precipitate on cathodic sites acting on the sites where 

oxygen reduction reaction takes place. Oxygen reduction releases hydroxyls ions and Ce(III) 

oxidizes to Ce (IV) precipitating as cerium hydroxide. Conversely, other authors affirm that 

act either as anodic, or mixed inhibitor [36,37,38].  The incorporation of silica nanoparticles 

in the silane containing cerium salts film can also improve corrosion resistance enhancing the 

crosslinking of the silane layer [9].  

The results obtained in the present work show the films containing cerium in their 

composition present better anti-corrosion performance when compared with the ones without 

cerium. It is however important to note, that the presence of clay nanoparticles in the film 

strongly enhance the performance of the presented systems, since the corrosion resistance was 

significantly inferior for the coatings without clay nanoparticles.  

 

4. Conclusions 

 A novel sol-gel material was synthesized with the incorporation of clay nanoparticles 

in order to improve the barrier properties and self-healing behaviour of cerium doped 

anticorrosive coatings. The incorporation of the laminar nanoparticles, up to 5 wt% in respect 
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to sol-gel silica network, improved considerably the physical integrity of the coating under 

immersion tests in 0.35 wt% NaCl water solution. 

 XPS analysis revealed that the addition of clay nanoparticles avoided the exposition of 

the metal substrate and the aparition of iron hydroxide, as a corrossion byproduct, after the 

immersion tests. Furthermore, with the incorporation of cerium and clay nanoparticles, only a 

small amount of Fe2O3 was observed after 24 h immersion at room temperature. 

The electrochemical assays tests in 0.35 wt% NaCl water solution demonstrate that the 

incorporation of clay nanoparticles to the silane coating retard the diffusion of the electrolyte 

into the film when compared with the coating without clays. The incorporation of cerium salts 

shows the synergy between the clay nanoparticles and the cerium salt enhancing corrosion 

protection of the mild steel. Due to the known high adherence of sol gel coating this coating 

can act as prime coating offering both good wettability and retarding corrosion process.   
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Legend to figures 

 

Figure 1. Schematic representation of samples preparation of TG, TGL and TGL-Ce coatings. 
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Figure 2. Optical microscopy, at 20x, of a) TG, b) TGL and c) TGL-Ce coated samples after 

24 h immersion in 0.35 wt% NaCl water solution at room temperature. 
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Figure 3. XPS high resolution spectra for mild steel samples with TG, TGL and TGL-Ce 

coatings for Si 2p, a) before and b) after 24 h immersion, and for O 1s, c) before and d) after 

24 h immersion in 0.35 wt% NaCl water solution at room temperature. 
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Figure 4. XPS high resolution Fe 2p spectra for mild steel samples with TG, TGL and TGL-

Ce coatings after 24 h immersion in 0.35 wt% NaCl water solution at room temperature. 
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Figure 5. Anodic polarization curves for TG(▲), TGL(●), TGLCe(o) and  P(●) after 2 h 

immersion in 0.35 wt% NaCl solution at room temperature. 
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Figure 6. Bode plots for TG(▲), TGL(●), TGLCe(o) and  P(●) after 2 h immersion in 0.35 

wt% NaCl solution at room temperature. Solid lines represent the model fitting.  
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Figure 7. Anodic polarization curves for TG(▲), TGL(●), TGLCe(o) and  P(●) after 24 h 

immersion in 0.35 wt% NaCl solution at room temperature. 
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Figure 8. Bode plots for TG(▲), TGL(●), TGLCe(o) and  P(●) after 24 h immersion in 0.35 

wt% NaCl solution at room temperature. Solid lines represent the model fitting. 
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Figure 9. Variation of Ceff coat, Rpo, Ceffdl and Rp with immersion time (values from Table 

4).  
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Table 1. Coating thicknesses of different compositions after thermal treatment. 

Coating Thickness (μm) 

TG 2.00 ± 0.050 

TGL 2.09 ± 0.195 

TGL-Ce 2.21 ± 0.202 

 

Table 2. Contact angle values of water drops at 20ºC. 

 

 

 

 

 

 

Table 3. Atomic compositions derived from the XPS survey spectra for TG, TGL and TGL-

Ce samples before and after 24 h immersion in 0.35 wt% NaCl water solution at room 

temperature. 

Sample 
% at 

Si O  Fe  Ce 

TGL-Ce  t0 28.7 69.4 0.7 1.2 

      24 h 24.5 71.8 3.7 - 

TGL        t0 30.2 69.5 0.3 - 

       24 h 22.3 74.3 3.4 - 

TG          t0 31.1 66.2 2.7 - 

       24 h 14.4 71.9 13.7 - 

 

 

 

 

 

 

Coating Contact angle (º) 

TG  69.7 ± 3.50 

TGL 67.5 ± 2.05 

TGL-Ce 70.3 ± 1.60 
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Table 4. Electrical parameters values corresponding to the EIS results presented in Fig. 6 and 

8 and Ceff calculation using eq 2.  

 

Rs CPEcoat

Rpo CPEdl

Rp

 

 

 Rsol 

(Ωcm2 ) 

Qcoat 

( sα Ω-1 cm-2) 

αcoat Rpo 

(Ωcm2) 

Ceffcoat 

(F  cm-2) 

Qdl 

( sα Ω-1 cm-2) 

αdl Rp 

(Ωcm2) 

Ceffdl 

(F  cm-2) 

2 h immersion 

TG 50 6.07 10-8 ± 

3.4 10-9 

0.8 ± 

4.9 10-3 

7.6 103 ± 

51 

2.91 10-9 3.06 10-4 ± 

3.4 10-9 

0.53 

± 1.9 

10-3 

1.55 

105 ± 

5.1 102 

7.7 10-4

TGL 50 2.88 10-8 ± 

1.2 10-9 

0.85 ± 

3.6 10-3 

4.4 104 ± 

3.2 103 

3.08 10-9 6.3 10-6 ± 6.7 

10-8 

0.53 

± 2.6 

10-3 

7.6 104 

± 302 

103 

3.31 10-6

TGLCe 50 1.45 10-8 ± 

5.5 10-9 

0.89 ± 

7.4 10-3 

5.07104 ± 

8.9 102 

1.39 10-9 1.38 10-7 ± 

47 10-8 

0.67 

± 

0.01 

5.04 

105 ± 

1.9 104 

3.31 10-6

24 h immersion 

TG 50 4.5610-6 ± 

4.7 10-7 

0.55 ± 

2.4 10-3 

5.5102 ± 31 4.41 10-9 6.7 10-4 ± 6.7 

10-5 

0.79 

± 1.1 

10-3 

1.06 

104 ± 

1.102 

9.16 10-4

TGL 50 2.610-8 ± 8.2 

10-10 

0.87 ± 

2.4 10-3 

6.8 103 ± 

242 

3.84 10-9 1.8 10-4 ± 8.7 

10-6 

0.55 

± 

0.02 

2.13 

105 ± 

1.2 103 

2.81 10-4

TGLCe 50 2.510-8 ± 1.3 

10-9 

0.84 ± 

5 10-3 

8.5 104 ± 

1.2 103 

1.8710-9 6.87 10-5 ± 

8.07 10-6 

0.46 

± 

0.04 

3.40 

105 ± 

1.2 103 

4.27 10-5

 

 


