
entropy

Review

Periodic Energy Transport and Entropy Production in
Quantum Electronics

María Florencia Ludovico 1, Liliana Arrachea 1, Michael Moskalets 2 and David Sánchez 3,*
1 International Center for Advanced Studies, UNSAM, Campus Miguelete, 25 de Mayo y Francia,

1650 Buenos Aires, Argentina; mfludovico@gmail.com (M.F.L.); lili.arrachea@gmail.com (L.A.)
2 Department of Metal and Semiconductor Physics, NTU “Kharkiv Polytechnic Institute”,

61002 Kharkiv, Ukraine; michael.moskalets@icloud.com
3 Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (UIB-CSIC),

E-07122 Palma de Mallorca, Spain
* Correspondence: david.sanchez@uib.es; Tel.: +34-971-25-9887

Academic Editor: Ronnie Kosloff
Received: 4 October 2016; Accepted: 15 November 2016; Published: 23 November 2016

Abstract: The problem of time-dependent particle transport in quantum conductors is nowadays
a well established topic. In contrast, the way in which energy and heat flow in mesoscopic systems
subjected to dynamical drivings is a relatively new subject that cross-fertilize both fundamental
developments of quantum thermodynamics and practical applications in nanoelectronics and
quantum information. In this short review, we discuss from a thermodynamical perspective recent
investigations on nonstationary heat and work generated in quantum systems, emphasizing open
questions and unsolved issues.
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1. Introduction

The rapid progress in the manipulation of small systems at submicron scales has spurred the
interest in the field of quantum thermodynamics. The goals of this discipline is the understanding
of the fundamentals of thermodynamics in quantum systems typically driven out of equilibrium
by means of external fields. Most of the recent literature focuses on static fields and the resulting
stationary transport effects (for a recent review, see [1]). However, there is a growing interest in
analyzing the thermodynamic properties of quantum conductors in the presence of time-dependent
potentials. In this case, dynamics is the main objective of the theory as fluxes and responses depend
explicitly on time [2].

Quantum electronic devices are paradigmatic realizations of open quantum systems. Typically,
we can identify in these setups a finite-size piece where a small number of electrons are confined.
However, these particles are not isolated. They are in contact with leads, substrates and the
electromagnetic environment, which in practice constitute macroscopic thermal and particle reservoirs.
We can distinguish two main classes of time-dependent processes in these systems. One of them is
related to the transient behavior after a short-time non-equilibrium perturbation, where the main issue
is to understand the relaxation and thermalization processes as the system approaches the equilibrium
state. The other class is the response to a periodic driving. Both classes of dynamics have received a
significant interest for some years now.

From the conceptual point of view, it is quite natural to relate the energy transport in
periodically-driven systems to thermodynamic machines, like heat engines and refrigerators, since
these typically operate in cycles. There is a lengthy literature on nanoscale quantum thermodynamics
based on two-level systems [3–7], atomic [8–11] and molecular [12–14] systems, nanomechanical [15–20]
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systems and other systems represented by harmonic oscillators [21–24]. The list of works devoted to
study cyclic processes in electron systems is shorter but is growing every week. In [25] heat transport
induced by adiabatic pumping is analyzed in a quantum dot driven by two AC voltages operating
with a phase lag. Two interesting operational modes were identified: (i) the heat pumping against
a gradient of temperature and (ii) the exchange of work between the driving forces. Heat pumping
by AC driving was also investigated in the non-adiabatic regime [26] and in arrays of quantum dots
in the Coulomb blockade regime [27], while in [28] the effect of the exchange of power between two
driven quantum capacitors was analyzed. In [29] the exchange of power between electron currents
induced by DC bias voltages and adiabatic driving forces was considered and a similar mechanism
was later analyzed in the context of a pair of helical edge states coupled to a magnetic island [30].
The effect of AC driving in the efficiency of usual two-terminal thermoelectric setups was addressed
in [27,31,32]. An extended thermoelectric framework to describe the work exchanged with the AC
driving sources within the adiabatic regime, on equal footing with the exchange of charge and heat
between electron reservoirs with thermal and voltage biases was proposed in [33]. Thermal transport
in electron systems driven by the coupling to electromagnetic radiation has been studied in [34–37].
The related problems of heat fluctuations and the definition of effective temperatures to characterize
the net heat transport in these systems were addressed in [38–48] and [49–51], respectively.

In addition to the interest in the fundamental aspects, it is of paramount importance for potential
applications to discriminate which portion of the energy invested to operate these devices is amenable
to be used and which one is wasted by dissipation. This distinction is at the heart of thermodynamics
and is conventionally addressed in quasi-stationary processes where the system under study is
very weakly coupled to the reservoirs. In quantum electronics, however, the generic situation is
to have the driven structure strongly coupled to the rest of the circuit, which plays the role of the
reservoir. On the other hand, we are typically interested in the generation of currents, which implies
non-equilibrium situations.

In this paper, we review recent developments in dynamical quantum thermodynamics applied to
nanoelectronic systems. We will discuss in detail the energy transfer in out-of-equilibrium systems
coupled to external baths. The analysis is based on a phase coherent mesoscopic sample (a confined
system with discrete energy levels) attached to fermionic reservoirs held at a given temperature.
The energies of the sample evolve with time due to the coupling with nearby AC gate terminals. Deep
inside the reservoirs, electrons relax their excess energy, and the baths can thus be considered in local
thermal equilibrium. We will also consider the entropy production in the whole system and will
identify the different terms arising in the redistributed energy and heat [52,53]. Importantly, when the
energies shift slowly with time, the response is adiabatic, and an exact Joule law can be demonstrated
for the time domain [52–54]. In addition, we will briefly discuss the nonadiabatic regime [55] in
which case the AC frequency is larger or of the order of the inverse dwell time inside the conductor.
Our analysis is completely general and does not rely on the particular approach followed to evaluate
the relevant dynamical quantities, like the charge and energy fluxes and the rate of entropy production.

Dynamical transport in quantum conductors is a relatively old subject with established theoretical
principles [56–59], which has been investigated with different techniques [60–63]. It is well understood
that a Floquet scattering matrix approach (FSM) [64] can account for photon-assisted phenomena
in nanostructures (absolute negative conductance and dynamical localization [62], single-electron
emission [54,65], etc.). In the present work, we also include for completeness the details of the
calculation of these quantities with the Keldysh formalism using the Floquet-Fourier representation as
in [66,67] and discuss the connection to the FSM formulation as in [68].

2. Theoretical Model

We consider that our system is a slowly-driven (adiabatically) quantum conductor (e.g., a quantum
dot or an array of quantum dots) coupled to several baths (fermionic reservoirs), see Figure 1 for the
two terminal case. In the adiabatic regime, it is possible to propose a thermodynamic function within
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an extended resonant level model that satisfies both the first and the second laws [52,53]. We do not
make any assumption on the coupling strength between the system and the baths.

Note that the problem of defining a system and a bath in the strong coupling regime has been
addressed recently [69]. Moreover, the authors of [70] claim that the extended resonant level model
is unable to properly describe energy fluctuations despite the fact that the expectation value of the
energy is correctly derived. On the other hand, [71] finds that an influence functional approach [6,72]
applied to the spin-boson model can yield exact expressions for the energy dissipation in a driven
open quantum system strongly coupled to a heat bath.

Here, we take into account the Hamiltonian of the fermionic baths, Hres = ∑αHα with
Hα = ∑kα

εkα
c†

kα
ckα

, where εkα
is the energy dispersion relation and c†

kα
(ckα

) creates (destroys)
an electron with wavenumber kα, the Hamiltonian of the system, HS(V(t)), where the functions
V(t) = V(t + τ) = (V1(t), . . . , VM(t)) describe the AC driving power sources capacitively coupled to
the system, τ being the AC period, and the Hamiltonian of the contact region between the system and
the baths, Hcont = ∑αHcα with Hcα = ∑kα

(
wkα

c†
kα

dlα + H.c
)

, where wkα
are tunneling amplitudes,

lα denotes the site of the central part to which the reservoir α is attached, and dlα , and d†
lα destroys

and creates, respectively, an electron in the central system. The three contributions add up to the
Hamiltonian of the full system,

H(t) = Hres +HS(t) +Hcont , (1)

which explicitly depends on time due to the applied AC potentials. We stress that the explicit form of
HS remains unspecified, because we will below present a thermodynamic discussion that is completely
general and independent of the sample details. In fact, our presentation is also valid for interacting
electrons provided these carriers are confined to the mesoscopic region. The fermionic baths are
metallic leads with good screening properties and electron-electron interactions can be safely neglected
there. The latter is an important remark since a gauge-invariant transport theory in the AC regime
must include the self-consistent Coulomb interaction [73]. This requirement in the case of the heat
current was discussed in [74].

� �

� � � �

����

HL HR
HcRHcL

HS(t)

Figure 1. Sketch of the system under consideration. A quantum conductor (described by the
Hamiltonian HS), is coupled to two reservoirs (HL and HR) kept at the same temperature T, but
with different chemical potentials µL and µR. The conductor is also driven out of equilibrium by the
application of AC local power sources, which are all collected in the vector V(t). The Hamiltonians
representing the left and right contact regions are HcL and HcR, respectively.

Detailed knowledge of the heat dynamics in quantum electronics is also relevant for
time-dependent thermoelectrics, where temperatures may be modulated with time. A calculation for
quantum RC circuits shows [75] that thermoelectric charge relaxation resistance significantly differs
from its purely electric counterpart. In a different setup, the thermoelectric power factor has been
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experimentally demonstrated to grow in the photo-induced regime [76]. When the coupling between
a dot and its attached leads quickly changes with time, transient currents are predicted to occur in
the absence of tunneling [31]. These findings call for a unified description of thermoelectrics and heat
for AC-driven conductors. This is accomplished in [33], where the authors generalize the Onsager
reciprocity relations for the case of adiabatic drivings. Thermodynamic forces and fluxes can be
identified this way [77]. Unfortunately, experimental measurements of thermoelectric responses in the
time domain are scarce. An exception is [78], where a frequency-resolved impedance spectroscopy
method is used in thermoelectric modules.

3. First Law

Let ρ = e−β(H−µN )/Z be the density matrix, with Z = Tr
[
e−β(H−µN )

]
the partition function, N

the particle number and β = 1/(kBT). We start by considering µL = µ = R = µ and TL = TR = T.
Variations δρ = ρ(t + δt)− ρ(t) are due to changes in δV = V(t + δt)−V(t), which we assume to be
small. Then, both the particle number and internal energy change according to:

δNν = Tr [δρNν] , ν = α, S (2)

and:
δUν = Tr [δρHν] , ν = α, cα, S (3)

respectively. The particle number and energy for the full system remain constant, since the system
plus the baths can be considered as a larger, closed system.

δN = ∑
α

δNα + δNS , (4)

and
δU = Tr [δρH] = ∑

α

[δUα + δUcα] + δUS, (5)

The first law of thermodynamics states that total heat in the system is:

δQtot|µ,T = ∑
α

[δUα + δUcα − µδNα] + δUS − δWAC − µδNS , (6)

where:
δWAC = −Tr[ρ∂H/∂V]δV (7)

is the work developed by the time-dependent driving sources. The corresponding change in the
entropy reads:

TδS|µ,T = δQtot|µ,T = −δWAC, (8)

where we have used in the last equality the conservation of particles and energy expressed by
Equations (2) and (3).

We now consider a more general situation, where the reservoirs have slightly different chemical
potentials µα = µ + δµα. This implies investing an extra electric work done by DC bias voltages

δWel = ∑
α

δµαδNα. (9)

Here, δµα is a small departure of the electrochemical potential of lead α with respect to the common
chemical potential µ.

Equation (8) generalizes to:
TδS|µ,T + TδS|δµ = δQtot (10)
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with
TδS|δµ = −∑

α

δµαδNα = −δWel. (11)

Since δN = δU = 0 due to particle and energy conservation, the first law implies that the total
heat generated in the full system stems from the work done by the AC and the DC sources,

δQtot = −δWAC − δWel. (12)

4. Heat Current and Power

The rate of change for the energy corresponding to the different parts of the system (sample S,
reservoir α or coupling region cα) is given by the exact quantum-mechanical expression

JE
ν (t) =

i
h̄
〈[H,Hν]〉 , (13)

where ν ≡ S, α, cα. The time variation of the expected value of the total HamiltonianH,

˙〈H〉 = ∑
α

[
JE
α (t) + JE

cα(t)
]
+ JE

S (t)− F · V̇ , (14)

is given by the explicit time derivative of 〈H〉 in terms of the generalized force F = −〈∂H/∂V〉. On the
other hand, we know that the change in time of the total energy stored in the full setup, containing
the central system, contacts and reservoirs, is equal to the total power developed by the external AC
sources, ˙〈H〉 = −PAC(t). The latter reads:

PAC(t) = F · V̇. (15)

Hence, it follows that the fluxes obey:

∑
α

[
JE
α (t) + JE

cα(t)
]
+ JE

S (t) = 0 . (16)

The time variation of the charges present in the different pieces of the system can be similarly
inferred. We start from:

IC
ν (t) = e ˙〈Nν〉 =

ie
h̄
〈[H,Nν]〉, (17)

with ν = α, S. Conservation of the total charge demands that the currents fulfill:

e ˙〈N 〉 = IC
S (t) + ∑

α

IC
α (t) = 0. (18)

Noticeably, the coupling region contributes to the energy current balance (Equation (16)) but not to
its particle counterpart (Equation (18)). This will have important consequences for the heat current
definition, as explained below.

Using Equation (6) it is straightforward to derive the total heat flux,

Q̇tot(t) = ∑
α

[
JE
α (t)− µα

IC
α (t)

e
+ JE

cα(t)
]
+ JE

S (t)

−PAC(t)− µ
IC
S (t)

e
. (19)

Now, we define:
Pel(t) = ∑

α

δµα IC
α (t)/e, (20)
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which is the electric power developed by the batteries applied to the fermionic baths to keep the
electron flow. It follows from Equations (16) and (18) that

Q̇tot(t) = −PAC(t)− Pel(t), (21)

which states that the total heat flux in the system is produced by the AC and DC driving powers,
as expected.

The question now is how to define physically-meaningful time-dependent currents flowing
through different pieces of the setup. The work in [52] demonstrates that the conventional definition
for the heat flowing in the reservoir α,

˙̃Qα(t) = JE
α (t)− µα

IC
α (t)

e
, (22)

suffers from serious drawbacks. In particular, for a slowly-driven quantum level coupled to a single
reservoir the use of ˙̃Q leads to negative heat fluxes at zero temperature. This would imply that heat
would be extracted from a reservoir at zero temperature, which makes no sense if we are to interpret
this heat as dissipation. In contrast, when one considers the expression

Q̇α(t) = JE
α (t) +

JE
cα(t)

2
− µα

IC
α (t)

e
. (23)

one finds that the heat flux is always positive at zero temperature, i.e., energy enters into the reservoir
and is evacuated from the power source, as should be. Moreover, Equation (23) is a sound expression
that fulfills four nice properties:

• It leads at low frequencies to a correct Joule law valid for all times [52].
• It shows perfect agreement between the Green function approach and the scattering matrix

formalism [52].
• It displays parity symmetry upon reversal of the AC frequency even for interacting quantum

conductors [79].
• It reduces to the conventional definition in the stationary case since the term JE

cα(t)/2 vanishes
after time averaging [53].

However, [80,81] propose not to use any heat flux definition due to apparent contradictions
with the third law of thermodynamics and the onset of thermodynamic inconsistencies. We would
like to clarify and highlight that those references consider a very different setup, in which the time
dependence of the Hamiltonian also takes place in the contact region (in our case only the central
part of the system evolves in time). This might seem as a minor difference, but on the contrary it is a
fundamental point, because in that case there is a part of the energy stored in the contact region that
should be interpreted as dissipative power and hence it will not contribute to the heat flux.

We emphasize that the extra term JE
cα(t)/2 has a pure dynamical origin, since it vanishes when

it is averaged over a period. This makes sense from the physical point of view, because in a period
the energy can be stored only at the reservoirs. On the other hand, this contribution of the contact
region is also unique to the heat current. For example, the particle flux is independent of the charge
variation in the coupling region, simply because it does no exist. In stark contrast, the tunneling
term does contribute to the energy transfer between the quantum system and the bath and must be
taken into account in any thermodynamically consistent calculation of time-dependent heat currents.
Analogously, we can define the heat variation in the sample as

Q̇S(t) = ĖS(t)− µ
IC
S (t)

e
+ ∑

α

JE
cα(t)

2
. (24)

such that the total heat satisfies Q̇tot(t) = ∑α Q̇α(t) + Q̇S(t), see Figure 2.
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Pel(t) + Pac(t)

Q̇L(t) Q̇R(t)Q̇S(t)

Figure 2. The total heat flux in the system is produced by the AC and DC driving sources, which is
summarized by the relation Q̇tot(t) = −PAC(t)− Pel(t). The definition of the heat currents entering
the reservoirs, as well as the heat variation in the central part, takes into account half of the energy
stored in the contact regions. The heat flux of the central piece contributes purely dynamically, since it
is zero when averaged over one period of the AC driving potentials. In the stationary state, charge and
energy can be stored only at the reservoirs.

5. Entropy Production

Further insight can be gained if we examine the instantaneous entropy production, which is
presumably a meaningful quantity for low driving frequencies, for which the system appears to be
almost stationary and the classical laws of thermodynamics remain valid. Otherwise, for high enough
frequencies, the nonequilibrium and quantum effects may be significant, which may hinder the use of
the classical thermodynamics. This regime requires further investigation. The total entropy production
has been demonstrated to follow an integral fluctuation theorem for a driven system strongly coupled
to a heat bath [82]. Here, we stress that the entropy production associated with dissipative processes
is always positive, in agreement with the second law. We begin by noticing that the AC forces have,
in general, conservative (cons) and nonconservative (nc) components. In fact, in [33] it was shown
that F(t) = Ft + Fnc(t), where the first term corresponds to the Born-Oppenheimer component,
which is evaluated with the equilibrium density matrix ρt corresponding to the frozen Hamiltonian
at the time t and Fnc(t) collects the nonequilibrium components. The first term corresponds to an
evolution given by a sequence of equilibrium states which are, thus, reversible and do not contribute
to the entropy production. Hence PAC(t) = Pcons(t) + Pnc

AC(t). The electric power of the batteries is
purely non-conservative (dissipative). In this way, the total power can be split into dissipative and
conservative forces Ptot(t) = Pel(t) + PAC(t) = Pdiss

tot (t) + Pcons(t), where Pdiss
tot (t) = Pel(t) + Pnc

AC(t).
As a result, the total entropy production reads,

Ṡdiss(t) =
1
T

[
∑
α

Q̇α(t) + Q̇diss
S (t)

]
= − 1

T
Pdiss

tot (t) . (25)

We have defined Q̇diss
S (t) = Q̇S(t)− Pcons(t), i.e., we identify the irreversible heat production at the

central system as the result of subtracting the power developed by the conservative AC forces to
the total heat instantaneously stored by the electrons that are in direct contact with the AC sources.
After averaging over an AC cycle, the conservative part of the heat current vanishes. Furthermore,
the heat variation in the sample also vanishes, Q̇diss

S = Q̇S = 0. The remaining terms have nonzero
averages, and hence Ṡdiss(t) ≥ 0 at all times, in agreement with the second law of thermodynamics.
This is explicitly shown in [53] within an adiabatic expansion, valid for low driving frequencies. Here,
we analyze an example beyond the adiabatic regime and show that Ṡdiss(t) ≥ 0 even though for some
times, the net heat flow at the reservoirs might be negative, ∑α Q̇α(t) < 0.
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6. Calculation of the Currents within Green’s Function Approach for Non Interacting Systems

We now consider that the central part of the system is composed by a discrete chain of N sites
(e.g., an array of quantum dots), to which many time-periodic potentials Vi(t) are applied. Then,
the Hamiltonian of the central piece reads:

HS(t) = H0
S + ∑

m
Vm(t)d†

mdm, (26)

where

H0
S =

N

∑
m=1

εm
0 d†

mdm +
N−1

∑
m=1

(
tm,m+1d†

mdm+1 + h.c.
)

(27)

is the stationary part of the Hamiltonian, with εm
0 the energy of the site m and tm,m+1 the hopping

between two consecutive sites.

6.1. Time Resolved Charge and Energy Currents Entering the Reservoirs

The charge and energy fluxes are defined from the expectation value of the time derivative of the
number of particles and the energy of the reservoir, as in Equations (13) and (17). These currents are
positive when entering the reservoir α and since [Hres, Nα] = [HS, Nα] = [Hres, Hα] = [HS, Hα] = 0,
they can be written as:

Iα(t) =
ie
h̄
〈[Hcα, Nα]〉 = −

2e
h̄

Re

{
∑
kα

wkα
G<

lα ,kα
(t, t)

}
, (28)

and

JE
α (t) =

i
h̄
〈[Hcα, Hα]〉 = −

2
h̄

Re

{
∑
kα

εkα
wkα

G<
lα ,kα

(t, t)

}
, (29)

where G<
lα ,kα

(t, t) ≡ i〈c†
kα
(t)dlα(t)〉 is a Green’s function that involves operators of the reservoir c†

kα
,

as well as the central part, dlα . From the Dyson equation and Langreth rules [61], Green’s function
above can be expressed as follows

G<
lα ,kα

(t, t) =
∫ ∞

−∞
dt1w∗kα

[GR
lα ,lα(t, t1)g<kα

(t1 − t) + G<
lα ,lα(t, t1)gA

kα
(t1 − t)] , (30)

with GR
m,n(t, t′) = −iθ(t− t′)〈{dm(t)d†

n(t′)}〉 and G<
m,n(t, t′) = −i〈{d†

n(t′)dm(t)}〉 being the retarded
and the lesser Green’s functions of the central piece, and

g<kα
(t− t′) = i

∫ ∞

−∞

dε

2π
fα(ε)ρkα

(ε)e−iε(t−t′)/h̄ , (31)

gA
kα
(t− t′) =

∫ ∞

−∞

dε

2π

∫ ∞

−∞

dε′

2π

ρkα
(ε′)

ε− ε′ − i0+
e−iε(t−t′)/h̄ , (32)

the Green’s functions of the uncoupled reservoirs, with ρkα
(ε) = 2πδ(ε − εkα

), and fα(ε) =

[e(ε−µα)/(kBT) + 1]−1 the Fermi-Dirac distribution. Then, substituting Equations (30)–(32) in
Equation (28), the charge current entering the reservoir α can be written as

Iα(t) = −
2e
h

Re
{∫

dt1

∫
dεe−iε(t1−t)/h̄

[
iGR

lα ,lα
(t, t1) fα(ε)Γα(ε) + G<

lα ,lα
(t, t1)

∫ dε′

2π

Γα(ε′)
(ε− ε′ − i0+)

]}
, (33)

where we have defined the hybridization as Γα = ∑kα
|wkα
|2ρkα

. We now consider the Dyson equation
for the lesser Green’s function [68]

G<
n,m(t, t′) = ∑

α

∫
dt1dt2GR

n,lα(t, t1)Σ<
α (t1 − t2)[GR

m,lα(t
′, t2)]

∗, (34)
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with Σ<
α (ε) = i fα(ε)Γα(ε), and we introduce the Floquet-Fourier representation [66], which is

convenient for periodic fields:

ĜR(t, t′) =
∫ dε

2π
ĜR(t, ε)e−iε(t−t′)/h̄, (35)

with

ĜR(t, ε) =
∞

∑
n=−∞

Ĝ(n, ε)e−inωt, (36)

where ω = 2π/τ is the oscillation frequency of the AC parameters V(t), and Ĝ(n, ε) are the Floquet
components. Green’s function ĜR(t, ε), can be obtained by solving the Dyson equation [66,67]:

ĜR(t, ε) = Ĝ0(ε) +
∞

∑
n=−∞

ĜR(t, ε + nh̄ω)V̂(n)Ĝ0(ε)e−inωt, (37)

with Ĝ0(ε) = [ε Î − Ĥ0
S − iΓ̂/2]−1 being the stationary retarded Green’s function and Γ̂m,n =

∑α=L,R δm,nδlα ,mΓα. The elements of the matrix V̂l,l′(n) = δl,l′ ∑i δl,iVi(n) are the Fourier components of
V̂l,l′(t) = ∑n V̂l,l′(n)einωt.

Replacing Equations (35) and (36) into Equation (33), we get

Iα(t) = −2e
h

Re

{
∑

l
e−ilωt

∫
dε
[
iGlα ,lα

(l, ε) fα(ε)Γα(ε) (38)

+ ∑
β=L,R

∑
n

iGlα ,lβ
(l + n, ε)G∗lα ,lβ

(n, ε) fβ(ε)Γβ(ε)
∫ dε′

2π

Γα(ε′)
(ε− (ε′ − nh̄ω)− i0+)

 .

It is convenient to express the charge current in terms of differences between the Fermi functions of
the reservoirs. To this end, we first explicitly write the real part as the sum of a complex number and
its conjugate

Iα(t) = − e
h

∫
dε ∑

l
ie−ilωt

[
fα(ε)Γα(ε)

(
Glα ,lα(l, ε)− G∗lα ,lα(−l, ε)

)
(39)

+ ∑
β=L,R

∑
n

fβ(ε)Γβ(ε)Glα ,lβ
(l + n, ε)G∗lα ,lβ

(l, ε)

∫ dε′

2π

(
Γα(ε′)

ε− (ε′ − nh̄ω)− i0+
− Γα(ε′ + lh̄ω)

ε− (ε′ − nh̄ω) + i0+

)]
.

Within the wide band limit, the hybridization can be considered a constant function Γα(ε) ∼ Γα. Taking
into account also the following relation

1
ε− ε′ − i0+

= P{ 1
ε− ε′

}+ iπδ(ε− ε′), (40)

we find

Iα(t) = − e
h

∫
dε ∑

l
ie−ilωtΓα

[
fα(ε)

(
Glα ,lα(l, ε)− G∗lα ,lα(−l, ε)

)
(41)

+i ∑
β=L,R

∑
n

fβ(ε− nh̄ω)ΓβGlα ,lβ
(l + n, ε− nh̄ω)G∗lα ,lβ

(n, ω− nω)

]
.

Finally, using the identity for the spectral components [68]

iGl,l′(n, ε)− iG†
l,l′(−n, ε + nω) = ∑

β=L,R
∑
n′
Gl,lβ

(n + n′, ε− n′ω)ΓβG∗l′ ,lβ
(n′, ε− n′ω), (42)
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the charge current reads

Iα(t) = − e
h

∫
dε ∑

l
e−ilωtΓα

{
iG∗lα ,lα(−l, ε) [ fα(ε− lh̄ω)− fα(ε)] (43)

− ∑
β=L,R

∑
n

ΓβGlα ,lβ
(l + n, ε− nh̄ω)G∗lα ,lβ

(n, ε− nh̄ω)
[

fβ(ε− nh̄ω)− fα(ε)
]
}.

Following the same procedure, we can express the energy current entering reservoir α in
Equation (29) as

JE
α (t) = −

2e
h

Re
{∫

dt1

∫
dεe−iε(t1−t)/h̄

[
iGR

lα ,lα
(t, t1) fα(ε)Γα(ε)ε + G<

lα ,lα
(t, t1)

∫ dε′

2π

Γα(ε′)ε′

(ε− ε′ − i0+)

]}
, (44)

where we have used inside the integral that it is possible to make the replacement εkα
δ(ε− εkα

) →
ε δ(ε− εkα

). Now, using the Floquet representation for Green’s functions and repeating the same steps
as for the charge current, we find

JE
α (t) = − e

h

∫
dε ∑

l
e−ilωtΓα

{
iG∗lα ,lα(−l, ε) [(ε− lh̄ω) fα(ε− lh̄ω)− ε fα(ε)]

− ∑
n,β=L,R

∑
n

ΓβGlα ,lβ
(l + n, ε− nh̄ω)G∗lα ,lβ

(n, ε− nh̄ω) (45)[
(ε− lh̄ω

2
) fβ(ε− nh̄ω)− ε fα(ε)

]}
.

6.2. Energy Stored in the Contact Regions

The rate of change for the energy in the contact regions JE
cα(t) = 〈Ḣcα〉 can be also expressed in

terms of Green’s function G<
lα ,kα

(t, t)

JE
cα(t) = ∑

kα

wkα

d
〈

c†
kα
(t)dlα(t)

〉
dt

+ h.c

 = −2 ∑
kα

Im

{
wkα

dG<
lα ,kα

(t, t)

dt

}
. (46)

Following a similar procedure for the charge and energy currents, we find that the energy stored
in the contact region reads

JE
cα(t) =

∫ dε

2π
ωΓα ∑

l
l

[
2Im{e−ilωtGlα ,lα (l, ε)} fα(ε) + ∑

n
∑

β=L,R
fβ(ε)ΓβRe{e−ilωtGlα ,lβ (l + n, ε)G∗lα ,lβ

(n, ε)}
]

. (47)

It is easy to show that the second term of the above equation vanishes, since:

∑
l>0

∑
n

(
l Re{e−ilωtGlα ,lβ

(l + n, ε)G∗lα ,lβ
(n, ε)} − l Re{eilωtGlα ,lβ

(−l + n, ε)G∗lα ,lβ
(n, ε)}

)

= ∑
l>0

∑
n

l
(

Re{e−ilωtGlα ,lβ
(l + n, ε)G∗lα ,lβ

(n, ε)} − Re{eilωtG∗lα ,lβ
(l + n, ε)Glα ,lβ

(n, ε)}
)
= 0.

Hence,

JE
cα(t) =

∫ dε

h
fα(ε)Γα ∑

l
lh̄ω 2Im{e−ilωtGlα ,lα(l, ε)}. (48)

Combining this expression with Equation (36), we find the expression:

JE
cα(t) =

∫ dε

2π
fα(ε)Γα2Re{∂tGR

lα ,lα(t, ε)}, (49)
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which clearly shows that this energy reactance term is of purely an AC nature since it vanishes after
time averaging.

6.3. Power Developed by the AC Sources

The power performed by the AC potential can be calculated as PAC(t) = −
〈

∂HS
∂t

〉
, which is

PAC(t) = −∑
i

dVi(t)
dt
〈d†

i (t)di(t)〉 = ∑
i

dVi(t)
dt

Im{G<
i,i(t, t)}. (50)

Now, replacing Equation (34) in the above equation , and using the Floquet representation, we get

PAC(t) = ∑
i

∑
α=L,R

∑
l,m,n

∫ dε

h
nh̄ω fα(ε)ΓαIm{Vi(n)Gi,lα(m + l, ε)G∗i,lα(l, ε)e−iωt(m−n)}. (51)

7. Relation to the Scattering Matrix Formalism

In this section, we show that the definition of the heat current in Equation (23), which includes
the contribution JE

cα due to the contact α, is fully in agreement with the scattering matrix formalism.
From Equations (43), (45) and (48), the heat reads

Q̇α(t) = ∑
l

∫ dε

h
e−ilωtΓα

{
iG∗lα ,lα (−l, ε)(ε− lh̄ω

2
− µα)( fα(ε)− fα(ε− lh̄ω)) (52)

− ∑
n

∑
β=L,R

(ε +
lh̄ω

2
− µα)( fα(ε)− fβ(ε− nh̄ω))ΓβGlα ,lβ (l + n, ε− nh̄ω)G∗lα ,lβ

(n, ε− nh̄ω)

}

Within the scattering matrix approach, the heat flux entering the reservoir α reads [75,83]

Q̇S
α(t) = ∑

l,n
e−ilωt

∫ dε

h
(ε +

lh̄ω

2
− µα) ∑

β=L,R
( fβ(ε−n)− fα(ε))S∗αβ(ε, ε−n)Sα,β(ε l , ε−n), (53)

where εn = ε + nh̄ω and S(εn, ε l) is the Floquet scattering matrix which is related to the Green function
via the generalized Fisher-Lee relation [68]

Sαβ(εm, εn) = δα,βδm,n − i
√

Γα(εm)Γβ(εn)Glα ,lβ
(m− n, εn). (54)

Using this relation, we find that

Q̇S
α(t) = ∑

l,n

∫ dε

h
e−ilωt(ε +

lh̄ω

2
− µα) ∑

β=L,R
( fβ(ε− nh̄ω)− fα(ε)) (55)

×G∗lα ,lβ
(n, ε− nh̄ω)

{
iδαβδl,−n

√
ΓαΓβ + ΓαΓβGlα ,lβ

(l + n, ε− nh̄ω)

}
,

Then, after some algebra and by comparing with Equation (52), we have Q̇S
α(t) = Q̇α(t).

8. Low Frequency Expansion

For low frequencies of the driving potentials, a solution of the Dyson equation (37) up to O(ω)

can be obtained by expanding in powers of the AC frequency as

ĜR(t, ε) ∼ Ĝ0(ε) + ĜR(t, ε)V̂(t)Ĝ0(ε) + ih̄∂εĜR(t, ε)
dV̂(t)

dt
Ĝ0(ε). (56)
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Now, we can define the frozen Green’s function

ĜR
f (t, ε) =

[
Ĝ0(ε)−1 − V̂(t)

]−1
, (57)

in terms of which the exact solution of Equation (37) up to first order in ω reads

ĜR(t, ε) = ĜR
f (t, ε) +

ih̄
2

(
∂2

∂t∂ε
ĜR

f (t, ε) + Â(t, ε)

)
, (58)

with
Â(t, ε) = ∂εĜR

f (t, ε)V̂(t)ĜR
f (t, ε)− ĜR

f (t, ε)V̂(t)∂εĜR
f (t, ε). (59)

Note that this expression is valid to lowest order in ω, but can be used for arbitrary values of
the amplitude VAC [28,68]. This is specially appealing if one is interested in addressing nonlinear
effects [65,84,85]. The validity of the adiabatic approximation considered here was confirmed in [86]
by a comparison with an exact calculation in the limit of low level occupations.

We can also expand the Floquet components Ĝ(n, ε) up to first order in ω as

Ĝ(n, ε) ∼ Ĝ(0)(n, ε) + h̄ωĜ(1)(n, ε), (60)

Then, using the representation of Equation (36) in Equation (58), it is possible to identify the first and
second terms of the expansion:

Ĝ(0)(n, ε) =
∫ τ

0

dt
τ

ĜR
f (t, ε)einωt

ωĜ(1)(n, ε) =
∫ τ

0

dt
τ

i
2

(
∂2

∂t∂ε
ĜR

f (t, ε) + Â(t, ε)

)
einωt. (61)

9. Application

We now illustrate our main ideas with a simple but generic example: a single driven level coupled
to two fermionic baths kept at the same temperature, but with different chemical potentials, µL = µ

and µR = µ− δµ. The Hamiltonian of the sample is then

HS = εd(t)d†d , (62)

where the level is periodically driven with a monochromatic potential of frequency ω and amplitude
VAC, εd(t) = ε0 + V(t) with V(t) = VAC cos ωt. The response of the system will be periodic. Another
possibility is to explore heat dynamics in the transient regime, usually in quantum levels whose
potential is suddenly changed by an externally-applied voltage pulse. Thermoelectric efficiency can
thus be enhanced by a suitable time-dependent potential applied to a quantum dot level far from
equilibrium [32,87]. Based on a nonequilibrium Green’s function approach, [88] investigates the
transient heat current using a complex absorbing potential, greatly reducing the complex calculation
of the heat current through a molecule connected to metallic leads and under a gate voltage pulse.
Indeed, the transient heat current of a quantum dot in response to a voltage shift can reveal signatures
of electronic interaction despite the inherent Coulomb repulsion [89]. The full counting statistics of the
quantum energy flow can also be determined for the transient regime, showing universal scaling laws
in the single quantum dot case [90]. When the system consists of two levels coupled to a thermal bath,
the transient dynamics is sensitive to the employed theoretical formalism (master equation approach
or functional influence method) [71].

Here, we restrict ourselves to mean currents. However, their fluctuations can provide us with
useful information. For instance, fluctuations of heat beyond the level dictated by the Callen-Welton
fluctuation-dissipation theorem signal the presence of backscattering [41]. Furthermore, the energy
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noise reveals additional information not contained in the charge current fluctuations [42]. The novel
features are related to electron-hole correlations arising in phase-coherent small conductors driven by
periodic voltage biases. The mixed noise between correlations of charge and energy currents shows
both interference and transport contributions, and is unique as compared with either charge or energy
noises [43–47].

9.1. Adiabatic Regime and Linear Response in the Bias Voltage

For small bias voltage, it is possible to combine the procedure described in Section 8 with an
expansion in δµ. To calculate up to second order in ω and δµ the heat current of Equation (52), the AC
power in Equation (51), and the power developed by the batteries in Equation (20), we need to perform
an expansion of the Fermi functions entering the integrals as:

fα(ε + nh̄ω) ' fα(ε) + ∂ε fαnh̄ω + ∂2
ε fα

(nh̄ω)2

2
, (63)

with

fL(ε) ≡ f (ε) (64)

fR(ε) ' f (ε) + ∂ε f δµ + ∂2
ε f

δµ2

2
. (65)

Accordingly, we can compute all of the fluxes entering Equation (25). Then, up to second order in
ω and δµ, the total dissipative power Pdiss

tot reads:

Pdiss
tot (t) = Lδµ2

(t)δµ2 + Lω2
(t)ω2, (66)

where the transport coefficients are:

Lδµ2
(t) =

∫ dε

h
∂ε f ΓLΓR|GR

f (t, ε)|2 (67)

Lω2
(t) =

h̄
2ω2

∫ dε

2π
∂ε f Γ2|∂tGR

f (t, ε)|2,

where Γ = ΓL + ΓR is the total hybridization. Notice that, as is shown is [33] for systems with
time-reversal symmetry, the terms that are proportional to ωδµ do not contribute to the total
dissipated power.

Following a similar procedure in Equation (52) and then subtracting Equation (66), we find that
the dissipated heat flux of the central piece is

Q̇diss
S (t) = Lω

d (t)ω + Lωδµ
d (t)ωδµ + Lω2

d (t)ω2 , (68)

with

Lω
d (t) = −

∫ dε

2π
∂ε f (ε− µ)Γ|GR

f (t, ε)|2Vacsin(ωt) ,

Lωδµ
d (t) =

∫ dε

2π
ΓR∂ε f (ε− µ)∂ε|GR

f (t, ε)|2VACsin(ωt) , (69)

Lω2

d (t) =
h̄

2ω2

∫ dε

2π
Γ2∂ε f (ε− µ)∂t(∂εGR

f (t, ε)∂tGR
f
∗
(t, ε)).
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In Figure 3 (upper panel) we show the total heat generated in the reservoirs as a function of
time for zero temperature (red dashed line) and nonzero temperature (blue line). In the latter case,
an individual heat flux can become negative but the total dissipated heat must be positive for all
temperatures, as shown in Figure 3 (lower panel). Note that one should also take into account the
contribution from the sample, which is purely dynamical (Figure 3 (middle panel)) and vanishes for
zero temperature.
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Figure 3. Adiabatic regime of a single driven quantum level coupled to two fermionic baths.
The different components of the total heat production Qdiss

tot (t) = −Pdiss
tot (t) as a function of time.

Dashed lines correspond to reservoirs at T = 0, while solid lines are for kBT = 0.02. Energies are
expressed in units of ΓL. The energy of the level evolves in time with VAC = −8 and h̄ω = 1× 10−3.
Parameters: µ = 1, δµ = 0.004, ε0 = 0 and hybridization widths ΓL = 1 and ΓR = 0.5.

9.2. Nonadiabatic Regime

We now consider the entropy production for high driving frequencies, where the linear response
approach of Section 9.1 is not applicable. The evaluation of the currents implies the evaluation of the
exact Dyson equation (37) following the methods of [66,67]. A similar situation was analyzed in [91],
where it was found that the rate of change for the nonadiabatic energy agrees with the work done on a
molecule subjected to a time-dependent applied field. The work in [92] discusses heat transfer across a
triple dot structure with the nonadiabatic driving applied to an edge dot.

In our case, we focus on reservoirs at zero temperature for simplicity. We see in the figure
that, unlike the adiabatic case, the heat flux at the reservoirs may attain negative values for short
(but finite) time intervals (see Figure 4 (upper panel)). Nevertheless, we emphasize that the total
entropy production is always positive at every instant (see Figure 4 (lower panel)). For this to occur
the dissipated heat at the sample must be nonvanishing and positive (see Figure 4 (middle panel)).
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Figure 4. Nonadiabatic regime of a single driven quantum level coupled to two fermionic baths at
T = 0. The different components of the total heat production Qdiss

tot (t) = −Pdiss
tot (t) as a function

of time. The energy of the level evolves in time with VAC = 0.7 and h̄ω = 0.3. Parameters:
µ = 0.2, δµ = 0, ε0 = 0, and hybridization widths ΓL = ΓR = 0.5. Energies are expressed in
units of Γ = ΓL + ΓR. The upper panel shows that the heat flux at the reservoirs may instantaneously
attain negative values. The dissipative heat flux at the driven dot Qdiss

S (t) is highly fluctuating but the
sum of the two contributions satisfies Qdiss

tot (t) ≥ 0, consistent with the second law.

10. Conclusions

The subject of time-dependent heat in quantum electronic systems presents unique aspects as
compared with the better understood macroscopic case. In this work, we have briefly reviewed the
recent developments in the field. On the basis of general thermodynamic arguments and conservation
laws we have presented exact equations for the time-resolved energy conversion in a quantum
system in contact with AC driving sources and reservoirs at which DC bias voltages are applied.
These equations lead to the unambiguous definition of the total heat and production in the full
system containing the central driven device, the reservoirs and the contacts between the different
parts. These results are independent of the particular method used to evaluate the physical quantities
involved. In order to get the exact solution of an example we have used, for convenience, a Green
function technique as in [52,53]. Of course, the physical picture is beyond the method employed to
solve the particular problem.

We have also analyzed the possibility of defining the heat flows not only resolved in time but
also in space, in the sense of identifying flows in the reservoirs and through the piece that is in
contact with the AC sources. How to properly perform this split in a physically-meaningful way is
a non-trivial task. Intuitively, we expect that deep in the reservoirs, we should have an equilibrium
system. For adiabatically-driven systems, we have found that this seems to be, indeed the case. Then,
by suitably generalizing the definition of the time-dependent heat current. We argue that the proper
generalization is given by Equation (23), which implies taking into account the rate of change of the
energy stored at the reservoir plus half of the one stored at the contact. Such a definition leads to
results compatible with scattering matrix expressions for continuum models, and to the derivation of a
Joule law when the reservoirs are at zero temperature.

However, for highly non-equilibrium driving at the central piece and strongly-coupled reservoirs,
it is not obvious at all if we should ever recover an equilibrium state at every instant, even deep
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inside the reservoirs. In fact, we have analyzed the example of a single-level system driven by a
high-frequency gate voltage in contact with reservoirs at zero temperature and we have found that the
definition of the instantaneous heat current at the reservoirs (Equation (23)) that leads to meaningful
physical results in the adiabatic regime may be negative at some instants, meaning a temporary flow of
heat exiting the reservoirs. This result is accompanied by a finite value of what we have identified as
the heat flow in the central piece. The sum of both contributions leads to a net instantaneous positive
value of the total entropy production. Hence, the result is in agreement with the second law, albeit
non-intuitive. This is because the natural expectation is to have a dissipative energy flow only into the
reservoirs and not in the central device. This is, in fact, the case when we consider the average over
one period of the driving. However, instantaneously, and for non-equilibrium situations, the exact
equation for the entropy production is given by Equation (25), which contains contributions associated
to the reservoirs, contacts and the central device. The second law implies that the sum of all these
contributions should be positive but no fundamental law imposes independent conditions on the
individual terms. Finally, we have commented on the difficulties of accessing experimentally a reliable
test of the time- and spatially-resolved heat transport discussed in the present work.
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