
Submitted 5 June 2016
Accepted 30 September 2016
Published 2 November 2016

Corresponding author
Ramiro J.A. Ovejero Aguilar,
rovejero@mendoza-conicet.gob.ar

Academic editor
Patricia Gandini

Additional Information and
Declarations can be found on
page 12

DOI 10.7717/peerj.2640

Copyright
2016 Ovejero Aguilar et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

The Ecology of Stress: linking life-
history traits with physiological control
mechanisms in free-living guanacos
Ramiro J.A. Ovejero Aguilar1,2,3, Graciela A. Jahn4, Mauricio Soto-Gamboa1,
Andrés J. Novaro5 and Pablo Carmanchahi3

1 Laboratorio de Ecología Conductual, Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias,
Universidad Austral de Chile, Valdivia, Chile

2 Laboratorio de Interacciones Ecológicas, Instituto de investigaciones den zonas áridas
(CONICET-MENDOZA-LIE-IADIZA), Mendoza, Argentina

3Grupo de Investigación de Eco-fisiología de Fauna Silvestre (GIEFAS), Asentamiento Universitario
de San Martín de los Andes (AUSMA), Universidad Nacional del Comahue
(INIBIOMA-CONICET-AUSMA-UNCo), Neuquén, Argentina

4 Laboratorio de Reproducción y Lactancia, Universidad de Mendoza (IMBECU-CCT-MENDOZA),
Mendoza, Argentina

5Programa Estepa-Andino Patagonica-CONICET-PATAGONIA NORTE-INIBIOMA, Neuquén, Argentina

ABSTRACT
Background. Providing the context for the evolution of life-history traits, habitat fea-
tures constrain successful ecological and physiological strategies. In vertebrates, a key
response to life’s challenges is the activation of the Stress (HPA) and Gonadal (HPG)
axes. Much of the interest in stress ecology is motivated by the desire to understand
the physiological mechanisms in which the environment affects fitness. As reported in
the literature, several intrinsic and extrinsic factors affect variability in hormone lev-
els. In both social and non-social animals, the frequency and type of interaction with
conspecifics, as well as the status in social species, can affect HPA axis activity, result-
ing in changes in the reproductive success of animals. We predicted that a social envi-
ronment can affect both guanaco axes by increasing the secretion of testosterone (T)
and Glucocorticoid (GCs) in response to individual social interactions and the ener-
getic demands of breeding. Assuming that prolonged elevated levels of GCs over time
can be harmful to individuals, it is predicted that the HPA axis suppresses the HPG
axis and causes T levels to decrease, as GCs increase.
Methods. All of the data for individuals were collected by non-invasive methods (fe-
cal samples) to address hormonal activities. This is a novel approach in physiologi-
cal ecology because feces are easily obtained through non-invasive sampling in animal
populations.
Results. As expected, there was a marked adrenal (p-value= .3.4e−12) and
gonadal (p-value= 0.002656) response due to seasonal variation in Lama
guanicoe. No significant differences were found in fecal GCs metabolites between
males/females*season for the entire study period (p-value= 0.2839). Despite the
seasonal activity variation in the hormonal profiles, our results show a positive
correlation (p-value= 1.952e−11, COR= 0.50) between the adrenal and gonadal
system. The marked endocrine (r2 = 0.806) and gonad (r2 = 0.7231) response due to
seasonal variation in male guanaco individuals highlights the individual’s energetic
demands according to life-history strategies. This is a remarkable result because no
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inhibition was found between the axes as theory suggests. Finally, the dataset was used
to build a reactive scope model for guanacos.
Discussion. Guanacos cope with the trade-off between sociability and reproductive
benefits and costs, by regulating their GCs and T levels on a seasonal basis, suggest-
ing an adaptive role of both axes to different habitat pressures. The results presented
here highlight the functional role of stress and gonad axes on a critical phase of a male
mammal’s life—the mating period—when all of the resources are at the disposal of
the male and must be used to maximize the chances for reproductive success.

Subjects Ecology, Zoology
Keywords Stress ecology, Reproduction, Lama guanicoe, Sociality, Non-invasive methods,
Hormonal profiles in wildlife

INTRODUCTION
Natural selection shapes phenotypic traits that permit organisms to respond appropriately
to intrinsic and extrinsic factors (Darwin, 1959; Roff, 1992; Stearns, 1992; Bozinovic, 2002;
Nespolo, Bacigalupe & Bozinovic, 2003; Clutton-Brock et al., 2001). Phylogeny and genetic
variation among organisms determine the resource allocation trade-offs among life-
history traits (e.g. age-specific growth, reproduction and survival schedules, and socia-
bility). Environmental, ecological, and demographic processes (extrinsic factors) create
selective pressures that impinge on an organism’s lifetime fitness (Stearns, 1992; Zera
& Harshman, 2001). Therefore, understanding life-history variation among taxa from
an evolutionary perspective requires an understanding of the physiological mechanisms
that link genes with phenotype and how extrinsic factors regulate trade-offs between
survival and reproduction. Furthering our knowledge of ecophysiological mechanisms,
and particularly endocrine mechanisms, is key to understanding how life-history variation
and trade-offs arise and are retained (Ketterson & Nolan Jr, 1999; Zera & Harshman, 2001;
Crespi et al., 2013; Becker, 2002; Von Holst, 1998; Jacobs & Wingfield, 2000).

The stress response is a mechanism by which an individual of a given species copes
with environmental changes (stressors) (Boonstra, McColl & Karels, 2001;Wingfield, 2005;
Romero, Dickens & Cyr, 2009; Ovejero & Carmanchahi, 2012; Ovejero, 2013; Boonstra et
al., 2007). Perception of a stressful situation activates the sympathetic adrenomedullary
system and the hypothalamic pituitary adrenocortical (HPA) axis (Mostl & Palme, 2002;
Busch & Hayward, 2009; Sapolsky, Romero & Munck, 2000). Activation of the HPA axis
stimulates the release of steroid hormones (glucocorticoids GCs, e.g., corticosterone,
cortisol). GCs in turn activate the mobilization of energy necessary to cope with adverse
environmental conditions (Dallman et al., 2007; Sapolsky, Romero & Munck, 2000).

In the last 30 years, the term stress has been strongly criticized due to its ambiguity
and several authors have researched the allostasis theory and attempted to connect
biomedical and ecological data (McEwen &Wingfield, 2003; Romero, Dickens & Cyr,
2009; Romero, Dickens & Cyr, 2009. Allostasis is the daily and seasonal process that allows
organisms to maintain physiological parameters (homeostasis) within life-sustaining
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ranges, which occur via allostatic mediators (McEwen &Wingfield, 2003). The allostatic
model generated criticism and Romero, Dickens & Cyr (2009) proposed the reactive scope
model, attempting to retain the strengths but avoid the weaknesses of the allostatic model.
The present work contributes to the debate about the applicability of the allostatic model
to nature.

Extrinsic factors, like anthropogenic disturbance, biological invasions, or climate
change (in terms of allostasis) can negatively affect behavior, reproduction, immune
function and growth through prolonged activation of the HPA axis (Moberg, 1991;
Boonstra & Singleton, 1993; Goymann &Wingfield, 2004; Pride, 2005; Pereira, Duarte
& Negrão, 2006). Glucocorticoids (GCs) are often considered the allostatic mediators
of the stress response, and they have been the focus of research for decades (Sapolsky,
Romero & Munck, 2000; Ovejero, 2013; Cavigelli, 1999; Levine, 2005;Möstl, Rettenbacher
& Palme, 2005; Raouf et al., 2006; Romero, 2004; Romero & Remage-Healey, 2000; Sheriff
et al., 2009; Sheriff et al., 2011; Smith et al., 2012; Soto-Gamboa et al., 2009; Tarlow &
Blumstein, 2007; Touma & Palme, 2005; Vera, Zenuto & Antenucci, 2012;Wasser et al.,
2000;Wingfield & Sapolsky, 2003). Much less is known, however, about the role of GCs’
in free-living animals (Bonier et al., 2009). The role of baseline or stress-induced GC in
the modulation of an individual or populations performance, is still essentially unknown.
Understanding, social factors and their endocrine correlates (baseline measures of GCs
and T) in wild animals has potential implications for wildlife management, population
ecology, reproductive biology and evolution. The social environment is therefore one
of the primary sources of information that can induce allostatic responses (Boonstra,
McColl & Karels, 2001; Rubenstein & Shen, 2009; Creel et al., 2013; Blanchard, McKittrick
& Blanchard, 2001). It’s expected that in both social and non-social animals, the frequency
and type of interaction with conspecifics, as well as status in social species,can affect HPA
and HPG axis activity and ultimately the reproductive success of animals.

During the breeding season of many mammals, males commonly increase testosterone
levels in response to social stimuli such as presence of male competitors or potential
mates (Enstrom, Ketterson & Nolan Jr, 1997; Cavigelli & Pareira, 2000; Sinervo et al.,
2000; Ostner & Kappeler, 2002; Soto-Gamboa, Villalon & Bozinovic, 2005; Schradin,
2008; Creel et al., 2013). This physiological mechanism (androgen response) modulated
by social environment, is likely to be mainly important when considering their roles
(testosterone-mediated traits) in the evolution of mating systems and life histories
(Wingfield et al., 1997; Knapp & Moore, 1997; Faulkes & Abbott, 1997; Hirschenhauser
& Oliveira, 2006; Young et al., 2006; Rubenstein & Shen, 2009;McGlothlin et al., 2010;
Creel, 2001; Lofts & Marshall, 1960). In addition, testosterone levels can also affect female
preference (Enstrom, Ketterson & Nolan Jr, 1997), thus influencing fitness through both
intra and intersexual selection; (Sinervo et al., 2000). Although the role of short-term
androgen changes has not been completely described, these have long been associated
with territoriality (McGlothilin et al., 2010). The ‘‘Challenge Hypothesis’’ (first described
in bird studies) predicts that androgen levels and agonistic interactions are positively
related and are socially-context dependent (Wingfield et al., 1997). Among mammals,
these predictions have recently been tested, and a positive correlation was found between
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social cues and testosterone levels associated with territorial defense, group formation,
social dominance and hierarchy formation during the breeding season (Muller &
Wrangham, 2004; Creel et al., 2013). Consequently, social stressors provide a context
where the individual must respond to a series of repeated stressors over time, depending
on the frequency and intensity of the stimulus, and this can lead to various physiological
problems, (see Sapolsky, 2002; Côte, 2000).

Much of the variation in life histories strategies reflects individuals’ phenotypic
responses to environmental challenges and perceived risks. The adrenal and gonadal
system strongly influence behavior, control the annual cycle of development, modulate
behavioral and physiological responses to the environment, and establishes important
incompatibilities in life stages. It provides a model for studying the connections between
mammal physiology and life history. Guanacos (Lama guanicoe) are the largest social
artiodactyls of South America, and these organisms have a polygynous resource-defense
mating system. This wild and endemic camelid has been successfully used as a study
model of behavioral interactions De Lamo et al., 1998; Franklin, 1983;Marino & Baldi,
2008; Taraborelli et al., in press ecological studies (Puig & Videla, 1995; Bank, Sarno &
Franklin, 2003; Puig et al., 2008; Acebes et al., 2009; Ovejero et al., 2011; Ovejero, 2013;
Marino & Baldi, 2014; Radovani et al., 2004; Puig & Rabinovich, 1995; Raedeke, 1979;
Young & Franklin, 2004) and management (Montes et al., 2005; Bonacic & Macdonald,
2003; Zapata et al., 2004), but information about the guanaco’s physiological ecology
remains scarce. More recently, guanacos have also been used as a model of stress response;
a study was conducted to determine how management including handling, shearing,
and release induce changes in circulating steroid hormones (Carmanchahi et al., 2011);
however, this work was based on an invasive sampling method.

To understand how physiology mediates the relationship between life history and
the environment, we predict that: (A) Social environment positively will affect the HPG
and HPA axes by raising the secretion of T and GCs due to individual social interactions
and the energetic demands of the breeding season; (B) Male guanacos will show seasonal
variation in the activity of their adrenal and gonadal systems, which perform incompatible
functions in different life stages (survival vs reproduction); (C) Prolonged elevated
baseline levels of GCs in male guanacos due to long periods of intense social interaction
will be detrimental, costly, and decrease fitness, and we would expect that in this case
HPA inhibits the activity of the HPG. Together, these predictions provide a description
of the reactive scope model and an understanding of how physiological mechanisms
might constrain patterns of variation in wild South-American camelid life histories.
These predictions might also provide the basis for future mammalian studies targeted at
understanding phenotype-environment interactions.

METHODS
Ethics statement
The present study did not warrant capturing or handling protected or endangered ani-
mals. All of the data for individuals were collected by non-invasive methods
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(fecal samples) to address hormonal activities. This is a novel approach in physiological
ecology because feces are easily obtained through non-invasive sampling in animal
populations. This is important because the handling necessary for collection of plasma
can confound estimates of baseline GC measurements. The described field studies were
carried out in a protected area with a permit (files:NO 4350-000019112/Res 238) from the
DRNR (Dirección de Recursos Naturales Renovables, Mendoza).

Non-invasive methods to address hormonal activities
Fresh fecal samples were collected from 334 wild adult male guanacos from La Payunia
reserve (36.000S and 36.360S; 68.340W and 69.230W, South of Mendoza Province,
Argentina). The samples were collected during 7 field surveys (15 days each month)
over the course of a year. Fresh feces samples were collected from focal individuals
(one sample per each individual) and were labeled according to the sample location,
time, sex, age and social structure (family group, bachelors group and solitary male).
To slow microbial activity and to reduce immunoreactivity problems, the samples were
frozen immediately in liquid nitrogen and stored at−20 ◦C until the time of analysis
(Laboratorio de reproducción y lactancia-LARLAC-IMBECU-CONICET-MENDOZA).
Fieldwork was conducted during the breeding and non-breeding months to assess
seasonal variation in hormone levels. We choose this period (from September to March)
because during the beginning of the breeding season, guanaco males are exposed to
intense social instability caused by agonistic interactions with other males due to territory
establishment and hierarchies (Ovejero, 2013) and at the end males are exposed to female
defense interactions. This suggests that for guanaco males, female or territory defense
strategies demand higher energetic costs. This is expected if one assumes that defending
a female or territory are the principal objective (and target) of a male that wants to
maximize the probabilities of leaving an offspring. We expected that this behavioural
expression have physiological mechanism that could explain this difference. During the
non-breeding season (from April to August), a period with less intense social interactions,
we expected lower activity on hormonal mechanism.

Furthermore, 100% of the sampling surveys were done in the same sites. Steroids were
extracted from lyophylized fecal samples according to a protocol developed for fecal
steroid metabolite extraction for free-range ungulates (for more detail, see Ovejero, 2013;
Buchanan & Goldsmith, 2004;Mateo & Cavigelli, 2005). The commercial125I-cortisol
and 125I-testosterone RIA-KITS (BECKMAN, Coulter Company IM-1841/IM-1119-
Immunotech-, Prague, Czech Republic) were used to quantify the levels of cortisol and
testosterone in the samples (for more detail, see Ovejero, 2013). The analytical sensitivity
of the cortisol assay is 3.075 ng/mL. The antibody used in the immunoassay is highly
specific for cortisol (100% cross-reaction). The cross-reactivity to other naturally occur-
ring steroids is very low, for example: aldosterone <0.1%; 8.4% corticosterone; cortisone
1.5%; 11-desoxy-cortisol 18%, etc. The analytical sensitivity of the testosterone assay is
0.025 ng/mL. The antibody used in the immunoassay is highly specific for testosterone
(100% cross-reaction). The cross-reactivity to other naturally occurring steroids is
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very low, for example: 0.00014% aldosterone; estrone <0.3%; 0.08 androsterone; 5-
Dihydrostestosterone 10% α; 11β-Hydroxytestosterone 2%; corticosterone 8.4%; 1.5%
cortisone; cortisol 11-deoxy-18%, etc. In addition, all samples were assayed in triplicate
(extraction efficiency test) and duplicate (binding and parallelism test) and reanalyzed
whenever the resulting coefficient of variation exceeded 20%. Intra- and inter-assay
coefficients of variation of GCs-immunoassay were 6.5% and 11.2% and for testosterone
immunoassays were 9.5 and 13.4%, respectively.

Statistical analyses
Welch two sample T-tests were used to evaluate the seasonal variation response of steroid
hormones. Furthermore, two-way ANOVAs were used to evaluate the interaction between
sex and season. Generalized linear models were developed (n polynomials function=
f (x)= anXn

+an1−1Xn
−1+an−2Xn

−2+ ...) to describe the hormonal profiles and their
seasonal variation in response to the environment. Moreover, a Pearson’s correlation was
used to test the activity association between the adrenal and gonadal system throughout
the year. All statistical analyses were conducted using R statistical software version 3.1.0
(R Development Core Team, 2012).

RESULTS
Ecological process and fecal-hormone profiles in wild guanacos
As expected, there was a marked adrenal (t = 7.4016,df = 302.174, p-value= 1.344e−12,
1-α (0.90)= 7.661734–12.057391, mean= 25.75864/15.89907 breeding and non-
breeding season respectively) and gonadal (t = 3.2873,df = 28.948, p-value= 0.002656,
1-α(0.90)= 0.6213–1.9508, mean= 3.209810/1.923700 breeding and non-breeding
season respectively for male groups) GCs and T response due to seasonal variation in
Lama guanicoe individuals. This highlights the individual’s energetic demands according
to life-history strategies. No significant differences were found in the amounts of fecal
GC metabolites between males/females*season for the entire study period (F = 1.0757,
df = 143.529, p-value= 0.2839; male: ng/gr= 22,42,1-α (0.90)= 1.6887, std-e= 0.86,
n= 251; female:ng/gr= 20,71,1-α (0.90)= 2.6079, n= 76, std-e= 1.33). This result
was not expected as it was thought that there would be a difference in the allocation of
resources to cope with the different roles that that males and females have in a population.
Despite the seasonal activity variation in the hormonal profiles, our results show a positive
correlation (t = 7.1524,df = 184, p-value= 1.952e−11, CI= 0.3457400 0.5719168,
COR= 0.50) between the adrenal and gonadal system; both peaks of activity concur
with the reproductive season. Our last prediction states that prolonged elevated baseline
levels of GCs due to long periods of intense social interaction are detrimental, costly and
decrease fitness; it is expected that in this context, HPA inhibits the activity of the HPG.
The marked endocrine (y = 0.0743x5− 1.9677x4+ 19.136x3− 82.442x2+ 147.4x −
58.902;r2 = 0.806) and gonad (y = 0.0041x5− 0.1102x4+ 1.0889x3− 4.6819x2+
7.914x − 0.7892;r2 = 0.7231) response due to seasonal variation in male guanaco
individuals (Fig. 1) highlights the individual’s energetic demands according to life-history
strategies. This is a remarkable result because no inhibition was found between the axes as
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Figure 1 HPA &HPG axis activity patterns throughout the study period. Blue line, the seasonal base-
line fecal testosterone profile (defined by y = 0.0041x5− 0.1102x4+ 1.0889x3− 4.6819x2+ 7.914x −
0.7892;r2 = 0.7231), Pink line, the seasonal baseline fecal cortisol profile (defined by y = 0.0743x5 −
1.9677x4+ 19.136x3− 82.442x2+ 147.4x − 58.902;r2 = 0.806). There was marked adrenal and gonadal
activity during the breeding and non-breeding (CI= 7.661734–12.057391, mean= 25.75864/15.89907 re-
spectively) season respectively for the male groups, the GCs and T response was due to seasonal variation
in the guanacos highlighting the individual’s energetic demands according to life-history strategies.

theory suggests. Finally, the dataset was used to build a reactive scope model for guanacos,
see Fig. 2. Most studies measure only one physiological mediator at a time; here the
concentration of two mediators is placed on the y-axis for a given time point. This was
done because these mediators are correlated in the functional role that each one plays in
the normal reactive scope range. In other words, both mediators encompass responses
to cope with predictable and unpredictable changes in the environment. Our result
shows the ranges of predictive/reactive homeostasis and homeostatic overload/failure.
These ranges consist of the seasonal set of point ranges for the physiological mediators.
The mediators are correlated in terms of the functional role that each one plays in the
normal reactive scope range. In other words, both mediators encompass responses for
coping with predictable and unpredictable changes in the environment. The values of
each mediator are presumed to exist in four general ranges. The minimum (5–10 Ng.gr
for C; 1–2 Ng.gr for T) and maximum (20–35 Ng.gr for C; 3–4 Ng.gr for T) concentration
of the mediator was presumed to constitute a threshold. The results show the ranges of
predictive/reactive homeostasis (PH/RH) and homeostatic overload/failure, the stress-
gonadal and feedback response indicates the max–min activity patterns for HPA & HPG
axis during one year. These results consist of the seasonal set of point ranges for the
physiological mediators.
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Figure 2 The reactive scope model for guanacos.Most studies measure only one physiological mediator
at a time, here the concentration of two mediators (cortisol-C /testosterone.T) is placed on the y-axis at
a given time point. The mediators are correlated in terms of the functional role that each one plays in the
normal reactive scope range. In other words, both mediators encompass responses for coping with pre-
dictable and unpredictable changes in the environment. The values of each mediator are presumed to ex-
ist in four general ranges. The minimun (5–10 Ng.gr for C; 1–2 Ng.gr for T) and maximun (20–35 Ng.gr
for C; 3–4 Ng.gr for T) concentration of the mediator was presumed to constitute a threshold. The results
show the ranges (double arrows) of predictive/reactive homeostasis (PH/RH) and homeostatic overload-
/failure, the stress-gonadal and feedback response (gray circles) indicates the max-min activity patterns
for HPA & HPG axis during one year. The C activity patterns in guanacos shows two peak of RH (dotted
lines) in the reproductive season, between Ag./O. males adopts a territory-defense strategies at the begin-
ning of the reprod. season; during Ja./F. males changes to a female-defense strategies at the ends of the re-
prod. season. These results consist of the seasonal set of point ranges for the physiological mediators.

DISCUSSION
Our results confirm the prediction that ‘‘Social environment positively affects the HPG
and HPA axes by raising the secretion of T and GCs due to individual social interactions
and the energetic demands of the breeding season.’’ Further to this, our results suggest
that social environment and breeding season are stressful scenarios for male guanacos.
These scenarios are seen to produce associated costs such as increased metabolic rate and
energy expenditure due to: territorial/female defense (male-reproduction strategies), male
social dominance hierarchies, reproduction, and increased exposure to predators during
the breeding season. If the data value observed in March is taken as a baseline cortisol
level, cortisol is seen to increase by one and a half times during the non-breeding season
and three times during the breeding season. If the March testosterone measurement
is taken as the basal testosterone level, the same pattern is seen; the hormonal profile
increases during the non-breeding and breeding seasons. This highlights the importance
of the functional roles of the HPA and HPG axes during the reproductive period, as well
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as the adaptive roles they play in the seasonal pattern observed, allowing the species to
meet environmental challenges as well as challenges throughout its life cycle.

From the results gathered in this study, different inmunoreactive GCs and T secretion
patterns were observed according to the mating system and reproduction strategies (terri-
torial defense and female defense) that guanaco males (of a migratory population) adopt
during the breeding season (Ovejero, 2013). Our results highlight the functional role of
the stress and gonad axes during the critical mating period when all of the resources at a
male’s disposal must be used to maximize the chances of reproductive success. Generally,
it appears that T is immediately involved in aggression associated with reproduction,
rather than with other forms of aggression (e.g., anti-predator aggression,Moyer, 1968;
Marler et al., 1988). The data here presented support the correlation between T patterns
and reproductive strategies (establishment and maintenance of a breeding territory and
mate-guarding) proposed byWingfield et al. (1990) for male birds. However, this study
extends the findings of Wingfield et al. (1990) to mammals. In 1984, the same authors
proposed that males of polygynous species may have higher levels of T for longer periods
during the breeding season than do males of monogamous species. Our results highlight
the functional role that T levels have in determining and maintaining the polygynous
mating system in guanacos, but we predict that this pattern could be altered in guanaco
populations that coexist with human activities that fragment the guanaco’s normal
distributional range. For example, the use of fences by rural settlers has a direct impact
on the space used by guanacos, and it is possible that this could promote some groups
(within a population) to adopt monogamous behavior (Marino & Baldi, 2008).

On the other hand, our results highlight the notorious decrease in the activity pattern
of the stress and gonadal axes during the non-breeding season. This result was not ex-
pected because individuals must cope with another critical phase of autumnal migration
at this time, therefore we expected that all of the resources (in terms of energy) would be
available to maximize the chances for survival success during the migration trip. These
results confirm our prediction that ‘‘guanacos show a seasonal variation in the activity
of their endocrine and gonadal systems and incompatible functions (reproduction an
self-maintenance) are established during different life stages.’’ In winter, food intake
by birds and mammals needs to be geared towards preventing starvation while at the
same time maintaining an optimum body mass to permit rapid escape from predators.
GC concentrations may be the critical factor determining the size of the fat reserves and
either environmental severity or predation risk (Wingfield et al., 1990). The GC hormone,
corticosterone, is thought to be important in the physiological orchestration of avian
migration because of the identified elevated level of activity of the avian adrenal gland
either prior to or during migration (Naik & George, 1963; John, 1965; Peczely, 1976).
Preparation for migration and for winter requires a period of hyperphagia and a laying
down of fat reserves (for a review, see Holberton, 1999). In birds,Wingfield & Silverin
(1986); Astheimer, Buttemer & Wingfield (1992) and mammals, Dallman et al. (1993), GCs
play a vital role in foraging behavior and hyperphagia, with low to moderate concentra-
tions stimulating feeding behavior. As is noted by O’Reilly & Wingfield (1995)migrating
birds show increased baseline concentrations of GCs but a reduced stress response. An
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adaptive explanation for this pattern is the migration modulation hypothesis, Holberton,
Parrish & Wingfield (1996) and Holberton (1999). It proposes that higher than average
concentrations of baseline GCs are expressed prior to and during migration to facilitate
migratory fattening. However, the stress response is lowered when challenged so that
the negative, catabolic effects of high GCs on skeletal muscle do not occur; thus, critical
skeletal muscles are preserved for flight during migration. As such, this hypothesis may
explain the non-breeding season hormonal profiles generated in this study, but more
data is needed to test these assumptions. Another explanation may suggest that migration
(in terrestrial system) could be regulated by other endocrine mechanisms (and other
hormones) involved in generating fat reserves and foraging behavior such as those that
involve the thyroid gland Schwabl, Wingfield & Farner (1984).Mattocks (1976) shows
that gonad hormones (at least in some species) have a functional role (fat deposition)
before spring migration. This may suggest that the increased activities of the gonad axis
compared with the stress axis in guanacos could have an important role in the ‘‘migration
to and from the winter range’’, but to confirm this prediction more experimental and field
studies would be needed.

The last prediction of this study, that ‘‘prolonged elevated baseline levels of GCs due to
long periods of intense social interaction will be detrimental, costly and decrease fitness’’
was not validated by the results gathered. Our interest in the relationships between social
or environmental conditions and stress-gonadal hormone concentrations (for both
social and non-social species) is motivated by a desire to understand the physiological
mechanisms by which the environment affects fitness. However, understanding the
relationship between hormonal profiles and fitness is not straightforward, therefore this
study attempts to obtain proxies that would help us begin to resolve this relationship.
We consider that taken together, the interplay between stress/gonad hormones across
seasonal variation could be an interesting proxy to ‘‘establish’’ causal relationships
between hormonal levels and ecological correlates. For example, some authors have stated
that prolonged elevated baseline levels of GCs are commonly viewed to be detrimental,
costly and decrease fitness (Bonier et al., 2009). However, there is scarce evidence for
this negative association. Part of the problem with this approach is the variation among
species in terms of their hormones/fitness relationships, and this variation can be
attributed to a variety of demographic, social (e.g., social rank, age, sex, group size)
or environmental factors (e.g., resource availability). Additionally, for a variety of
vertebrate taxa, seasonal variation in GC levels has been reported to be due to varying
food availability, temperature, rainfall and tourist activity (Romero, 2002; Tempel &
Gutierrez, 2004; Kenagy & Place, 2000); however, it still remains unclear if this holds true
for mammals. The other issue is that many of the studies of HPA-fitness relationships
reviewed by Bonier et al. (2009) were conducted during the breeding season alone. The
study herein presented provides a full set of data (hormone profiles) across seasonal
variation throughout the course of an entire year. As expected, guanacos cope with this
trade-off between sociability and reproductive benefits and costs by regulating their GCs
and testosterone levels on a seasonal basis like other mammals (Boonstra, 2005), and they
may also experience fine adjustments on a daily basis. We suggest that elevated levels of
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GCs in guanacos due to highly social interactions during the breeding season may play
a fundamental role in the regulation of enhanced metabolic needs during reproduction.
Guanaco males, like other iteroparous males, exhibit high concentrations of cortisol,
a gonadal axis that is not inhibited by high GC concentrations, so the last prediction
presented in this work must be rejected. Furthermore, during the breeding season, our
results show two GC peaks of activity, one at the beginning and another at the end of the
breeding season. In the former, guanaco males are exposed to intense social instability
caused by agonistic interactions with other males due to territory establishment and
hierarchies. In the latter, guanaco males are exposed to female defense interactions.
This suggests that for guanaco males, female defense strategies demand higher energetic
costs when compared to territory defense strategies. This is expected if one assumes that
defending a female (rather than a territory) is the principal objective (and target) of a
male that wants to maximize the probabilities of leaving an offspring. Moreover, birth rate
data for the population was collected from 2007–2008 (hormonal measures)-2009, so if
one expects a negative relationship between the hormonal profiles, one would also expect
to see a negative value for the proportion of offspring per adult. The birth rate values for
those years were 0.14, 0.28 and 0.29 respectively; thus with these results one can expect
that there is no detrimental effect on individual-population fitness.

The lesser HPA axis activity measured during the non-breeding season confirms the
prediction ‘‘that reproduction and sociability may be long-term and predictable.’’ This
is likely the case because this period is associated with fewer social interactions. The
individual hierarchies are more relaxed because the animals are preparing to migrate (A
Novaro, pers. comm., 2015) and the species strategy at this time is to survive and to not
reproduce.

Finally from the data collected here, a reactive scope model for guanacos has been
generated. The results show the ranges of predictive/reactive homeostasis and homeostatic
overload/failure ranges; these consist of the seasonal set of point ranges for the physio-
logical mediators. For guanacos, the normal reactive scope is described with two GCs and
T set point ranges. The model was made to reflect the natural progression of life-history
stages such as breeding. Furthermore, the minimum concentration of the mediator was
presumed to constitute a threshold. Subsequently, a GC and T threshold was proposed,
and below this limit it is seen that the individual/population enters into homeostatic
failure. This threshold is predicted to indicate the minimum concentration of GCs and
T mediator necessary to sustain guanacos seasonal life changes (in natural conditions).
However, more studies are needed to test this prediction. On the other hand, above
the upper end of the normal reactive scope, when a physiological mediator exceeds the
reactive homeostatic range, the individual/population enters into homeostatic overload
(pathological states). This threshold is predicted to indicate the maximum concentration
of GCs and T mediator necessary to sustain seasonal life changes in guanacos (in natural
conditions). However, more studies are needed to test this prediction especially consid-
ering that pharmacological stimulation may allow individuals to reach a higher threshold
though this would not be considered within the scope of natural changes.
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CONCLUSIONS
Knowledge of physiological and behavioral mechanisms is key to understanding how life-
history variation and trade-offs might arise and help organisms cope with environmental
variation. Mechanistically, trade-offs result from the need to differentially allocate limited
resources to traits like reproduction versus self-maintenance, with selection favoring the
evolution of optimal allocation mechanisms. Guanacos cope with the trade-off between
sociability and reproductive benefits and costs by regulating their GCs and T levels on a
seasonal basis. This seasonal regulation suggests the adaptive and functional role of both
axes in regulating energy allocation for predictable life-history events (like reproduction).
During breeding, and event with highly social interactions, elevated baseline levels of GCs
and T may actually be predictive of high reproductive success. From this, we propose
that guanacos anticipate stressors with acute impacts and the duration is moderated by
physiological consequences (i.e. reproduction). During the non-breeding season, a period
with less intense social interactions, lower baseline levels of GCs and T may actually be
predictive of a high probability of survival. Our study provides a model for further study
of the links between physiology and life history.

Studying both the HPA and the HPG axes was an informative approach to understand
the functional mechanisms that animals use to cope with stress. Studying these two axes
simultaneously is important because the key circulating steroid hormones of the stress
axis, GCs, influence the expression of approximately 10% of the genome. Some of the
targets of GCs include genes controlling metabolism, growth, repair, reproduction, and
management of resource allocation (Le et al., 2005). However, both axes play fundamental
roles not just when animals are experiencing stress, but also during normal periods of
survival and growth. Therefore, these axes mediate the adaptation of the organism to its
environment. At the individual level, the stress axis plays a key role in allowing animals to
respond to the changes and challenges of both environmental certainty and uncertainty.
At the species level, the stress axis plays a central role in evolutionary adaptation to
particular ecological pressures.
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