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Abstract

We herein propose a new robust estimation method based on random pro-

jections that is adaptive and, automatically produces a robust estimate, while

enabling easy computations for high or infinite dimensional data. Under some re-

stricted contamination models, the procedure is robust and attains full efficiency.

We tested the method using both simulated and real data.
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1 Introduction

In the problem of robust estimation in high dimensional and functional data, a number

of different issues arise that cause the well known robust multivariate estimators to fail,

and new ideas are required to address these.

Before stating our proposal, we first review the origins of robustness in order to

identify some of the main ideas necessary to guide us in this complex problem.

Ronchetti (2010) who stated that “the primary goal of robust statistics is the de-

velopment of procedures which are still reliable and reasonably efficient under small

deviations from the model, i.e. when the underlying distribution lies in a neighborhood

of the assumed model. Robust statistics is then an extension of parametric statistics,

taking into account that parametric models are at best only approximations to reality.

The field is now some 50 years old. Indeed one can consider Tukey (1960), Huber (1964),

and Hampel (1968) the fundamental papers which laid the foundations of modern robust

statistics.”
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The median. For one dimensional data, the oldest robust estimates are the median

and the α–trimmed means. The median is in several respects the ‘most robust’ consistent

possible location estimate, and great efforts have been made to extend the median and

the trimmed means to higher dimensions. The extension of these two simple notions to

multivariate data took place via the two main avenues of impartial trimmed means and

the concepts of data depth. For the multivariate case Gordaliza (1991) introduced the

procedure of impartial trimmed means, which was then extended by Cuesta and Fraiman

(2006) for functional data to obtain resistant estimates of the center of a functional

distribution. More recently, several proposals considering trimming procedures have

been introduced, among them Dolia et al (2007) and Cuevas et al (2008). A number

of depth definitions have been introduced for multivariate data, the best known being

the Tukey Depth (Tukey, 1975) and the Simplicial Depth (Liu, 1988) and an interesting

review of this subject is provided by Serfling (2006). For the case of functional data,

several proposals have recently been made, including Fraiman and Muniz (2001), Cuevas

and Fraiman (2009), Gervini (2010), among others.

Diagnostic and automatic robust procedures. Two complementary approaches

were developed to achieve robustness. Broadly speaking, the different procedures used

to flag outliers are known as diagnostic procedures, while the term ‘robustness’ refers to

statistical procedures that are insensitive to the effect of outliers. As observed by Serfling

(2006), for each depth function one can find a function associated with outlyingness.

Hence, several of the foregoing procedures can help in the detection of outliers, such as

the proposals of Fraiman and Muniz (2001) and Gervini (2010). Febrero et al (2008)

introduced a depth measure for functional data that they used for the identification of

outliers.

Many procedures for the identification of outliers have been introduced, among them

Rousseeuw and Van Zomeren (1990), Peña and Prieto (2001) and Febrero et al (2007).

In robustness, a class of estimators can be defined in general in terms of the optimiza-

tion of a specified target functional for the population version of the estimate. Maronna

et al (2006), in Chapter 6, presented a detailed review of the different estimates of

location and scatter for the multivariate case, describing the properties of each.

In diagnostics, the problem lies in the identification of sub–samples whose deletion

maximally changes a statistic of interest as measured by an appropriate target function.

The diagnostic procedure straightforward for one dimensional data, but becomes

much more difficult for multivariate data. This is also the case for automatic robust

procedures.

Adaptive estimates. In the early 1970’s, some adaptive estimates were proposed

for the location model. The word adaptive implied that the estimate adjusted itself
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in some way to the data concerned. The simplest idea was to consider an M-estimate

using Huber’s ψK function, where the parameter K (that compromises robustness and

efficiency) depends on the data, i.e. K = K(X1, . . . , Xn) (see for instance Yohai, 1974).

Roughly speaking, if there are no outliers on the sample, the estimate would tend to

choose large values of K, while choosing smaller values of K correspond to samples that

have outliers. These interesting ideas have been neglected ever since.

Neighborhoods. The question arises whether full neighborhoods should be used

for some distances between probabilities, or contamination neighborhood should. As

mentioned above, we expect robust procedures to be stable under a small deviation

from the model, i.e., when the underlying true distribution P lies in the neighborhood

of the assumed model P0. Some descriptions of neighborhoods are therefore required. We

consider two types, the first being, Pε,D = {P : D(P, P0) < ε}, where D is an appropriate

distance between probabilities, derived from, for example Prohorov, Kolgomorov or

Wasserstein metrics. The second type is of the form Pε = {P : P = (1 − ε)P0 + εQ},
where Q is an arbitrary probability measure. Typically, Pε ⊂ Pε,D, which is the case

for Prohorov or Kolmogorov (total variation) distances, for example, Pε is particularly

appealing, however. It may be perceived that with probability (1 − ε), an observation

of the sample comes from a distribution P0, while for probability ε it comes from Q.

Recently, Alqallaf et al (2009) considered non standard data contamination models, such

as componentwise outliers.

Several notions and measures of robustness have been defined to provide a detailed

description of the robustness characteristics of an estimate. The main ideas are:

• Solving minimax problems in a neighborhood of the “true” model. The first ap-

proach to formalize the robustness problem was that of Huber‘s (1964, 1981) mini-

max theory, where the statistical problem is viewed as a game between the Nature

(which chooses a distribution in the neighborhood of the model) and the statisti-

cian (who chooses a statistical procedure in a given class). The statistician achieves

robustness by constructing a minimax procedure that minimizes a lost criterion

in which the worst possible distribution in the neighborhood is considered.

• Qualitative robustness. The notion of qualitative robustness was introduced by

Hampel (1968) in terms of the equicontinuity of the distribution of the estimate

with respect to the Prohorov distance between probabilities.

• Measures of robustness. We herein briefly describe the most important measures

of robustness. The influence curve is the infinitesimal approach was introduced

by Hampel (1968) within the framework of robust estimation. The finite sample

breakdown point (introduced by Donoho and Huber, 1983) of an estimate is the
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maximum number of observations that can be replaced arbitrarily while the es-

timate remains bounded (or far away from the boundary of the parameter space

when the parameter space is compact). The maximal asymptotic bias as a func-

tion of the contamination fraction, measures the worst behavior of an estimate

under a fixed proportion of contamination.

Equivariance properties. We expect that any reasonable estimate would only

depend on the data, and not on the coordinates axis nor on the scale considered. In the

one dimensional problem, the equivariance properties are just the location and the scale

equivariance. In the multivariate case, this corresponds to the location equivariance,

the orthogonal equivariance, and the global scale equivariance. These properties are

still sensible in the infinite dimensional case. However, in the finite dimensional case,

the affine equivariance properties often also required. However, this last condition is far

from mandatory, and could also be a bad idea. For instance, for contours of multivari-

ate quantiles, the requirement of affine equivariance implies that the contours will be

convex sets, losing the important features shown by the non–convex versions that are or-

thogonal, translation and scale equivariant but not affine equivariant. We consider that

the affine equivariance requirement is inadequate for both high and infinite dimensional

data. Alqallaf et al (2009) proved that standard high-breakdown affine equivariant esti-

mators propagate outliers under componentwise contamination when the dimension d is

high. There are many examples of estimates of location and scatter that are not affine

equivariant but have many appealing properties (see for instance Maronna and Zamar

(2002) or Fraiman and Pateiro-Lopez (2011)).

Computational burden. Most of the robust estimates for multivariate data, par-

ticularly those that have improved properties of robustness, are very expensive from a

computational point of view and, their computation is unfeasible for high dimensional

data. This is also the case with some of the data depth based estimates. In the multivari-

ate case, several attempts have been made in recent years to overcome these problems,

by considering resampling algorithms on the initial candidates that allow a substan-

tial reduction in the number of candidates required to obtain a good approximation to

the optimal solution (see for instance Van Aelst and Rousseeuw, 2009 or Salibian and

Yohai, 2006). In the case of high dimensional or functional data, it is essential that the

estimates can be computed in a reasonable time.

Random projections. The idea of using random projections has been already

used by several authors in many different contexts. An appealing theoretical framework

for the use of random projections can be found in Cuesta, Fraiman and Ransford (2006,

2007).

We herein propose a new robust estimation procedure based on random projections
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that is data–adaptive, produces automatic robust estimates and combines ideas from

the diagnostic framework. In addition it has very low cost when applied to high or

infinite dimensional data. The method yields robust estimates that are location and scale

equivariant and are also invariant under unitary operators (orthogonal transformations

in the finite dimensional case).

The remainder of the paper is organized as follows. In Section 2 we present our

general method, and we exemplify with location and scatter estimates. In Section 3 we

provide some asymptotic results. Section 4 is devoted to analysis of the performance

of the procedure on simulations of the finite dimensional case and also for the case of

functional data. In Section 5 we analyze an example using real data. Section 6 includes

some final remarks.

2 Our setup

We start by fixing some notation. Let H be a real separable Hilbert space, with inner

product < ·, · >, and the induced norm ‖ · ‖H =: ‖ · ‖. X denote a random element in H
with distribution P in a contamination neighborhood of P0, our “target distribution”.

The data are given by a random sample X1, . . . , Xn of iid random elements with the

same distribution as X.

We are interested in estimating different parameters, including the mean, the covari-

ance operator, and the principal components of a random element X0 with distribution

P0 based on the sample X1, . . . , Xn. The problem lies in the fact that the distribution

of the data is given by P rather than P0.

We assume that E(X0) = µ0 is finite and that the covariance operator ΣX0 , is

positive definite when H is finite dimensional and compact and self-adjoint if H is infinite

dimensional.

Our aim is to introduce a general method of obtaining consistent robust estimates in

this framework that is both suitable for different problems and computationally feasible.

If we were able to select the sub–sample Xi1 , . . . , Xim of those random elements that

have distribution P0, from the sample X1, . . . , Xn , the problem becomes trivial. We

may apply usual “non–robust” estimates to the “good data”.

We propose a trimming scheme based on random projections to select a sub–sample

Xi1 , . . . , Xim , which we hereafter denote the RT–procedure. The maximum number of

observations to be trimmed is α (0 < α < 0.5). The goal “is to discard only those

observations that are far apart from the bulk of the data”. Our method is adaptive in
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that it stops searching for outliers in a data dependent way.

In the presence of outliers that lie far away from the bulk of the data, there are

always several directions u, ‖u‖ = 1 (a set of positive probability on the unit sphere with

respect to the induced probability measure) where on the projected data, {< X1, u >

, . . . , < Xn, u >}, the outliers are distant from the majority of the observations. If an

observation is an outlier this phenomenon is observed in many directions. Therefore,

the maximal gap of the one dimensional projected data, will be large, or more precisely,

larger than expected. We recall that the maximal gap is the maximum distance between

two contiguous observations. On the other hand, those observations that are deep in

the bulk of the data set also have deep one dimensional projections in every direction.

However, we may have a shadow cone, where the projected outliers are “hidden” for

some directions u, as shown on Figure 1.

We seek to define a pruning criterion that combines these two facts. We consider two

parameters, the first being α, α ∈ [0, 0.5], the maximal trimming rate, the second being,

maxiter, the maximal number of random directions that we generate before deciding

that all the outliers have been removed.

gn=2.28
gn=0.21

Figure 1: The projections on the direction of the y axis are useful to detect the outliers,

the projections on the direction of y = −x are on the shadow cone.

The subsample selection algorithm.

The following procedure should be repeated either bnαc times (where bkc represents

the largest integer smaller than or equal to k) or until the number of random directions

generated, numdir, reaches maxiter, i.e. while numdir ≤ maxiter.

• Set numdir = 1.

• Generate a direction h at random according to a non-degenerate gaussian measure

ν .

• Project the data on that direction, Y h
i =< Xi, h >.
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• Sort the projected observations in ascending order Y h
(1) ≤ · · · ≤ Y h

(n).

• Consider the maximum gap gn = maxi=1,...,n−1 |Y h
(i+1) − Y h

(i)|.

• If gn ≥ cd, † trim the observation whose one–dimensional projection is most distant

from the median of the projected observations, i.e. Xi such that i = argmax{|Y h
i −

Ỹ h| for i = 1, . . . , n} where Ỹ h = median
(
Y h

(1), . . . , Y
h

(n)

)
.

• Else if gn < cd, set numdir = numdir + 1.

We denote to be γ the effective trimming rate, i.e., the actual rate of observations

that have been reduced.

The value of the threshold cd on † should be related to the limiting behavior of

the largest spacing. Deheuvels (1984), characterized it in terms of the local behavior

of the density of the observations (in our case the one dimensional projections) in the

neighborhood of the point at which it reaches its minimum value. According to Theorem

4, he proved that if the distribution has compact support and the density is bounded

away from zero, i.e. there exits x0 such that f(x) > f(x0) > 0 for every x0 ∈ Support(f),

and if f has first derivative then, lim infn→∞
ngnf(x0)−log(n)

log(log(n))
= −1.

This result suggest to take (for sufficiently large values of n) cd = k log(n)−log(log(n))
nf(x0)

,

where k is a suitable constant greater than 1. There are many univariate distributions

that do not have compact support, among which the normal distribution is probably

the best known. In practice all the observable data sets have bounded support, hence

our consideration of this expression might enable us to determine a useful threshold.

Remark 1. If H is a finite dimensional space the random directions can be generated

according to an uniform distribution on the unit sphere.

Finally, we compute the ordinary (non–robust estimate) of our target parameters.

For instance, the ML mean and covariance estimates are computed only with those

observations that have not been trimmed. This implies, that if we assign weight w(Xi) =

wi = 0 to those observations that have been pruned and w(Xi) = wi = 1 to the

remainder of the observations, then the mean and the covariance function estimates are

given by

µ̂ (t) =

∑n
i=1 wiXi (t)∑n

i=1wi
,

Σ̂ (s, t) =

∑n
i=1 wi (Xi (s)− µ̂) (Xi (t)− µ̂)∑n

i=1 wi
,

respectively, where
∑n

i=1 wi = n− bγnc.

7



Equivariance properties

The estimates are equivariant under translations, re–scaling and orthogonal transfor-

mations. Indeed, it follows from the fact that the weights assigned to the observations

are not affected by these operations, because we know that the usual mean and covari-

ance estimates are not affected by them.

It is clear that a shift and re–scaling with a positive constant will not affect the order

statistics of the projections, and so the trimmed observations will be the same. Also, if

T is an orthogonal transformation, then 〈Xi, h〉 = 〈TXi,Th〉 (because it is an isometry),

which means that as the projections do not change, so neither do the weights.

3 Some comments on the asymptotic behavior

Let X1, . . . , Xn be iid random elements with the same distribution as X defined on

(Ω,A), and h1, . . . , hk iid random directions on the unit sphere, independent ofX1, . . . , Xn

and defined on (Ω′,A′). After performing the algorithm we obtain a subset of random el-

ements Xi1 , . . . , Xim , where m ≤ n is random, and each Xij(ω, ω
′), j = 1, . . . ,m depends

on the set of random elements {X1, . . . , Xn, h1, . . . , hk}.

The distribution of X is P = (1− ε)P0 + εQ, where P0 is the core distribution, Q is

an arbitrary contamination and ε ∈ [0, 0.5).

Let Pm(ω, ω′) be the empirical measure associated with the set of random elements

{Xi1 , . . . , Xim}.

We wish to identify the conditions under which Pm converges weakly towards P0,

which would imply that for any continuous functional T (P ), the estimate defined as

T (Pm) will converge to T (P0), i.e., we obtain almost sure consistency without assuming

any kind of symmetry.

Let X0 be a random element with distribution P0. As mentioned above we assume

that E(‖X0‖2) is finite and the covariance operator ΣX0 , is positive definite when H is

finite dimensional and compact and self-adjoint if H is infinite dimensional. Without

any loss of generality we also assume that E(X0) = 0.

We now introduce the following hypotheses:

A1. P = (1− ε)P0 + εQ, for some 0 ≤ ε < 0.5.

A2.- X0 has a bounded support S0, and Q is such that its support SQ verifies that

d(S0, SQ) ≥ δ > 0.

This means that the outliers are far from the bulk of the data.
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A3.-For all h, ‖h‖ = 1, X0(h) :=< X0, h > has a derivable density fh that fulfils

inf
t∈Sh

|fh(t)| > η, (3.1)

for some η > 0, where Sh represents for the support of fh.

Let {Xj1 , . . . , Xjr} be the subset of {X1, . . . , Xn} with P0, Pr being the corresponding

empirical distribution, and In = {j1, . . . , jr}.

Because of A1, we may assume that Xi = ZiXi0 + (1−Zi)XiQ, i = 1, . . . , n, where

X10, . . . , Xn0 are iid random elements with distribution P0, X1Q, . . . , XnQ are iid random

elements with distribution Q and Z1, . . . , Zn are iid random variables with distribution

Bernoulli(ε), being independent the three sets of random elements.

The aim is to show that dΠ(Pm, P0) → 0 a.s., where dΠ stands for the Prohorov

distance when n → ∞, and k = k(n) → ∞ at an appropriate rate. This would imply

that for any continuous functional T (P ), the estimate defined as T (Pm) would converge

to T (P0). Moreover, we show that in the finite dimensional case, the final estimates

will attain “full–efficiency”, meaning that the output of the algorithm will be the set of

random elements with distribution P0. In the infinite dimensional case, an additional

assumption will be required in order to attain the “full-efficiency”. Otherwise, under

some symmetry conditions on the distribution P0, regardless of the distribution Q, the

estimate will still be consistent.

A sketch of the proof may be made on the following lines:

First we prove that since ε < 0.5, for a sufficiently large n we have that r > n − r
a.s.

Since r =
∑n

i=1 Zi, this is equivalent to show that
∑n

i=1 Zi > n −
∑n

i=1 Zi a.s. for

sufficiently large n, which follows because by the Hoeffding inequality we have that

P (
∑n

i=1 Zi >
n
2
) ≤ e−2n(0.5−ε)2 , and ε < 0.5.

Second, we show that given Xi with distribution P0 and any Xj with distribution

Q, for ω in a subset of probability 1 on Ω, there exists δ1(ω) > 0 and a set of strictly

positive probability of directions on Ω′ for which

| < Xi, h > − < Xj, h > | > δ1(ω). (3.2)

Indeed, by assumption A2 , we have that < Xi − Xj, Xi − Xj >> δ for all j such

that Xj has distribution Q, with probability 1. There is therefore a cone of directions

h where (3.2) holds.

This implies that in the presence of outliers, for sufficiently large values of k we can
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find as many directions as are required for which the maximal spacing of the projected

data is be larger than δ1.

Recall that the value of the threshold cd on † is related to the limiting behavior of

the largest spacing. Deheuvels (1984) characterized it in terms of the local behavior

of the density of the observations (in our case the one dimensional projections) in a

neighborhood of the point where it attains its minimum spacing. On Theorem 4, he

proves that if the distribution has compact support and the density is bounded away

from zero, i.e. there exits x0 such that f(x) ≥ f(x0) > 0 for every x ∈ Support(f), and

if f has first derivative then

−1 = lim inf
n→∞

ngnf(x0)− log(n)

log(log(n))
< lim sup

n→∞

ngnf(x0)− log(n)

log(log(n))
= 1, a.s.,

thus, the maximal spacing gn behaves like log(n)±log(log(n))
nf(x0)

, which converges to zero

sufficiently quickly.

Our threshold, which is a constant, is defined as, cd = k log(n)−log(log(n))
nf(x0)

, where k is a

suitable constant greater than 1.

Since r > n−r, the median of the projected data must lie between mini∈In < Xi, h >

and maxi∈In < Xi, h >.

The foregoing statements and assumption A3 imply that for directions h fulfilling

(3.2) the maximal spacing will be achieved between some < Xi, h > and < Xj, h > for

Xi with distribution P0 and Xj with distribution Q or for both Xi, Xj with distribution

Q. In both cases an observation with distribution Q will be deleted. Therefore, for

sufficiently large values of k, all outliers will be deleted.

The foregoing proofs are insufficient, however. We already know from the previous

assertion that for large enough values of k the set {Xi1 , . . . , Xim} ⊂ {Xj1 , . . . , Xjr}, but

we must still prove that the set Xi1 , . . . , Xim “behaves as an iid sample of P0”, and that

m→∞. To achieve this goal we need conditions more stringent than (3.1) to hold (see,

(3.3) below).

For each fixed direction h1, let gr(h1) denote the maximal spacing of the set {<
Xj, h1 >: j ∈ In}, with cardinal r. From assumption A3, and the fact that cd >
log(r)+log(log(r))

rf(x0)
we have that P (gr(h1) > cd i.o.) = 0, and thus, gr(h1) < cd for r ≥ r1(ω)

for almost all ω ∈ Ω.

If that holds, then

P (max
1≤l≤k

gr(hl) > cd i.o.) = 0, (3.3)

for a sequence k = k(n) → ∞, the procedure will end with exactly all observations on

the set {Xj1 , . . . , Xjr}, and the estimate will attain full efficiency.
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In the finite dimensional case, (3.3) is a consequence of assumption A3 (see Propo-

sition 1 below), but this is not the case in the infinite dimensional setting.

Otherwise, we would need to require some symmetry assumptions of the pair (T, P0).

More precisely, we would require that

• X0 has a symmetric distribution around µ := E(X0), i.e. X0 − µ and µ − X0

have the same distribution, and that T (P0) = T (τK(P0)), where τK(P0) is the

distribution of a truncation of the random variable X0, i.e. τK(X0) = X0IB(µ,K).

• The density fh(t) is a decreasing function around < µ, h > for all h,

to obtain consistency. Indeed, it is be a consequence of the symmetry and Theorem 4

in Deheuvels (1984), where it is shown that for any δ > 0, there exists almost surely

a value of N such that, for any n ≥ N , the maximal spacing interval is included in

(x0 − δ, x0 + δ).

Proposition 1. Assume that S0 ⊂ Rd the support of P0 is a compact connected set with

Lebesgue boundary set null, i.e. |∂S0| = 0, and that there exists η > 0 such that the

density of X0 fulfills f > η on S0. Given a sample {X1, . . . , Xn} of iid random vectors

with distribution P0, let

∆n(P0) = sup
r∈R

{
∃ x ∈ Rd with x+ rB(0, 1) ⊂ S0 \ {X1, . . . , Xn}

}
,

be the maximal multivariate spacing. We then have that

i) There exists a compact set S1, S0 ⊂ S1 ⊂ Rd, |S1| = 1/η, |∂S1| = 0 such that

P (∆n(P0) > c) ≤ P (∆n(P1) > c), ∀c > 0,

where ∆n(P1) is the maximal spacing corresponding to a uniform random sample

U1, . . . , Un on S1.

ii) P (max1≤l≤k gr(hl) > c) ≤ P (∆n(P1) > c), for all c > 0.

iii)

nVn − logn− (d− 1)loglogn− logα →ω U,

where Vn = ∆n(P1)d |B(0,1)|
|S1| , U has the extreme value distribution P (U ≤ u) =

e−e
−u

and α and is a known constant. Moreover,

d− 1 = lim inf
n→∞

nVn − logn
loglogn

≤ lim sup
n→∞

nVn − logn
loglogn

= d− 1, a.s.
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Proof. The proof of i) is based on a coupling argument. We first demonstrate it for the

simple case of d = 1. It may be assumed without loss of generality that S0 = [0, 1],

and f(x) > η ∀ x ∈ [0, 1]. Let g be the uniform distribution on S1 = [0, 1
η
], and

U1, . . . , Un iid random variables uniformly distributed on [0, 1]. Let F and G stand

for the cumulative distribution functions, and define Xi = F−1(Ui), Yi = G−1(Ui),

iid samples with distribution F and G respectively. Since for any pair i, j, F (Xi) =

G(Xi), F (Xj) = G(Xj), and the derivative of F is uniformly greater than that of G,

we have that |Xi −Xj| < |Yi − Yj|, which concludes the proof.

The argument for d > 1 is a little more involved and can be found in Ferrari et al.

(2011).

ii) Let X(1)(x) be the nearest neighbor of x among X1, . . . , Xn. For any h, ‖h‖ = 1,

and for any pair i, j we have that | < h,Xi > − < h,Xj > | ≤ ‖Xi −Xj‖. Therefore,

max
1≤l≤k

gn(hl) ≤ ∆n(P0), (3.4)

and the conclusion follows from (3.4) and i).

iii) These results were obtained by Janson (1987, Theorem1).

4 Simulations

In this Section we discuss the performance of the location, correlation estimates proposed

herein, as well as robust principal components estimates. In Subsection 4.1 we analyze

the finite dimensional case and the infinite dimensional case is considered in Subsection

4.2. In both cases we compare the RT–estimate with other classical robust estimates

and with a benchmark, which is defined below.

4.1 Finite Dimensional Case

We report on the results of a Monte Carlo study, the aim of which was to compare

the performance of the Random Trimming (RT) estimates for location and the correla-

tion matrix. It is well known, that the distributions of the original data set P and the

trimmed data set P̃ are different, and if P is elliptical the center µ, coincides with the

center µ̃ of P̃ . However, the covariance estimate Σ of P and the covariance estimate Σ̃

of P̃ have the same shape but differ by a constant c. In order to avoid this problem,
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we estimated the correlation matrix for every case that did not depend on constants.

Another approach could have been the computation the minimum and maximum eigen-

values or the matrix condition number. We herein compare our estimates with two

different estimates and a benchmark, which we describe below.

a) The Minimum Volume Ellipsoid (MVE) estimate. The MVE estimate was intro-

duced by Rousseeuw (1987); among all the ellipsoids {x : d(x, µ,Σ) < c} that contain

at least half the data points, the one given by the MVE estimate has the minimum

volume. Since the computation of this estimate numerically is very expensive unless p

and n are small, a sub–sampling procedure as described by Maronna et al. (2006) is

carried out, we denote these estimates (MVEF). We consider these estimates because,

despite being very inefficient, they achieve the highest possible breakdown point, if the

points are in a general position (this means that no hyperplane contains more than p

points). In addition, these estimates are the initial estimates usually considered for the

computation of S-estimates, and a number of statistical programs, including S-plus, R

and SAS, have internal routines to compute them. In these cases the covariance matrix

estimation also differs from that of the population by constant, then we compute the

correlation matrix.

b) As a benchmark, we compute the mean and correlation classical estimates from

the data sets without outliers, and we denote these trick estimates. It is clear that this

benchmark attains the best possible behavior.

c) Recently, Gervini (2010) introduced a trimmed estimate for location and scatter,

mainly with a view to handling functional data but it was also defined for general Hilbert

spaces. Again the idea was to trim the observations that are far away from the bulk of

the data set. For each observation Xi he defines the α– radius, ri, α ∈ [0, 0.5], to be the

radius of the smallest ball centered on Xi that contains 100α% of the observations. In

the second stage he trimmed the 100β%, β ∈ [0, 0.5], of the observations with higher ri.

We denote these Inter–distances Trimmed Estimates (IT).

Figure 2 shows an example where the performances of the RT and IT estimates are

very different. The data are displayed in Figure 2 (a); the grey points correspond to

the central distribution and the green ones are the outliers. The contamination rate is

20%. In Figures 2 (b) and (d) the red dots correspond to the observations trimmed by

considering the IT procedure where the trimming rates were 20 and 40% respectively. In

the first case it was only the outliers that were trimmed, while in the second case some

observations from the core distribution were also pruned. In Figures 2 (c) and (d) the

pink dots correspond to the observations trimmed by the RT procedure for trimming

rates of 20 and 40% respectively. In both cases only the outliers were trimmed.

We consider samples of size n = 100 on dimensions p = 10, 20 and 40. In all cases a
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Figure 2: Scatter–plot of the data with the outliers in green (a), trimmed observations

by IT 20%, RT 20%, IT 40% and RT 40% ((b),(c),(d) and (e)) are shown in a different

color.

fraction (1−ε) of the observations xi were taken from a multivariate normal distribution,

and the remaining observations are point wise outliers x0 . Because of the equivariance

properties of all the estimates considered in this study, the normal observations were

taken with a mean of zero and the identity covariance matrix. Moreover, the values of

x0 were taken to have the form x0= (x0, 0, . . . , 0) and x0 took values of 3, 7 and 11.

For the case of the RT-estimate, a direction was considered to be suitable for trimming

if the length of the one dimensional gap is bigger than a constant as established on

Deheuvels (1984) we took k = 3 and f(x0) = 0.0044, which corresponds to ϕ(3), where

ϕ is the density of a standard normal distribution. The search is carried out in less

than 100 random directions. In the case of the IT-estimates we consider α = 0.5, as

suggested by Gervini (2010). In both cases the trimming proportions were 10, 30 and

50% of the data, for the RT–estimates this was the maximum allowable trimming and

for the IT–estimates this is the effective pruning rate.

First, we compared the location estimates, and the results are given on Tables 1

and 2. In every case the RT–estimates outperform MVE and MVEF. The behavior

of the IT–estimate is remarkable, specially if the outliers are far away from the bulk

of the data. If 10% of the observations are outliers and the same amount of data are

pruned there are several configurations where the MSE of the trick estimate is achieved.

The RT–estimates also perform very well, in that they are better than the IT-estimate

if x0 = 3, but not if x0 = 7 or 11. It is important to note that the MSEs for the

RT–estimates do not change with the trimming rate, due to the application of a wise

trimming strategy.

Tables 3 and 4 show the MSEs for the estimated correlation matrices. In this case the

behavior of the RT–estimates is noteworthily, achieving the MSE of the trick estimate,

and in almost every circumstance, this method outperforms the others.

Finally, we briefly discuss the computation time. It is well known that MVE is

very slow for high dimensional data sets. In our simulations, the MVE is on average
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Epsilon=0.1

Trick MVE MVEF IT RT

p x0 0.5 0.7 0.9 0.5 0.7 0.9

10 3 0.10 0.16 0.18 0.25 0.19 0.15 0.13 0.13 0.13

7 0.10 0.28 0.19 0.14 0.12 0.10 0.23 0.23 0.23

11 0.10 0.36 0.15 0.14 0.12 0.10 0.14 0.14 0.15

20 3 0.10 0.15 0.17 0.18 0.15 0.13 0.11 0.11 0.12

7 0.10 0.24 0.30 0.14 0.16 0.20 0.18 0.18 0.18

11 0.10 0.35 0.42 0.14 0.12 0.10 0.26 0.26 0.26

40 3 0.10 0.13 0.15 0.16 0.13 0.11 0.11 0.10 0.10

7 0.10 0.19 0.22 0.26 0.20 0.16 0.15 0.15 0.15

11 0.10 0.27 0.33 0.14 0.12 0.13 0.20 0.20 0.20

Table 1: MSE for the location estimates for 10% contamination

Epsilon=0.2

Trick MVE MVEF IT RT

p x0 0.5 0.7 0.9 0.5 0.7 0.9

10 3 0.11 0.27 0.23 0.43 0.32 0.24 0.21 0.21 0.21

7 0.11 0.57 0.60 0.14 0.12 0.31 0.45 0.45 0.45

11 0.11 0.88 0.72 0.14 0.12 0.40 0.27 0.27 0.44

20 3 0.11 0.23 0.29 0.29 0.22 0.18 0.16 0.16 0.16

7 0.11 0.48 0.63 0.31 0.45 0.37 0.32 0.32 0.32

11 0.11 0.74 0.99 0.14 0.12 0.29 0.49 0.50 0.49

40 3 0.11 0.17 0.21 0.22 0.17 0.14 0.13 0.13 0.13

7 0.11 0.33 0.44 0.47 0.34 0.27 0.24 0.24 0.24

11 0.11 0.51 0.67 0.14 0.13 0.33 0.36 0.36 0.36

Table 2: MSE for the location estimates for 20% contamination
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Epsilon=0.1

Trick MVE MVEF IT RT

p x0 0.5 0.7 0.9 0.5 0.7 0.9

10 3 0.10 0.12 0.18 0.10 0.11 0.14 0.10 0.10 0.10

7 0.10 0.12 0.17 0.13 0.11 0.10 0.09 0.09 0.09

11 0.10 0.12 0.17 0.13 0.11 0.10 0.10 0.10 0.10

20 3 0.10 0.13 0.16 0.14 0.12 0.11 0.10 0.10 0.10

7 0.10 0.13 0.16 0.15 0.12 0.10 0.10 0.10 0.10

11 0.10 0.13 0.16 0.14 0.11 0.10 0.10 0.10 0.10

40 3 0.10 0.13 0.15 0.15 0.13 0.11 0.10 0.10 0.10

7 0.10 0.13 0.15 0.15 0.13 0.11 0.10 0.10 0.10

11 0.10 0.13 0.15 0.14 0.12 0.10 0.10 0.10 0.10

Table 3: MSE for the correlation matrix estimates for 10% contamination

between 1300 and 2000 times slower that the trick estimate. The MVEF method takes

on average half the time that MVE takes to compute the estimates; nevertheless it is a

very slow procedure. Computation times for the IT and RT estimates are very close to

the benchmark, particularly for higher dimension. For p = 40 the two methods are only

30% (respectively 25%) slower than the trick estimate on average. For dimension 20

they take less than twice the time of the trick estimate to compute the estimations and

for dimension 10 they are four times slower. In all cases the RT–estimates are slightly

faster than the IT–estimates.

4.2 Functional Data

In this Section we study the performance of the RT-estimates of the location and corre-

lation functions for the case of functional data in the presence of outliers. We generate

100 functions, 90 of which follow the central model, X (t) = 30t(1 − t)3/2 + ε (t), for

t ∈ [0, 1]. and the remaining 10 observations are distributed under one of the following

contamination models

Case A. X (t) = 30 (1− t) t3/2 + ε (t), for t ∈ [0, 1] . The outliers have a different

shape from the functions generated by the core distribution.

Case B. X (t) = 30t(1 − t)3/2 + 2 + ε (t), for t ∈ [0, 1] . In these case we consider

level shift outliers.
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Epsilon=0.2

Trick MVE MVEF IT RT

p x0 0.5 0.7 0.9 0.5 0.7 0.9

10 3 0.11 0.14 0.18 0.16 0.12 0.10 0.10 0.10 0.10

7 0.11 0.14 0.19 0.13 0.11 0.10 0.10 0.10 0.10

11 0.11 0.14 0.19 0.13 0.11 0.10 0.10 0.10 0.10

20 3 0.11 0.15 0.19 0.17 0.13 0.11 0.11 0.11 0.11

7 0.11 0.15 0.19 0.14 0.13 0.11 0.11 0.11 0.11

11 0.11 0.15 0.19 0.14 0.12 0.10 0.11 0.11 0.10

40 3 0.11 0.14 0.18 0.18 0.14 0.12 0.11 0.11 0.11

7 0.11 0.14 0.18 0.18 0.14 0.12 0.11 0.11 0.11

11 0.11 0.14 0.18 0.14 0.12 0.11 0.11 0.11 0.11

Table 4: MSE for the correlation matrix estimates for 20% contamination

Case C.

X (t) =

{
30t(1− t)3/2 + ε (t) t ∈ [0, 0.4) ∪ (0.6, 1]

30t(1− t)3/2 + 2 + ε (t) t ∈ [0.4, 0.6]

In the last case the outliers have the same distribution as the observations generated

under the central model, except in the interval [0.4, 0.6] where they are shifted as in the

previous case. In every case the error of the process ε (t) follows an Ornstein-Uhlenbeck

law, i.e., a Gaussian process with a mean of zero and a covariance function given by,

ρ (s, t) = 0.3 exp
(
− |s−t|

0.3

)
, for s, t ∈ [0, 1] .

In Figure 3 we display the three models, the grey functions are generated under the

central model while the red ones are the outliers.

Case A Case B Case C

Figure 3: Each figure exhibits one of the contamination distributions.

For each model we performed 500 replicates where a maximum of either 20, 30 or

40% of the observations were pruned. Each function was observed at equidistant points

on the interval [0, 1], and the distance between two observations was 0.01. We report

the mean number of outliers pruned in table 5. The procedure was very successful at
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Case A Case B Case C

Figure 4: In each figure the pruned functions are dark grey, the theoretical central curve

is blue and the estimated central curve is red.

Trimmed proportion

0.4 0.3 0.2

Case A 8.08 8.06 8.11

Case B 9.992 9.992 9.994

Case C 6.43 6.43 6.42

Table 5: Mean number of outliers detected for each model and trimming proportion.

detecting outliers in Cases A and B, however these results changed significantly for Case

C where on average more than three outliers are not pruned. Moreover, in Table 6 we

show the proportion of observations that are effectively trimmed for each model and

trimming proportion and, it can be seen that this proportion does not change as the

trimming rate increases.

In order to analyze the performance of the central and correlation estimates, we

consider the L2–error (L2E). Let µ̂(t) be the estimate of µ(t) and Σ̂(t, s) be the estimate

of Σ(t, s), where t, s : t1, . . . , tN , then L2E(µ̂) =
√

1
N

∑N
i=1(µ̂(ti)− µ(ti))2,

and L2E(Σ̂) =
√

1
N2

∑N
i,j=1(Σ̂(ti, sj)− Σ(ti, sj))2.

Table 7 exhibits the L2–error for the location estimates. The first column shows the

results for the trick estimate: we consider these results to be the benchmark. From the

2nd to the 4th columns the results for the RT–estimates are displayed for three different

trimming levels bounds. Finally the results for the IT–estimates proposal with α = 0.5

and the same pruning proportion as in our case with hard rejection weights are given

Trimmed proportion

0.4 0.3 0.2

Case A 12.11 12.10 12.20

Case B 13.75 13.75 13.84

Case C 11.83 11.88 11.96

Table 6: Mean effective trimming rate for each model and trimming proportion.
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Trick RT IT

0.4 0.3 0.2 0.4 0.3 0.2

Case A 0.0513 0.0637 0.0640 0.0636 0.0725 0.0682 0.0640

Case B 0.0513 0.0595 0.0595 0.0596 0.0722 0.0677 0.0630

Case C 0.0513 0.0715 0.0714 0.0711 0.0705 0.0670 0.0628

Table 7: Mean square errors for the location function estimate for each model and

trimming proportion for the benchmark (Trick), RT–estimates and IT–estimates.

Trick RT IT

0.4 0.3 0.2 0.4 0.3 0.2

Case A 0.0779 0.1159 0.1160 0.1153 0.1830 0.1544 0.1262

Case B 0.0779 0.0957 0.0953 0.0960 0.1833 0.1543 0.1213

Case C 0.0779 0.1213 0.1209 0.1213 0.1814 0.1525 0.1240

Table 8: Mean square errors for the correlation function estimate for each model and

trimming proportion for the benchmark (Trick), RT-estimates and IT-estimates.

on the last three columns. The results for the RT–estimates do not change much for

the different estimates. This is because the effective trimming rate and the number of

outliers pruned in each replicate are practically the same. IT–estimates show a better

performance when the trimming rate is lower, because the contamination proportion is

even smaller than the trimming rate. For Models A and B our estimates outperform

the IT–estimates, but in Case C the IT–estimates are better because our detection of

outliers is less effective. Nevertheless, the performances of the two estimates are very

similar and close to the trick estimates. Finally, Table 8 shows the same results for

the correlation matrix estimates. The comparison among the estimates shows strong

similarities, the main difference being that for Case C our estimates outperform the

IT–estimates.

The matlab codes for computing the RT-estimate are included as supplemental files.

4.3 Other Classical Statistical Problems

In this Section demonstrate the usefulness of the trimming procedure for other classical

statistical problems. The best known dimension reduction technique is that of the

principal components, the aim of which is to find a linear combination of the original

variables that are uncorrelated and that explain as much of the variability as possible.

We consider the same models as in Section 4.2, and trim up to 40% of the data. The

results are plotted in Figure 5, in which it can be seen that in every case all the outliers

were trimmed. It can be seen that for the cases where the data set is complete (without

19



trimming) the shape of the first principal component weight function is similar to the

mean of the contamination. In the three cases, the principal components for the trimmed

data sets are similar to the function corresponding to the data set without the outliers.

0 0.5 1
-0.05

0

0.05

0.1

0.15

0.2

Case A
0 0.5 1

-0.05

0

0.05

0.1

0.15

0.2

Case B
0 0,5 1

-0,05

0

0,05

0,1

0,15

0,2

Case C

Figure 5: In each figure the weight functions for the first principal components are

represented for each contamination model. The blue function is for the complete data

set, the yellow function is for the data without the outliers and the red one is for the

RT data.

5 A real data example

We now consider the data set of NOx emissions collected in Barcelona, Spain, during

the first semester of 2005. The data consists of 127 curves measured 24 times a day,

and were first analyzed by Febrero et al. (2007, 2008), in both cases they carried out

procedures to detect outliers. There are 12 days for which observations are missing, so

they considered the restricted data set conformed by 115 functions. In their first study

they found a two cluster structure, corresponding to working days and nonworking days

(i.e., Saturdays, Sundays and holidays). They also provided location, scale estimates

and set confidence for the NOx data set.

Furthermore, they introduced a distance based procedure to detect outliers. They

applied the procedure to the entire set of 115 observations and also to each of the two

clusters separately. Febrero et al. (2008) proposed a depth-based criterion for outlier

identification, and by using different depth notions on the same data set they proceeded

to identify the outliers. In this case they did not analyze the whole data set, but instead

they took the subsets of working days and non-working days separately.

The outliers detected by Febrero et al. for the non-working days in both papers are

the same (March 19th and April 30th), while the outliers for the working days do not

strictly coincide: in their second paper they detect two outliers (March 18th and April

29th) while in their first they also detect March 11th to be an outlier.

In this Section we apply our procedure to detect the outliers in the data set and

compare the results with those obtained by Febrero et al. (2007, 2008).

20



When trimming up to 5% of the observations, the results obtained for the working

and non-working days coincide with those obtained by Febrero et al. (2007). Figure 6

(b) and (c), shows the observations corresponding to the working and non-working days

respectively.

In both cases the solid red observations are the outliers detected by the three proce-

dures and the dashed red line is the new outlier detected only by Febrero el al. (2008).

The analysis of the complete data set can only be compared with the results obtained

on Febrero et al. (2007). We detect three outliers, two of which coincide with those

found by Febrero el al. (2007) (March 18th and April 29th), and these observations

are shown in Figure 6 (a) as a solid red line, Febrero et al. (2007) classify as outliers

two other observations that we do not (March 11th and May2nd), which are plotted as

dashed red lines and we find in addition an outlier that they did not, which is indicated

as a solid blue line and corresponds to March 16th. The NOx level measured during

the dawn and morning of March 16th was very high, however the NOx level during the

afternoon is in the bulk of the data. But for March 11th and May2nd the NOx levels

during the afternoon are high compared with the others NOx levels measured at the

same time, and in general these values are higher than the bulk of the data only for very

short periods of time.
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Figure 6: The red lines stand for the outliers detected by Febrero et al. (2007) and by

our procedure, the dashed red lines are the observations detected as outliers only by

Febrero et al. (2007) and the solid blue lines are the observations detected as outliers

only by our procedure. (a) Outlier detection for the complete data. (b) Outlier detection

for the working days. (c) Outlier detection for the non-working days.

6 Concluding Remarks

We have herein presented a new robust estimation method based on random projections

that yields robust estimates of location and scatter in general Hilbert spaces. This
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procedure is data adaptive because it trims only the observations that are far apart

from the bulk of the data. It is a particulary suitable procedure for high dimensional

data and for functional data because is these estimates are very fast to compute.
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