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UNSL, Ejército de los Andes 950, 5700 San Luis, Argentina

Abstract. A new notion of dual fusion frame has been recently introduced by the authors.

In this article that notion is further motivated and it is shown that it is suitable to deal with

questions posed in a finite-dimensional real or complex Hilbert space, reinforcing the idea that
this concept of duality solves the question about an appropriate definition of dual fusion frames.

It is shown that for overcomplete fusion frames there always exist duals different from the

canonical one. Conditions that assure the uniqueness of duals are given. The relation of dual
fusion frame systems with dual frames and dual projective reconstruction systems is established.

Optimal dual fusion frames for the reconstruction in case of erasures of subspaces, and optimal

dual fusion frame systems for the reconstruction in case of erasures of local frame vectors are
determined. Examples that illustrate the obtained results are exhibited.
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1. Introduction

A frame [2, 3, 7, 13] for a separable Hilbert space H is a family of vectors in H which allows
stable and not necessarily unique representations of the elements of H via the so-called dual frames.
Frames are useful in areas such as signal processing, coding theory, communication theory and
sampling theory, among others.

In many applications such as distributing sensing, parallel processing and packet encoding, a
distributed processing by combining locally data vectors has to be implemented. Fusion frames
(or frames of subspaces) [4, 6] (see also [3, Chapter 13]) are a generalization of frames and provide
a mathematical framework suitable for these applications. They are collections of closed subspaces
and weights, and permit the reconstruction of each element of H from packets of coefficients.

1.1. Duality in fusion frames. Given a frame, the set of dual frames plays a crucial role in
designing suitable reconstruction strategies. In the attempt to define dual fusion frames appears a
technical difficulty related to the domain of the synthesis operator. A new concept of dual fusion
frame has been proposed by the first author of this paper, which extends the “canonical” notion
used so far and overcomes this technical difficulty.

In [9] properties and examples in infinite-dimensional separable Hilbert spaces are provided.
There the focus is set on questions related to the boundedness of the operators involved in the
definition of duality, and examples of dual fusion frames are given in L2(R).
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In the present paper we consider instead the finite-dimensional case studying aspects not ad-
dressed in [9]. In applications, finite-dimensional Hilbert spaces and finite fusion frames play a main
role [3]. They avoid the approximation problems related to the truncation needed in the infinite-
dimensional case. It is worth to mention that there are questions which only make sense in the
finite-dimensional situation. This is the case for example for the study of optimal reconstructions
under erasures (see, e. g., [5]), that is considered in the present paper.

1.2. Previous approaches. Other approaches can be considered to study duality of fusion frames.
One of them are the alternate dual fusion frames introduced in [8]. We show that the reconstruction
formula provided by these duals can be obtained using the new concept. One advantage of the
new dual fusion frames with respect to alternate dual frames is that they can be easily obtained
from the left inverses of the analysis operator of the fusion frames, or from dual frames.

Fusion frames can be viewed as a particular case of g-frames [17], so one attempt could be to
study duality of fusion frames in the context of dual g-frames. For example, in [1] dual g-frames
with respect to the same family of subspaces are considered, but this would have no sense applied
to the study of duality of fusion frames. Reconstruction systems are g-frames in finite-dimensional
Hilbert spaces. In this setting, duality of fusion frames was studied viewing them as projective
reconstruction systems [15, 16]. But projective reconstruction systems are not closed under duality,
more precisely, there exist projective reconstruction systems with non-projective canonical dual or
without any projective dual [16]. This drawback also appears in the setting considered in [10]. We
note that these problems are not present if we use the new definition of dual fusion frames.

1.3. Optimal reconstruction under erasures. In real implementations often some of the data
vectors, or part of them, are lost or erased, and it is necessary to perform the reconstruction with
the partial information at hand.

One approach to address this situation is to derive sufficient conditions for a fusion frame to be
robust to such erasures, and construct fusion frames that are optimally robust. Here robustness is
understood as a certain minimizing reconstruction error property. This approach is considered, e.
g., in [5] for tight fusion frames using the canonical dual for the reconstruction.

In applications there might be several restrictions when selecting fusion frames for encoding,
that make it impossible to find one that is optimally robust. The new concept of dual fusion frames
allows another approach, studying how to select optimal dual fusion frames for a fixed fusion frame.
In particular, in this article we analyze this question when a blind reconstruction process is used, in
a similar way as it was done in [12, 11] for frames and in [16] for projective reconstruction systems.
As in these works, we obtain, under certain conditions, a unique optimal dual fusion frame of a
given fusion frame. We note that in [16], it is shown that the optimal dual reconstruction system
is not necessarily projective, so it can not always be viewed as a fusion frame.

1.4. Contents. In Section 2 we briefly review frames, fusion frames and fusion frame systems.
In Section 3 we present the new concept of dual fusion frame. Then we consider two special

cases: block-diagonal and component preserving duals, for which the reconstruction formula has
a simpler expression. We present a characterization of component preserving dual fusion frames
in terms of the left inverses of the analysis operator of the original fusion frame. We then refer to
the duals defined in [4]. These duals are component preserving and we call them canonical. We
prove that for overcomplete fusion frames with non-trivial subspaces, there always exist component
preserving dual fusion frames different from the canonical ones. The new definition of dual fusion
frames is a generalization of conventional dual frames and it provides more flexibility. For instance,
a Riesz fusion basis can have only one component preserving dual but we show that it can have
more than one non-component dual, unless additional conditions are imposed.
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In Section 4, we introduce a linear transformation that links the analysis operator of a fusion
frame system with the analysis operator of its associated frame. Using this transformation, we
define dual fusion frame systems, which are block-diagonal. We establish the close relation of dual
fusion frame systems with dual frames and dual projective reconstruction systems, showing that
the new definition of dual fusion frames arises naturally.

In Section 5, we determine the duals that minimize the mean square error and the worst case
error in the presence of erasures when a blind reconstruction process is used. In both cases, we
determine optimal dual fusion frames for the reconstruction in case of erasures of subspaces and
optimal dual fusion frame systems for the reconstruction in case of erasures of local frame vectors.

Finally, in Section 6, we show that the reconstruction formula provided by the alternate dual
fusion frames introduced in [8] can be obtained using the new concept of dual fusion frame. We
also present examples that illustrate the results described before.

2. Preliminaries

In this section we review the concepts of frame [2, 3, 7, 13], fusion frame and fusion frame
system [4, 6] (see also [3, Chapter 13]). We refer to the mentioned works for more details. We
begin introducing some notation.

2.1. Notation. LetH,K be finite-dimensional Hilbert spaces over F = R or F = C. Let L(H,K) be
the space of linear transformations from H to K (we write L(H) for L(H,H)). Given T ∈ L(H,K)
we write R(T ), N(T ) and T ∗ to denote the image, the null space and the adjoint of T , respectively.
If T ∈ L(H,K) is injective, LT denotes the set of left inverses of T .

The inner product and the norm in H will be denoted by 〈., .〉H and ‖.‖H, respectively. If
T ∈ L(H,K), then ‖T‖F and ‖T‖sp denote the Frobenius and the spectral norms of T , respectively.

If V ⊂ H is a subspace, πV ∈ L(H) denotes the orthogonal projection onto V .
Let m,n, d ∈ N and n = (n1, . . . , nm) ∈ Nm. In the sequel, H will be a finite-dimensional Hilbert

space over F of dimension d. For J ⊆ {1, . . . ,m} let χJ : {1, . . . ,m} → {0, 1} be the characteristic
function of J. We abbreviate χ{j} = χj . For p ∈ N ∪ {∞} let ‖.‖p denote the p-norm in Fn.

2.2. Frames.

Definition 2.1. Let F = {fi}mi=1 ⊂ H.

(1) The synthesis operator of F is
TF : Fm → H, TF (xi)

m
i=1 =

∑m
i=1 xifi

and the analysis operator is
T ∗F : H → Fm, T ∗Ff = (〈f, fi〉)mi=1.

(2) F is a frame for H if span F = H.
(3) If F is a frame for H,

SF = TFT
∗
F , SFf =

∑m
i=1〈f, fi〉fi,

is the frame operator of F .

The set F = {fi}mi=1 ⊂ H is a frame for H if and only if there exist α, β > 0 such that

(2.1) α‖f‖2 ≤
m∑
i=1

|〈f, fi〉|2 ≤ β‖f‖2 for all f ∈ H.

We call α and β the frame bounds. The optimal lower frame bound is ‖S−1F ‖−1 and the optimal
upper frame bound is ‖SF‖ = ‖TF‖2. The set F is an α-tight frame, if in (2.1) the constants α and
β can be chosen so that α = β, or equivalently, SF = αIH. If α = β = 1, F is a Parseval frame.
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In frame theory each f ∈ H is represented by the collection of scalar coefficients 〈f, fi〉, i =
1, . . . ,m, that can be thought as a measure of the projection of f onto each frame vector. From
these coefficients f can be recovered using a reconstruction formula via the so-called dual frames.

Definition 2.2. Let F = {fi}mi=1 and F̃ = {f̃i}mi=1 be frames for H. Then F̃ is a dual frame of F
if the following reconstruction formula holds

(2.2)

m∑
i=1

〈f, fi〉f̃i, for all f ∈ H,

or equivalently,

(2.3) TF̃T
∗
F = IH.

Let F = {fi}mi=1 be a frame for H. Then {S−1F fi}mi=1 is the canonical dual frame of F .

2.3. Fusion frames and fusion frame systems. Fusion frames generalize the concept of frames.
The representation of each f ∈ H via fusion frames is given by projections onto multidimensional
subspaces, which also satisfy some stability conditions.

Definition 2.3. Let {Wi}mi=1 be a family of subspaces of H, and let {wi}mi=1 be a family of weights,
i.e., wi > 0 for i = 1, . . . ,m. Then {(Wi, wi)}mi=1 is called a Bessel fusion sequence for H.

We will denote {Wi}mi=1 with W, {wi}mi=1 with w and {(Wi, wi)}mi=1 with (W,w). If T ∈
L(H,K) we will write (TW,w) for {(TWi, wi)}mi=1.

Let W :=
⊕m

i=1Wi = {(fi)mi=1 : fi ∈ Wi} be the Hilbert space with 〈(fi)mi=1, (gi)
m
i=1〉W =∑m

i=1〈fi, gi〉.

Definition 2.4. Let (W,w) be a Bessel fusion sequence.

(1) (W,w) is called w-uniform, if wi = w for all i ∈ {1, . . . ,m}. In this case we write (W, w).
(2) (W,w) is called n-equi-dimensional, if dim(Wi) = n for all i ∈ {1, . . . ,m}.
(3) The synthesis operator of (W,w) is

TW,w :W → H, TW,w(fi)
m
i=1 =

∑m
i=1 wifi.

The analysis operator is
T ∗W,w : H →W, T ∗W,wf = (wiπWi(f))mi=1.

(4) (W,w) is called a fusion frame for H if span
⋃m
i=1Wi = H.

(5) (W,w) is a Riesz fusion basis if H is the direct sum of the Wi, and (W, 1) an orthonormal
fusion basis if H is the orthogonal sum of the Wi.

(6) If (W,w) is a fusion frame for H, the operator
SW,w = TW,wT

∗
W,w : H → H , SW,w(f) = TW,wT

∗
W,w(f) =

∑m
i=1 w

2
i πWi

(f)

is called the fusion frame operator of (W,w).

A Bessel fusion sequence (W,w) is a fusion frame for H if and only if TW,w is onto, or equiva-
lently, if and only if there exist constants 0 < α ≤ β <∞ such that

(2.4) α‖f‖2 ≤
m∑
i=1

w2
i ‖πWi

(f)‖2 ≤ β‖f‖2 for all f ∈ H.

We call α and β the fusion frame bounds. A fusion frame (W,w) is called an α-tight fusion frame
if in (2.4) the constants α and β can be chosen so that α = β, or equivalently, SW,w = αIH. If
α = β = 1 we say that it is a Parseval fusion frame.

The use of fusion frames permits furthermore local processing in each of the subspaces. For
this, it is useful to have a set of local frames for its subspaces:
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Definition 2.5. Let (W,w) be a fusion frame for H, and let {f li}l∈Li
be a frame for Wi for

i = 1, . . . ,m. Then we call {(Wi, wi, {f li}l∈Li
)}mi=1 a fusion frame system for H.

From now on we denote Fi = {f li}l∈Li , F = {Fi}mi=1, wF = {wiFi}mi=1, and we will abbreviate
{(Wi, wi, {f li}l∈Li

)}mi=1 with (W,w,F). If T ∈ L(H,K) we use the notation TF for {{Tf li}l∈Li
}mi=1.

Remark 2.6. Clearly, wF is a frame for H if and only if (W,w,F) is a fusion frame system for H.

3. Dual fusion frames

One of the most important properties of frames is that they permit different representations for
each element of H, which are provided by the duals via the reconstruction formula (2.2). Taking
this into account, our purpose is to have a notion of dual fusion frame as we have it in the classical
frame theory, and that furthermore leads to analogous results. We note that for frames the duality
condition can be expressed in two forms: (2.2) and (2.3). So, it is natural to try to generalize these
expressions to the context of fusion frames in order to obtain a definition of dual fusion frame.

Let (W,w) be a fusion frame. Since S−1W,wSW,w = IH, we have the following reconstruction
formula

(3.1) f =

m∑
i=1

w2
i S
−1
W,wπWi

(f), for all f ∈ H,

that is analogous to (2.2). The family (S−1W,wW,w) is a fusion frame which in [4, Definition 3.19]

is called the dual fusion frame of (W,w), and is similar to the canonical dual frame in the classical
frame theory. As it is pointed out in [3, Chapter 13], (3.1) - in contrast to the analogous one for
frames - does not lead automatically to a dual fusion frame concept.

So, instead of trying to generalize (2.2), we can try with (2.3). But in this case we find the
following obstacle. Given (W,w) and (V,v) two fusion frames for H, with W 6= V, the corre-
sponding synthesis operators TW,w and TV,v have different domains. Therefore the composition
of TV,v with T ∗W,w is not possible. The next definition overcomes this problem, extends the notion

introduced in [4] (see Section 3.1) and, as we are going to see, leads to the properties that we would
desire a dual fusion frame to have.

Definition 3.1. Let (W,w) and (V,v) be two fusion frames for H. Then (V,v) is a dual fusion
frame of (W,w) if there exists a Q ∈ L(W,V) such that

(3.2) TV,vQT
∗
W,w = IH.

If we need to do an explicit reference to the linear transformation Q we say that (V,v) is a
Q-dual fusion frame of (W,w). Note that if (V,v) is a Q-dual fusion frame of (W,w), then
(W,w) is a dual Q∗-dual fusion frame of (V,v).

Note that in (2.3) the operator “between” TF̃ and T ∗F is IFm , which is hidden. In view of this,
(3.2) can be seen as a generalization of (2.3).

Now we introduce two particular types of linear transformations Q for which the reconstruction
formula obtained from (3.2) is simpler. For this, we consider the selfadjoint operator MJ,W :W →
W,MJ,W(fj)

m
j=1 = (χJ(j)fj)

m
j=1. We simply write MJ if it clear to which W we refer to. We

abbreviate M{j},W = Mj,W and M{j} = Mj .

Definition 3.2. Let Q ∈ L(W,V).

(1) If QMj,WW ⊆Mj,VV for each j ∈ {1, . . . ,m}, Q is called block-diagonal.
(2) If QMj,WW = Mj,VV for each j ∈ {1, . . . ,m}, Q is called component preserving.
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Observe that Q is block-diagonal if and only if QMJ,W = MJ,VQ for each J ⊆ {1, . . . ,m},
or equivalently, QMj,W = Mj,VQ for each j ∈ {1, . . . ,m}. If Q is block-diagonal, then Q∗ is
block-diagonal. If in Definition 3.1 Q is block-diagonal (component preserving) we say that (V,v)
is a block-diagonal dual fusion frame (component preserving dual fusion frame) of (W,w).

It is important to note, as we will see in Theorem 3.5, that Q is component preserving for dual
fusion frames obtained from the left inverses of T ∗W,w. Also, Q is block-diagonal for dual fusion

frame systems (see Definition 4.1 and Remark 4.2).
The reconstruction formula following from (3.2) has the form

(3.3) f =

m∑
j=1

vjMjQ(wiπWi
f)mi=1 , ∀f ∈ H.

If Q is block-diagonal, (3.3) becomes

(3.4) f =

m∑
j=1

vjwjQjπWj
f , ∀f ∈ H,

where QjπWjf := QMj(πWif)mi=1.
The main advantage of (3.4) over (3.3) is that in (3.4) the j-th term is obtained using only the

projection onto Wj , whereas in (3.3) all the projections onto Wi for i = 1, . . . ,m are involved. This
fact is particularly useful for truncation purposes. In this case we can consider an index subset J
in (3.4), to obtain an approximate reconstruction formula where only the subspaces Wj (and Vj)
for j ∈ J are used.

The linear transformation Q has in many cases a very simple expression and consequently the
reconstruction formula is very simple too (see examples in Section 3.1 and Section 6).

Now we are going to relate the duals of a fusion frame with the left inverses of its analysis
operator, in a similar fashion as for frames (see, e. g., [7, Lemma 5.6.3.]). For this, given A ∈
L(W,H) and v a collection of weights, we consider the subspaces Vi = AMiW, for each i =
1, . . . ,m, and the linear transformation

QA,v :W → V , QA,v(fj)
m
j=1 =

(
1

vi
AMi(fj)

m
j=1

)m
i=1

.

Its adjoint is Q∗A,v : V → W, Q∗A,v(gj)
m
j=1 =

∑m
i=1

1
vi
MiA

∗gi.
To simplify the exposition, we just formulate the next lemmas which proofs are straightforward.

Lemma 3.3. Let (W,w) be a Bessel fusion sequence for H, A ∈ L(W,H), v a collection of weights
and Vi = AMiW, for each i ∈ {1, . . . ,m}. Then QA,v is component preserving and A = TV,vQA,v.

Lemma 3.4. Let (W,w), (V,v) and (Ṽ, ṽ) be Bessel fusion sequences for H. Let Q ∈ L(W,V)

and Q̃ ∈ L(W, Ṽ). If TV,vQ = TṼ ,ṽQ̃, then the following assertions hold:

(1) If Q and Q̃ are component preserving then Vi = Ṽi for i = 1, . . . ,m.

(2) Let D : V → V, D(gi)
m
i=1 = ( ṽivi gi)

m
i=1. If Q and Q̃ are block-diagonal and V = Ṽ, then

Q = DQ̃.

The next theorem characterizes the component preserving dual fusion frames of (W,w) in terms
of the left inverses of T ∗W,w:

Theorem 3.5. Let (W,w) be a fusion frame for H. Then (V,v) is a Q-component preserving
dual fusion frame of (W,w) if and only if Vi = AMiW for each i ∈ {1, . . . ,m} and Q = QA,v,
for some A ∈ LT∗W,w

. Moreover, any element of LT∗W,w
is of the form TV,vQ where (V,v) is some

Q-component preserving dual fusion frame of (W,w).
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Proof. Let (V,v) be a Q-component preserving dual fusion frame of (W,w). Since TV,vQT
∗
W,w =

IH, A := TV,vQ ∈ LT∗W,w
. Since Q is component preserving, AMiW = TV,vQMiW = Vi. By

Lemma 3.3, QA,v is component preserving and TV,vQ = A = TV,vQA,v. By Lemma 3.4 (2),
Q = QA,v.

Let now A ∈ LT∗W,w
and Vi = AMiW for each i ∈ {1, ...,m} . By Lemma 3.3, QA,v is component

preserving and A = TV,vQA,v. Since A ∈ LT∗W,w
, TV,vQA,vT

∗
W,w = IH. So (V,v) is a QA,v-

component preserving dual fusion frame of (W,w).
The last assertion of the theorem follows from the previous steps of the proof. �

Remark 3.6. By Theorem 3.5, we can always associate to any Q-dual fusion frame (V,v) of (W,w)
the QA,ṽ-component preserving dual fusion frame {(AMiW, ṽi)}mi=1 where A = TV,vQ and {ṽi}mi=1

are arbitrary weights. Moreover if Q is block-diagonal, then QTV,vQ,v(fj)
m
j=1 = Q(fj)

m
j=1 for each

(fj)
m
j=1 ∈ W.

3.1. The canonical dual fusion frame. If (W,w) is a fusion frame, then (S−1W,wW,w) is the

dual fusion frame of (W,w) in the sense of [4].
By Theorem 3.5, (S−1W,wW,v) is a QA,v-component preserving dual with A = S−1W,wTW,w, v

a family of arbitrary weights and QA,v : W →
⊕m

i=1 S
−1
W,wWi, QA,v(fj)

m
j=1 = (wi

vi
S−1W,wfi)

m
i=1. In

the sequel we refer to this QS−1
W,wTW,w,v

-dual fusion frame as the canonical dual with weights v.

Note that with a canonical dual fusion frame we have the reconstruction formula (3.1) that can
be written as

(3.5) f = TS−1
W,wW,v

QS−1
W,wTW,w,v

T ∗W,wf, ∀f ∈ H,

whereas with another dual fusion frame, (3.2) provides other alternatives for the reconstruction.

3.2. Existence of non-canonical dual fusion frames. A Bessel fusion sequence (W,w) is a
Riesz fusion basis if and only if T ∗W,w is bijective, or equivalently, T ∗W,w has a unique left inverse. So,

if (W,w) is a Riesz fusion basis, the only component preserving duals of (W,w) are the canonical
ones, and if we fix the weights v, by Lemma 3.4(2), the unique Q for this dual is QS−1

W,wTW,w,v
. A

Riesz fusion basis can have other dual fusion frames (see Example 6.2). We will give now conditions
that guarantee the uniqueness of the subspaces of the duals of a Riesz fusion basis.

Proposition 3.7. Let (W,w) be a Riesz fusion basis and v a family of weights. The following
assertions hold:

(1) Let (V,v) be a block-diagonal dual fusion frame of (W,w). Then, for each i = 1, . . . ,m,
S−1W,wWi ⊆ Vi.

(2) If (V,v) is a Riesz fusion basis which is a block-diagonal dual fusion frame of (W,w),
then Vi = S−1W,wWi for i = 1, . . . ,m.

Proof. (1) Let fi ∈ Wi. Using that TV,vQT
∗
W,w = IH and that T ∗W,wS

−1
W,wTW,w = IW (the last

equation holds since (W,w) is a Riesz fusion basis), we obtain
S−1W,wfi = TV,vQT

∗
W,wS

−1
W,wTW,wMi(

1
wi
fj)

m
j=1 = TV,vQMi(

1
wi
fj)

m
j=1 = TV,vMiQ( 1

wi
fj)

m
j=1 ∈ Vi.

So S−1W,wWi ⊆ Vi.

(2) By (1), S−1W,wWi ⊆ Vi for i = 1, . . . ,m. If there exists i0 ∈ {1, . . . ,m} such that S−1W,wWi0 ⊂
Vi0 , then

∑m
i=1 dim(S−1W,wWi) <

∑m
i=1 dim(Vi), which is a contradiction, since (S−1W,wW,v) and

(V,v) are Riesz fusion bases. Thus the conclusion follows. �
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Remark 3.8. Note that Proposition 3.7(2) implies that if (W,w) is an orthonormal fusion basis
and (V,v) is a block-diagonal dual fusion frame which is an orthonormal fusion basis, then Wi = Vi
for i = 1, . . . ,m.

Although it could seem surprising that a Riesz fusion basis can have more than one dual, it is
absolutely reasonable taking into account the generality of the new definition. Moreover observe
that uniqueness of the dual of a Riesz basis in classical frame theory can be understood in the sense
of Proposition 3.7 (1) considering that each element of the Riesz basis and of its dual generate
subspaces of dimension 1.

The following result asserts that if (W,w) is an overcomplete fusion frame (i.e. a fusion frame
which is not a Riesz fusion basis) with non-trivial subspaces, there always exist component pre-
serving dual fusion frames which differ from the canonical ones.

Proposition 3.9. Let (W,w) be an overcomplete fusion frame such that Wi 6= {0} for every
i ∈ {1, . . . ,m}. Then there exist component preserving dual fusion frames of (W,w) different from
(S−1W,wW,v) for any family of weights v.

Proof. Since (W,w) is not a Riesz fusion basis, there exists i0 ∈ {1, . . . ,m} such that Wi0 ∩
span{Wi : i 6= i0} 6= {0}. Observe that (W̃,w) given by W̃i = Wi for i 6= i0 and W̃i0 = Wi0 ∩
(span{Wi : i 6= i0})⊥ is a fusion frame for H. Define Vi = S−1

W̃,w
W̃i for i ∈ {1, . . . ,m}. Consider

the component preserving Q̃ ∈ L(W,V), given by Q̃(fi)
m
i=1 = (S−1

W̃,w
π
W̃i
fi)

m
i=1.

Let f ∈ H. Since π
W̃i0

πWi0
f = π

W̃i0
f, we obtain TV,wQ̃T

∗
W,wf =

∑m
i=1 w

2
i S
−1
W̃,w

π
W̃i

(f) = f.

Now, dim(S−1
W̃,w

W̃i0) = dim(W̃i0) and W̃i0 ⊆ Wi0 . Assume that W̃i0 = Wi0 . Then Wi0 ⊆
(span{Wi : i 6= i0})⊥ which is a contradiction since Wi0 ∩ span{Wi : i 6= i0} 6= {0}. Hence

dim(W̃i0) < dim(Wi0) = dim(S−1W,wWi0) and so Vi0 6= S−1W,wWi0 obtaining the desired result. �

4. Dual fusion frame systems and their relation with dual frames and dual
projective reconstruction systems

We begin this section by defining dual fusion frame systems. We first introduce a linear trans-
formation that provides the fundamental link between the synthesis operator of a fusion frame
system with the synthesis operator of its associated frame.

Let (W,w) be a Bessel fusion sequence and Fi be a frame for Wi. Let

CF : L(

m⊕
i=1

F|Li| →W), CF ((xli)l∈Li)
m
i=1 = (TFi(x

l
i)l∈Li)

m
i=1.

Then CF is surjective and C∗F :W →
⊕m

i=1 F|Li|, C∗F (gi)
m
i=1 = (T ∗Fi

gi)
m
i=1. The left inverses of C∗F

are all CF̃ ∈ L(
⊕m

i=1 F|Li|,W) with F̃i a dual frame of Fi for i = 1, . . . ,m. Note that

TwF = TW,wCF and TW,w = TwFC
∗
F̃ .

Definition 4.1. Let (W,w,F) and (V,v,G) be two fusion frame systems for H. Then (V,v,G)
is a dual fusion frame system of (W,w,F) if (V,v) is a CGC

∗
F -dual fusion frame of (W,w).

Remark 4.2. Observe that CGC
∗
F : W → V, CGC∗F (fi)

m
i=1 = (TGiT

∗
Fi
fi)

m
i=1 is block-diagonal.

Whereas, MiV ⊆ CGC
∗
FMiW if and only if TGi(R(T ∗Gi)) ⊆ TGi(R(T ∗Fi

)), or equivalently, R(T ∗Gi) =
πR(T∗Gi

)R(T ∗Fi
).

If in Definition 4.1 CGC
∗
F is component preserving we say that (V,v,G) is a component preserv-

ing dual fusion frame system of (W,w,F). Moreover, if in Definition 4.1 (V,v) is a canonical dual
fusion frame of (W,w) we say that (V,v,G) is a canonical dual fusion frame system of (W,w,F).
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In the following subsections we show that there is a close relation of dual fusion frame systems
with dual frames and dual projective reconstruction systems, a fact that supports the idea that
Definition 4.1 is the proper definition of dual fusion frame systems. Consequently, this close relation
also reveals that the inclusion of a “Q” in a definition of duality for fusion frames as in Definition 3.1
is natural.

4.1. Dual fusion frame systems and dual frames. The following theorem gives the link be-
tween the concepts of dual fusion frame system and dual frame.

Theorem 4.3. Let (W,w), (V,v) be Bessel fusion sequences, |Li| ≥ max{dim(Wi),dim(Vi)}, Fi
be a frame for Wi and Gi be a frame for Vi. The following conditions are equivalent:

(1) wF and vG are dual frames for H.
(2) (V,v,G) is a dual fusion frame system of (W,w,F).

Proof. By Remark 2.6 it only remains to see the duality condition, and this follows from TvGT
∗
wF =

TV,vCGC
∗
FT
∗
W,w. �

The next corollary shows how to construct component preserving dual fusion frame systems from
a given fusion frame using local dual frames for each subspace and a left inverse of its analysis
operator.

Corollary 4.4. Let (W,w) be a fusion frame for H, A ∈ LT∗W,w
and v be a collection of weights.

For each i = 1, . . . ,m, let Vi = AMiW, {f li}l∈Li
and {f̃ li}l∈Li

be dual frames for Wi, and α̃i and

β̃i frame bounds of {f̃ li}l∈Li
, and Gi = { 1

vi
A(χi(j)f̃

l
i )
m
j=1}l∈Li

. Then

(1) Gi is a frame for Vi with frame bounds ‖T ∗W,w‖−2
α̃i

v2i
and ‖A‖2 β̃i

v2i
.

(2) (V,v,G) is a component preserving dual fusion frame system of (W,w,F). In particular,
if A = S−1W,wTW,w then (V,v,G) is a canonical dual fusion frame system of (W,w,F).

Proof. The set {(χi(j)f̃ li )mj=1}l∈Li is a frame for MiW. Thus, by [7, Corollary 5.3.2], (1) holds.

If (hi)
m
i=1 ∈ W, then QA,v(hi)

m
i=1 = ( 1

vi
AMi(hj)

m
j=1)mi=1 = ( 1

vi
AMi(

∑
l∈Lj

< hj , f
l
j > f̃ lj)

m
j=1)mi=1 =

(
∑
l∈Li

< hi, f
l
i >

1
vi
A(χi(j)f̃

l
i )
m
j=1)mi=1 = CGC

∗
F (hi)

m
i=1. So (2) follows from (1) and Theorem 3.5.

�

The next result exhibits a way to construct component preserving dual fusion frame systems
from a given frame using a left inverse of its analysis operator.

Corollary 4.5. Let w and v be two collections of weights. Let wF be a frame for H with local
frame bounds αi, βi, A ∈ LT∗wF and {{eli}l∈Li

}mi=1 be the standard basis for F
∑m

i=1 |Li|. For each

i ∈ {1, . . . ,m}, let Wi = span{f li}l∈Li and Vi = span{ 1
vi
Aeli}l∈Li . Set G = {{ 1

vi
Aeli}l∈Li}mi=1. Then

(1) { 1
vi
Aeli}l∈Li is a frame for Vi with frame bounds ‖T ∗wF‖−2

αi

v2i
and ‖A‖2 βi

v2i
.

(2) (V,v,G) is a dual fusion frame system of (W,w,F).

Proof. Part (1) follows from [7, Corollary 5.3.2]. By [7, Lemma 5.6.3], wF and vG are dual frames
for H. So, part (2) follows from Theorem 4.3. �

Let f ∈ H. For a fusion frame system (W,w,F) for H with local frame bounds α, β and asso-

ciated local dual frames {f̃ li}l∈Li
, i = 1, . . . ,m, in [6] it is considered the centralized reconstruction

(4.1) f =

m∑
i=1

∑
l∈Li

〈f, wif li 〉(S−1wFwif
l
i )
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and the distributed reconstruction

(4.2) f =

m∑
i=1

∑
l∈Li

〈f, wif li 〉(S−1W,wwif̃
l
i ).

Let now (V,v,G) be any dual fusion frame system of (W,w,F). We have the reconstruction
formula

(4.3) f =

m∑
i=1

∑
l∈Li

〈f, wif li 〉vigli.

By Corollary 4.5 with A = S−1wFTwF , (W,w,F) and (S−1wFW, 1, S−1wFwF) are dual fusion frame
systems for H, and hence (4.1) turns out to be a particular case of (4.3). On the other hand,

by Corollary 4.4 with A = S−1W,wTW,w, (W,w,F) and (S−1W,wW, 1, S−1W,wwF̃) are dual fusion

frame systems for H, and so (4.2) can also be seen as a particular case of (4.3). The advantage of
reconstruction (4.3) is that now we can give many different representations of f according to our
needs, since we have more freedom for the choice of {gli}l∈Li , i = 1, . . . ,m.

4.2. Dual fusion frame systems and dual projective reconstruction systems. The concept
of reconstruction systems for finite-dimensional Hilbert spaces was introduced in [14]. Previously
in [17] reconstruction systems for any separable Hilbert spaces were called g-frames.

Definition 4.6. Let Ti ∈ L(Fni ,H) for i = 1, . . .m.

(1) The synthesis operator of (Ti)
m
i=1 is T :

⊕m
i=1 Fni → H, T (xi)

m
i=1 =

∑m
i=1 Tixi and the

analysis operator is T ∗ : H →
⊕m

i=1 Fni , T ∗f = (T ∗i f)mi=1.
(2) The sequence (Ti)

m
i=1 is an (m,n,H)-reconstruction system if span ∪mi=1 R(Ti) = H.

(3) In case (Ti)
m
i=1 is an (m,n,H)-reconstruction system, S =

∑m
i=1 TiT

∗
i is called the recon-

struction system operator of (Ti)
m
i=1.

An (m, 1,H)-reconstruction system is a frame. The set of (m,n,H)-reconstruction systems is
denoted with RS(m,n,H). If ni = n for i = 1, . . .m, we write (m,n,H)-reconstruction system.

Definition 4.7. (cf. [15, Definition 2.5]) Let (Ti)
m
i=1, (T̃i)

m
i=1 ∈ RS(m,n,H). Then (Ti)

m
i=1 and

(T̃i)
m
i=1 are dual reconstruction systems if T̃ T ∗ = IH.

In [15] the relation between reconstruction systems and fusion frames is established via projective
reconstruction systems.

Definition 4.8. (Ti)
m
i=1 ∈ RS(m,n,H), is said to be projective if there exists a sequence of weights

w = (wi)
m
i=1 ∈ Rm+ such that T ∗i Ti = w2

i IFni , i = 1, . . . ,m.

If (Ti)
m
i=1 ∈ RS(m,n,H) is projective, then wi = ‖Ti‖sp, TiT ∗i = w2

i PR(Ti), S =
∑m
i=1 w

2
iPR(Ti)

and {(R(Ti), ‖Ti‖sp)}mi=1 is a fusion frame for H. Conversely, if (W,w) is a fusion frame for H,
then there exists a (non-unique) projective (Ti)

m
i=1 ∈ RS(m,n,H) such that R(Ti) = Wi and

‖Ti‖sp = wi.
The next corollary gives the relation between dual fusion frame systems and dual reconstruction

systems in the projective case.

Corollary 4.9. Let (W,w) and (V,v) be fusion frames for H, and (Ti)
m
i=1 and (T̃i)

m
i=1 be projec-

tive (m,n,H)-reconstruction systems for H such that R(Ti) = Wi, ‖Ti‖sp = wi, and R(T̃i) = Vi
and ‖T̃i‖sp = vi, respectively. For {elni

}ni

l=1 an orthonormal basis for Fni , set Fi = { 1
wi
Tie

l
ni
}ni

l=1

and Gi = { 1
vi
T̃ie

l
ni
}ni

l=1 for l = 1, . . . , ni. Then the following conditions are equivalent.

(1) (V,v,G) is a dual fusion frame system of (W,w,F).
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(2) (T̃i)
m
i=1 is a dual (m,n,H)-reconstruction system of (Ti)

m
i=1.

Proof. We have that Fi is a frame for Wi, Gi is a frame for Vi and
∑m
i=1 T̃iT

∗
i = TwGT

∗
wF . Then

the conclusion follows from Definition 4.7, Definition 2.2 and Theorem 4.3. �

In view of the relation between fusion frames and projective reconstruction systems, the study
of duality of fusion frames can be done in the context of projective reconstruction systems using
Definition 4.7. This approach is considered in [15] and [16]. But a dual reconstruction system of a
projective reconstruction system is not always projective. In [16] the authors provide examples of
projective reconstruction systems with non-projective canonical dual or without projective duals
at all. These projective reconstruction systems, along with their associated fusion frames, are
considered in examples 6.2 and 6.3 below. It is worth to note that with Definition 3.1 the dual of
a fusion frame is always a fusion frame. Moreover, as it was shown in Section 3.1, a fusion frame
has always a canonical dual fusion frame. Similar considerations for fusion frame systems follow
from Definition 4.1 and Corollary 4.4.

5. Optimal dual fusion frames for erasures

Having different duals is convenient in many applications e.g. in the theory of optimal dual
fusion frames for erasures that will be discussed in this section. In this case, (3.2) (or (4.3) ) can
give a reconstruction that behaves better than the ones given in (3.5) ((4.1) or (4.2)).

Let (W,w) be a fusion frame for H. In applications an element f ∈ H (e. g. a signal) is
converted into the data vectors T ∗W,wf . In an ideal setting these vectors are transmitted and f can

be reconstructed by the receiver using f = TV,vQT
∗
W,wf, where (V,v) is some Q-dual of (W,w).

But in real implementations, sometimes some of the data vectors, or part of them, are lost or
erased, and it is necessary to reconstruct f with the partial information at hand. There are several
approaches to study this problem, here we consider optimal dual fusion frames for a fixed fusion
frame when a blind reconstruction process is used, in a similar way as in [12, 11] for frames and in
[16] for projective reconstruction systems.

5.1. Optimal dual fusion frames for erasures of subspaces. Let J ⊆ {1, . . . ,m} and suppose
that the data vectors corresponding to the subspaces {Wj}j∈J are lost. The reconstruction then
gives TV,vQM{1,...,m}\JT

∗
W,wf . So we need to find those dual fusion frames of (W,w) that are in

some sense optimal for this situation.
Fix r ∈ {1, . . . ,m}. Let Pmr := {J ⊆ {1, . . . ,m} : |J | = r}. Noting that MJ = IW−M{1,...,m}\J ,

given a Q-dual fusion frames (V,v) of (W,w) we consider the vector error
e(r, (W,w), (V,v), Q) = (‖TV,vQMJT

∗
W,w‖F )J∈Pm

r
.

For p ∈ N ∪ {∞} we define inductively:

e
(p)
1 (W,w) = inf{‖e(1, (W,w), (V,v), Q)‖p : (V,v) is a Q-dual fusion frame of (W,w)},

D(p)
1 (W,w) as the set of ((V,v), Q) where (V,v) is a Q-dual fusion frame of (W,w) and

‖e(1, (W,w), (V,v), Q)‖p = e
(p)
1 (W,w),

e
(p)
r (W,w) = inf{‖e(r, (W,w), (V,v), Q)‖p : ((V,v), Q) ∈ D(p)

r−1(W,w)},
D(p)
r (W,w) = {((V,v), Q) ∈ D(p)

r−1(W,w) : ‖e(r, (W,w), (V,v), Q)‖p = e
(p)
r (W,w)},

in case each D(p)
r (W,w), called the set of (r, p)-loss optimal dual fusion frames for (W,w), is

non-empty.
Note that MiT

∗
W,wTW,wM

∗
i = w2

iMi. Let A ∈ L(W,H), then

(5.1) ‖AMiT
∗
W,w‖2F = w2

i ‖AMi‖2F .
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5.1.1. The mean square error. Consider the mean square error,
‖e(r, (W,w), (V,v), Q)‖2 = (

∑
J∈Pm

r
‖TV,vQMJT

∗
W,w‖2F )1/2.

The next theorem describes an (r, 2)-loss optimal component preserving dual fusion frame of a
given fusion frame. It also asserts that the reconstruction formula provided by this dual coincides
with the reconstruction formula provided by any other (r, 2)-loss optimal dual fusion frame. Fur-
thermore, it shows that it is the only (r, 2)-loss optimal component preserving dual fusion frame
and when it coincides with a canonical dual.

Theorem 5.1. Let (W,w) be a fusion frame for H. Let D : W → W, D(fi)
m
i=1 = ( 1

wivi
fi)

m
i=1

and SD = TW,vDT
∗
W,w. Then SD is a selfadjoint positive invertible operator and if QD : W →⊕m

j=1 S
−1
D Wj, QD(fj)

m
j=1 = ( 1

wjvj
S−1D fj)

m
j=1 then

(1) (S−1D W,v) is an (r, 2)-loss optimal component preserving QD-dual for (W,w).
(2) If (V,v) is an (r, 2)-loss optimal Q-dual fusion frame of (W,w), then TV,vQ = TS−1

D W,vQD.

(3) If (V,v) is an (r, 2)-loss optimal Q-component preserving dual fusion frame of (W,w)
then V = S−1D W and Q = QD.

(4) If wi = w for i = 1, . . . ,m, then S−1D W = S−1W,wW and QD = QS−1
W,wTW,w,v

.

Proof. Clearly, SD = TW,vDT
∗
W,w =

∑m
i=1 πWi

is selfadjoint.

Let f ∈ H. If α > 0 is the lower fusion frame bound of (W,w), then

〈SDf, f〉 =

m∑
i=1

w−2i w2
i 〈πWi

f, f〉 ≥ ( min
i∈{1,...,m}

w−2i )〈SW,wf, f〉 ≥ ( min
i∈{1,...,m}

w−2i )α‖f‖2.

So SD is positive and invertible. Since S−1D is linear, it is easy to see that QD is component
preserving.

We have
TS−1

D W,vQDT
∗
W,w =

∑m
i=1 S

−1
D πWi = S−1D SD = IH,

thus (S−1D W,v) is a QD-component preserving dual fusion frame of (W,w).
Let (V,v) be a fusion frame for H. Using (5.1),

‖TV,vQMiT
∗
W,w‖2F =w2

i ‖TV,vQMi‖2F
=w2

i ‖TS−1
D W,vQDMi‖2F + w2

i ‖TV,vQMi − TS−1
D W,vQDMi‖2F

+ 2Re(w2
i tr[(TV,vQMi − TS−1

D W,vQDMi)M
∗
i Q
∗
DT
∗
S−1
D W,v

]).(5.2)

Suppose that (V,v) is a Q-dual fusion frame of (W,w). Using TS−1
D W,vQDMi = w−2i S−1D TW,wMi

and TV,vQT
∗
W,w = TS−1

D W,vQDT
∗
W,w = IH we have

m∑
i=1

w2
i tr[(TV,vQMi−TS−1

D W,vQDMi)M
∗
i Q
∗
DT
∗
S−1
D W,v

] =

=

m∑
i=1

w2
iw
−2
i tr[(TV,vQMi − TS−1

D W,vQDMi)M
∗
i T
∗
W,wS

−1
D ]

= tr[(TV,vQ− TS−1
D W,vQD)T ∗W,wS

−1
D ] = 0.(5.3)
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By (5.2), (5.1) and (5.3) we obtain
m∑
i=1

‖TV,vQMiT
∗
W,w‖2F =

m∑
i=1

‖TS−1
D W,vQDMiT

∗
W,w‖2F

+

m∑
i=1

w2
i ‖TV,vQMi − TS−1

D W,vQDMi‖2F .(5.4)

Thus, ‖e(1, (W,w), (V,v), Q)‖2 ≥ ‖e(1, (W,w), (S−1D W,v), QD)‖2. So (S−1D W,v) ∈ D(2)
1 (W,w).

If (V,v) ∈ D(2)
1 (W,w), then ‖e(1, (W,w), (V,v), Q)‖2 = ‖e(1, (W,w), (S−1D W,v), QD)‖2,

and by (5.4)

(5.5) TV,vQ = TS−1
D W,vQD.

Suppose now that Q is component preserving. By (5.5) and Lemma 3.4, V = S−1D W and Q = QD.

By the hierarchical definitions of D(p)
r (W,w) for r ≥ 1, the conclusions (1)-(3) follow.

If wi = vi = w for i = 1, . . . ,m, then SD = w−2SW,w. Thus, (4) follows. �

5.1.2. The worst-case error. Consider p =∞. In this case, we obtain the worst-case error
‖e(r, (W,w), (V,v), Q)‖∞ = maxJ∈Pm

r
‖TV,vQMJ,WT ∗W,w‖F .

To prove Theorem 5.3 we need the following proposition that gives some properties of the set
of elements in LT∗W,w

satisfying certain optimality condition.

Proposition 5.2. Let (W,w) be a fusion frame for H. Then

(5.6) {A ∈ LT∗W,w
: max
1≤i≤m

‖AMiT
∗
W,w‖F = min

B∈LT∗
W,w

max
1≤i≤m

‖BMiT
∗
W,w‖F }

is non-empty, compact and convex.

Proof. The map ‖.‖W,w : L(W,H) → R+, ‖A‖W,w = max1≤i≤m ‖AMiT
∗
W,w‖F is a norm in

L(W,H). To see this, let A ∈ L(W,H) such that ‖A‖W,w = 0. Then AMiT
∗
W,w = 0 for

i = 1, . . . ,m, and since R(MiT
∗
W,w) = MiW, it follows that AMiW = {0} for i = 1, . . . ,m. Thus

A =
∑m
i=1AMi = 0. The other norm properties are immediate.

Since the set LT∗W,w
is closed in L(W,H) under the usual norm and all norms in a finite-

dimensional Hilbert space are equivalent, LT∗W,w
is a closed subset of L(W,H) under the norm

‖.‖W,w. Given B0 ∈ LT∗W,w
, B0 6= 0, there exists an A0 in the non-empty compact set {A ∈

LT∗W,w
: ‖A‖W,w ≤ ‖B0‖W,w} where the continuous map ‖.‖W,w attains its minimum. So,

‖A0‖W,w = minA∈LT∗
W,w
‖A‖W,w, and the set (5.6) is non-empty and compact.

Since LT∗W,w
is convex and ‖.‖W,w is a convex map, the set (5.6) is convex. �

Given a fusion frame, Theorem 5.3 gives sufficient conditions that guarantee that there exists a
unique (up to weights) (r,∞)-loss optimal component preserving dual fusion frame.

Theorem 5.3. Let (W,w) be a fusion frame for H. If A0 ∈ LT∗W,w
is such that wi‖A0Mi‖F = c

for each i = 1, . . . ,m, then

(1) A0 is the unique element of the set (5.6).
(2) The only (r,∞)-loss optimal component preserving dual fusion frames of (W,w) are the

QA0,v-dual fusion frames with arbitrary vector of weights v.

Proof. (1) By Proposition 5.2, there exists A ∈ LT∗W,w
such that

max1≤i≤m ‖AMiT
∗
W,w‖F = minB∈LT∗

W,w
max1≤i≤m ‖BMiT

∗
W,w‖F .

So,
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max1≤i≤m ‖AMiT
∗
W,w‖F ≤ max1≤i≤m ‖A0MiT

∗
W,w‖F ,

and then, by hypothesis and (5.1),

(5.7) ‖AMi‖F ≤ ‖A0Mi‖F , for each i ∈ {1, . . . ,m}.
Using ‖AMi‖2F = ‖A0Mi‖2F + ‖(A−A0)Mi‖2F + 2Re(tr[(A−A0)MiT

∗
W,wS

−1
W,w]), by (5.7),

(5.8) ‖(A−A0)Mi‖2F + 2Re(tr[(A−A0)MiT
∗
W,wS

−1
W,w]) ≤ 0.

Since AT ∗W,w = A0T
∗
W,w = IH,∑m
i=1 tr[(A−A0)MiT

∗
W,wS

−1
W,w] = tr[(A−A0)T ∗W,wS

−1
W,w] = 0.

Thus, by (5.8),
∑m
i=1 ‖(A−A0)Mi‖2F ≤ 0, and consequently, AMi = A0Mi for every i ∈ {1, . . . ,m},

or equivalently, A = A0.
(2) It follows from part (1), Theorem 3.5, Lemma 3.4 and the inductive definition of (r,∞)-loss

optimal dual fusion frames. �

Corollary 5.4 gives sufficient conditions that assure that the only (r,∞)-loss optimal component
preserving dual fusion frames are the canonical ones.

Corollary 5.4. Let (W,w) be a fusion frame for H. If wi‖S−1W,wπWi
‖F = c for each i = 1, . . . ,m,

then

(1) S−1W,wTW,w is the unique element of the set (5.6).

(2) The only (r,∞)-loss optimal component preserving dual fusion frames of (W,w) are the
canonical ones (S−1W,wW,v) with arbitrary vector of weights v.

Proof. Since ‖S−1W,wTW,wMiT
∗
W,w‖F = wi‖S−1W,wπWi

‖F , the proof follows from Theorem 5.1. �

Corollary 5.5. Let (W,w) be a Parseval fusion frame for H. If wi dim(Wi)
1/2 = c for each

i = 1, . . . ,m, then

(1) TW,w is the unique element of the set (5.6).
(2) The only (r,∞)-loss optimal component preserving dual fusion frames of (W,w) are the

canonical ones (W,v) with arbitrary vector of weights v.

Proof. By hypothesis, ‖TW,wMiT
∗
W,w‖F = wi‖πWi

‖F = wi dim(Wi)
1/2 = c for each i = 1, . . . ,m,

so the proof follows from the previous corollary. �

Remark 5.6. By Corollary 5.5, the only (r,∞)-loss optimal component preserving dual fusion
frames of a uniform equi-dimensional Parseval fusion frame (W,w) are the canonical ones (W,v)
with arbitrary vector of weights v.

In Example 6.3, we are going to see a fusion frame that has a unique (up to weights) loss optimal
Q-component preserving dual fusion frame with the same subspaces as the canonical dual, but with
Q 6= QS−1

W,wTW,w,v
and therefore it gives another reconstruction formula.

5.2. Optimal dual fusion frame systems for erasures of local frame vectors. We will
analyze now the situation where some local frame vectors are lost. In this case we consider Ji ⊆ Li,
for each i = 1, . . . ,m, J = (J1, . . . , Jm) and |J | =

∑m
i=1 |Ji|. Let MJ ∈ L(F

∑m
i=1 |Li|,F

∑m
i=1 |Li|)

be the self-adjoint operator given by MJ ((xli)l∈Li)
m
i=1 = ((χJi(l)x

l
i)l∈Li)

m
i=1.

Fix r ∈ {1, . . . ,
∑m
i=1 |Li|}. Let P×

m
i=1Li

r = {J : |J | = r}. By similar considerations to those in
section 5.1, we consider the vector error

e(r, (W,w,F), (V,v,G)) = (‖TV,vCGMJC∗FT ∗W,w‖F )
J∈P

×m
i=1

Li
r

,

and define inductively

e
(p)
1 (W,w,F) = inf{‖e(1, (W,w,F), (V,v,G))‖p : (V,v,G) is a dual fusion frame system of (W,w,F)},
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D(p)
1 (W,w,F) as the set of dual fusion frame systems (V,v,G) of (W,w,F) with

‖e(1, (W,w,F), (V,v,G))‖p = e
(p)
1 (W,w,F),

e
(p)
r (W,w,F) = inf{‖e(r, (W,w,F), (V,v,G))‖p : (V,v,G) ∈ D(p)

r−1(W,w,F)},
D(p)
r (W,w,F) = {(V,v,G) ∈ D(p)

r−1(W,w,F) : ‖e(r, (W,w,F), (V,v,G))‖p = e
(p)
r (W,w,F)},

in case each D(p)
r (W,w,F), called the set of (r, p)-loss optimal dual fusion frames for (W,w,F),

is non-empty.
In the following we consider the cases p = 2 and p =∞ obtaining results that are analogous to

the ones viewed in Section 5.1. For this, let J ∈ P×
m
i=1Li

1 where Jl = ∅ if l 6= i and Ji = {j}. Then

MJC
∗
FT
∗
W,wTW,wCFM

∗
J = w2

i ‖f
j
i ‖2MJ , and if A ∈ L(W,H),

(5.9) ‖AMJC∗FT ∗W,w‖2F = w2
i ‖f

j
i ‖

2‖AMJ ‖2F .

5.2.1. The mean square error. Considering p = 2 we obtain the mean square error,
‖e(r, (W,w,F), (V,v,G))‖2 = (

∑
J∈P

×m
i=1

Li
r

‖TV,vCGMJC∗FT ∗W,w‖2F )1/2.

The following theorem about optimal (r, 2)-loss optimal dual fusion frame systems is similar to
Theorem 5.1.

Theorem 5.7. Let (W,w,F) be a fusion frame system for H where each element in F has norm
equal to 1. Let Gc = { 1

wivi
S−1F Fi}mi=1 and Gc,i = 1

wivi
S−1F Fi. Then

(1) (S−1F W,v,Gc) is an (r, 2)-loss optimal component preserving dual fusion frame system for
(W,w,F).

(2) If (V,v,G) is an (r, 2)-loss optimal dual fusion frame system of (W,w,F), then TV,vCG =
TS−1
F W,vCGc .

(3) If (V,v,G) is an (r, 2)-loss optimal component preserving dual fusion frame system of
(W,w,F) then V = S−1F W and G = Gc.

Proof. By Remark 2.6, wF is a frame for H, so F is also a frame for H and SF is a selfadjoint
positive invertible operator.

Note that TGc,i = 1
wivi

S−1F TFi
, so R(T ∗Gc,i) ⊆ R(T ∗Fi

) and, by Remark 4.2, CGcC
∗
F is component

preserving.
We also have TS−1

F W,vCGcC
∗
FT
∗
W,w =

∑m
i=1 S

−1
F TFi

T ∗Fi
= S−1F SF = IH, thus (S−1F W,v) is a

component preserving dual fusion frame system of (W,w), so (1) follows.
Using (5.9), the rest of the proof is similar to that of Theorem 5.1. �

5.2.2. The worst case error. For p =∞ we have the worst-case error,
‖e(r, (W,w,F), (V,v,G))‖∞ = max

J∈P
×m

i=1
Li

r

‖TV,vCGMJC∗FT ∗W,w‖F .
The following results are analogous to Proposition 5.2, Theorem 5.3, Corollary 5.4 and Corol-

lary 5.5, respectively. Their proofs follow similar lines, so we omit them.

Proposition 5.8. Let (W,w,F) be a fusion frame system for H. Then

(5.10) {A ∈ LC∗FT∗W,w
: max
J∈P

×m
i=1

Li
1

‖AMJC∗FT ∗W,w‖F = min
B∈LT∗

W,w

max
J∈P

×m
i=1

Li
1

‖BMJC∗FT ∗W,w‖F }

is non-empty, compact and convex.

Theorem 5.9. Let (W,w,F) be a fusion frame system for H. If (V,v,G) is a dual fusion frame

system of (W,w,F) such that wi‖fij‖ ‖TV,vCGMJ ‖F = c for each J ∈ P×
m
i=1Li

1 with Jl = ∅ if
l 6= i and Ji = {j}, then

(1) TV,vCG is the unique element of the set (5.10).
(2) (V,v,G) is the unique (r,∞)-loss optimal dual fusion frame system of (W,w,F).
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Corollary 5.10. Let (W,w,F) be a fusion frame system for H. If wi‖f ji ‖ ‖S
−1
wFπspan{fj

i }
‖F = c

for each i = 1, . . . ,m, then

(1) TS−1
wFW,w

CS−1
wFF

is the unique element of the set (5.10).

(2) (S−1wFW,w, S−1wFF) is the unique (r,∞)-loss optimal component preserving dual fusion
frame system of (W,w,F).

Corollary 5.11. Let (W,w,F) be a fusion frame for H. If wF is Parseval and wi‖f ji ‖ = c for
each i = 1, . . . ,m, then

(1) TW,wCF is the unique element of the set (5.10).
(2) (W,v,F) is the unique (r,∞)-loss optimal component preserving dual fusion frame system

of (W,w,F).

A fusion frame system that has a unique (r, 2)-loss optimal Q-component preserving dual fusion
frame system with the same subspaces as the canonical dual, but with Q 6= QS−1

W,wTW,w,v
, will be

given in Example 6.3. In this case the optimal dual provides another reconstruction formula than
the canonical dual.

In [12] and [11], the spectral norm is used instead of the Frobenius norm in the definition of the
worst-case error. We prefer the Frobenius norm in accordance with the study made in Section 5.1.
Both worst-case errors coincide for r = 1. So, by the used hierarchical definition and the relation
between dual fusion frame systems and dual frames, provided by Theorem 4.3, we conclude that
we can obtain examples for Theorem 5.9, Corollary 5.10 and Corollary 5.11 from the examples for
the corresponding results in [12] and [11] (see Example 6.4).

6. Examples

Example 6.1. In [8] a Bessel fusion sequence (V,v) is called an alternate dual of the fusion frame
(W,w) if for all f ∈ H

(6.1) f =

m∑
i=1

wiviπVi
S−1W,wπWi

(f).

If A :W → H, A(fi)
m
i=1 =

∑m
i=1 viπViS

−1
W,wfi, then by (6.1) A ∈ LT∗W,w

. We have Ṽi := AMiW =

πViS
−1
W,wWi and QA,v : W → Ṽ, QA,v(fi)

m
i=1 = (πViS

−1
W,wfi)

m
i=1. By Theorem 3.5, (Ṽ,v) is a

QA,v-component preserving dual fusion frame of (W,w). By Lemma 3.3, (6.1) can be written
using this dual fusion frame as f = TṼ,vQA,vT

∗
W,wf .

Example 6.2. Let H = C4, w1 > 0, w2 > 0, W1 = {(x1, x2, 0, 0) : x1, x2 ∈ C} and W2 =
{(0, x2, x3,−x2) : x2, x3 ∈ C}. Then (W,w) is a 2-equi-dimensional Riesz fusion basis for C4 and
so its unique component preserving duals are the canonical ones. Set w1 = w2 = 1.

(a) Although (W, 1) is a Riesz fusion basis, it is possible to construct a dual fusion frame which
is different from the canonical ones. For this, let

F1 = {(1, 0, 0, 0), (0, 1, 0, 0), (1, 0, 0, 0)}, F2 = {(0, 1, 0,−1), (0, 0, 1, 0), (0, 0, 1, 0)},
G1 = {( 1

2 ,
1
2 ,−

1
2 , 0), (0, 1, 0, 1), ( 1

2 ,−
1
2 ,

1
2 , 0)}, G2 = {(0, 0, 0,−1), ( 1

2 ,−
1
2 ,

1
2 , 0), (− 1

2 ,
1
2 ,

1
2 , 0)}.

Then {W,w,F} is a fusion frame system for C4 and G is a dual frame of F that is not the canonical
one.

Let Vi = spanGi, i = 1, 2. By Theorem 4.3, (V, 1,G) is a dual fusion frame system of (W, 1,F).
Note that CGC

∗
F :W → V, CGC∗F ((x1, x2, 0, 0), (0, y2, y3,−y2)) = ((x1, x2, 0, x2), (0, 0, y3,−2y2))

is block-diagonal but not component preserving.
Since dim(Vi) = 3 > dim(Wi) = 2, i = 1, 2, (V, 1) gives a dual fusion frame which is different

from the canonical one, moreover, it is not a Riesz fusion basis.
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(b) Consider T1 : C2 → C4, T1(x1, x2) = (x1, x2, 0, 0) and T2 : C2 → C4, T2(x1, x2) =
(0, 1√

2
x2, x1,− 1√

2
x2). Then (T1, T2) is a projective Riesz (2, 2,C4)-reconstruction system asso-

ciated with (W,w) with a unique dual, the canonical one, that is not projective (see [16], Example
5.4).

Example 6.3. Let H = F3, W1 = {(1, 0, 0)}⊥, W2 = {(0, 1, 0)}⊥, w1 > 0 and w2 > 0. Then
(W,w) is a 2-equi-dimensional fusion frame for F3 with S−1W,w(x1, x2, x3) = ( x1

w2
2
, x2

w2
1
, x3

w2
1+w

2
2
).

(a) Any A ∈ LT∗W,w
is given by

A ((0, x2, x3), (y1, 0, y3)) =

=

(
r11x3 +

y1
w2

+ r12y3,
x2
w1

+ r21x3 + r22y3, (
w1

w2
1 + w2

2

+ r31)x3 + (
w2

w2
1 + w2

2

+ r32)y3

)
,

where ri1w1 + ri2w2 = 0 for i = 1, 2, 3.
By Theorem 3.5, any QA,v-component preserving dual fusion frame has arbitrary weights v1, v2

and subspaces
V1 = AM1W = span{(0, 1, 0), (r11, r21,

w1

w2
1+w

2
2

+ r31)},
V2 = AM2W = span{(1, 0, 0), (r12, r22,

w2

w2
1+w

2
2

+ r32)}.
We have QS−1

W,wTW,w,v
((0, x2, x3), (y1, 0, y3)) = ( 1

v1
(0, x2

w1
, w1x3

w2
1+w

2
2
), 1
v2

( y1w2
, 0, w2y3

w2
1+w

2
2
)). We note

that {(W1, w1) , (W2, w2)} is not Parseval and has the same subspaces as its canonical dual.
(b) Let Q :W → V, Q((0, x2, x3), (y1, 0, y3)) = ( 1

v1
(0, x2

w1
, x3

2w1
), 1
v2

( y1w2
, 0, y3

2w2
)).

If SD and QD are as in Theorem 5.1, then S−1D W = W and QD = Q. By Theorem 5.1(1),
(W,v) is an (r, 2)-loss optimal Q-component preserving dual fusion frame of (W,w).

The unique element in the set (5.6) is given by A((0, x2, x3), (y1, 0, y3)) = ( y1w2
, x2

w1
, 12 ( x3

w1
+ y3

w2
)).

In this case, V1 = W1, V2 = W2 and QA,v = Q. Therefore, (W,v) is the unique (up to weights)
(r,∞)-loss optimal Q-component preserving dual fusion frame of (W,w).

(c) Let F1 = {(0, 0, 1), (0, 32 ,−
1
2 ),−(0,

√
3
2 ,

1
2 )} and F2 = {(0, 0, 1), (

√
3
2 , 0,−

1
2 ),−(

√
3
2 , 0,

1
2 )}.

Then Fi is a unit norm 3
2 -tight frame for Wi, i = 1, 2, (W,w,F) is a fusion frame system for F4

and F is a frame for F4 with SF (x1, x2, x3) = (3
2x1,

3
2x2, 3x3).

Let Gc = {{gli}3l=1}2i=1 be as in Theorem 5.7, i.e.

g11 = 1
w1v1

(0, 0, 13 ), g21 = 1
w1v1

(0,
√
3
3 ,
−1
6 ), g31 = 1

w1v1
(0, −

√
3

3 , −16 ),

g12 = 1
w2v2

(0, 0, 13 ), g22 = 1
w2v2

(
√
3
3 , 0,

−1
6 ), g32 = 1

w2v2
(−
√
3

3 , 0, −16 ).

By Theorem 5.7, (W,v,Gc) is the unique (up to weights) (r, 2)-loss optimal component preserv-
ing dual fusion frame system of (W,w,F) and CGcC

∗
F = Q.

If w1 6= w2, then Q 6= QS−1
W,wTW,w,v

and TW,vQ 6= TW,vQS−1
W,wTW,w,v

. So, by the analysis done

in (b) and (c), (W,w) has loss optimal duals with the same subspaces as the canonical ones but
that provide different reconstruction formulas than the canonical duals.

(d) Let T1 : F2 → F3, T1(x1, x2) = (0, x1, x2), and T2 : F2 → F3, T2(x1, x2) = (x1, 0, x2). Then
(T1, T2) is a projective (2, 2,F3)-reconstruction system associated with (W,w). This reconstruction
system is considered in [16, Example 5.1], where it is shown that if F = C, (T1, T2) has projective
duals but the canonical dual is not projective, and if F = R, (T1, T2) has not projective duals.

Example 6.4. Let H = F3, F1 = {(1, 0, 0), (0, 1, 0), (−2, 1, 1)}, W1 = spanF1, F2 = {(1,−2,−1)},
W2 = spanF2, G1 = {( 22−

√
74

20 , 2−
√
74

20 , 32 ), ( 2−
√
74

20 , 22−
√
74

20 ,− 3
2 ), ( 2−

√
74

20 , 2−
√
74

20 , 12 )}, V1 = spanG1,

G2 = {( 2−
√
74

20 , 2−
√
74

20 ,− 1
2 )} and V2 = spanG2.
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Then (W, 1,F) is a fusion frame system for H, V1 = S−1W,1W1 and V2 6= S−1W,1W2. By [11,

Example 3.5], (V, 1,G) is the (r,∞)-loss optimal dual fusion frame system of (W, 1,F), and it is
different from the canonical ones.
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