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(Dated: January 1, 2018)

We provide a twofold extension of Landau–Pollak uncertainty relations for mixed quantum states
and for positive operator-valued measures, by recourse to geometric considerations. The general-
ization is based on metrics between pure states, having the form of a function of the square of the
inner product between the states. The triangle inequality satisfied by such metrics plays a crucial
role in our derivation. The usual Landau–Pollak inequality is thus a particular case (derived from
Wootters metric) of the family of inequalities obtained, and, moreover, we show that it is the most
restrictive relation within the family.
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I. INTRODUCTION

The uncertainty principle is one of the most important
principles in quantum mechanics. Originally stated by
Heisenberg [1], it establishes a limitation on the simulta-
neous predictability of incompatible observables. Uncer-
tainty relations constitute the quantitative expressions of
this principle. The first formulations, due to Heisenberg,
Robertson and Schrödinger [1, 2], are the most popu-
lar ones. However, they exhibit a state-dependent lower
bound for the product of the variances of a pair of non-
commuting observables. Thus, a drawback of this formu-
lation is that it is not universal; moreover, the universal
bound (the minimum over the states) is trivial, i.e., it
equals zero. Several alternatives have been studied, such
as those using the sum of the variances instead of the
product [3], or those using information-theoretic mea-
sures as quantifiers of lack of information (see Refs. [4–6],
and [7] for recent reviews). Recently, some of us [8] ex-
tended entropic formulations of the uncertainty principle
to the case of a pair of observables with nondegenerate
discrete N -dimensional spectra, using generalized infor-
mational entropies. The proposed formulation makes use
of the Landau–Pollak inequality (LPI) which has been
introduced in time-frequency analysis [9], and later on
adapted to the quantum mechanics’ language [4]. In this
last case, the inequality is itself a (geometric) formulation
of the uncertainty principle and applies for pure states
and nondegenerate observables. The goal of this paper
is precisely to extend the scope of Landau–Pollak-type
inequalities.

Let us consider a pure state |Ψ〉 belonging to an N -

dimensional Hilbert space H, and two observables with
discrete, nondegenerate spectra and corresponding eigen-
bases {|ai〉}i=1,...,N and {|bj〉}j=1,...,N , described by the

operators A =
∑N
i=1 ai |ai〉〈ai| and B =

∑N
j=1 bj |bj〉〈bj |.

The LPI [4, 9] reads:

arccos
(

max
i
|〈ai|Ψ〉|

)
+ arccos

(
max
j
|〈bj |Ψ〉|

)
≥ arccos c

(1)
where c = maxij |〈ai|bj〉| is the so-called overlap between
the eigenbases of the observables. The overlap ranges
from 1√

N
(complementary observables) to 1 (the observ-

ables share at least an eigenstate). The quantity |〈ai|Ψ〉|2
(resp. |〈bj |Ψ〉|2) is interpreted as the probability that ob-
servable A (resp. B), for a system in preparation |Ψ〉,
takes the eigenvalue ai (resp. bj). The LPI (1) is a mean-
ingful expression of the strong uncertainty principle for
nondegenerate observables and pure states. On the one
hand, unlike standard approaches, the right hand side
of (1) is a state-independent lower bound on the proba-
bility distributions associated with observables A and B.
The bound is nontrivial whenever c < 1, i.e., when the
observables A and B do not share a common eigenstate.
On the other hand, when maxi |〈ai|Ψ〉|2 = 1, i.e., when
the probability distribution associated to observable A is
concentrated, LPI implies that maxi |〈bi|Ψ〉|2 ≤ c2 < 1
that means that the probability distribution associated
with observable B cannot be concentrated; Furthermore,
in the complementary case c = 1√

N
, the probability dis-

tribution associated with observable B must be uniform.
Besides, LPI has been used to improve Maassen–Uffink
entropic uncertainty relation [5], and a weak version has

ar
X

iv
:1

40
6.

35
37

v2
  [

qu
an

t-
ph

] 
 1

 O
ct

 2
01

4



2

been used to obtain entanglement criteria [10, 11].
The extraction of information from a quantum sys-

tem inevitably requires to perform a measurement. The
simplest one is a projection valued measure (PVM), also
known as von Neumann measurement. However, a de-
scription of a measurement by PVM is in general in-
sufficient because most of the observations that can be
performed are not of this type. Besides, for many ap-
plications one is only interested in the probability dis-
tributions associated to the observables but not in the
post-measurement state. Fortunately, there exists a sim-
ple mathematical tool known as positive operator-valued
measures (POVM) formalism which provides a general-
ization of standard projective measurements and also
a description of any possible measurement to be per-
formed [13, 14].

Until recently, LPI had only been demonstrated for
pure quantum states. However, in a recent contribu-
tion [12], inequality (1) was generalized to deal with
mixed states for the case of nondegenerate observables,
and was indeed extended (based on geometric concepts)
using a family of uncertainty measures other than the ar-
ccosine (which is related to Wootters metric). Here we go
a step further, extending the LPI (1) and its generaliza-
tion given in Ref. [12], in order to deal with degenerate
observables described by POVM sets. In Sec. II, we first
resume the framework, namely that of two observables
described by two POVM sets, and we describe measures
of uncertainty based on a class of metric between pure
states. Then we formulate our main results, namely: (i)
extension of the LPI in the context of POVM using a class
of generalized uncertainty measures, (ii) determination of
the most restrictive measure within the class considered,
and (iii) analysis of the uncertainty intrinsic to a given
POVM set. In Sec. III we provide some numerical illus-
trations. We analyze the consequences of the extended
LPI in the context of POVM, and we also discuss the
optimality or not of the uncertainty relations obtained.
Some conclusions are drawn in Sec. IV. The proof of the
extended LPI is made in several steps, developed in de-
tail in App. A; whereas in App. B the algorithms used
for the simulations are presented.

II. GENERALIZED LANDAU–POLLAK
INEQUALITIES: MAIN RESULTS

Let us consider two observables A and B described
by the POVM sets A = {Ai}i=1,...,NA

and B =
{Bj}j=1,...,NB

, respectively, i.e., A and B are sets of Her-
mitian (or self-adjoint) positive semi-definite operators
acting on an N -dimensional Hilbert space H, that sat-
isfy the completeness relation or resolution of the iden-

tity:
∑NA

i=1Ai = I =
∑NB

j=1Bj , where I is the identity
operator on H, and NA and NB are not necessarily equal
to one another, or equal to N . In some sense, the Ai’s
(resp. Bj ’s) allow to represent the possible outcomes of
observable A (resp. B). Also, let us consider a system

whose state is described by a density operator ρ acting
on H, where ρ is Hermitian, positive semi-definite, and
normalized (Tr ρ = 1). We denote by D the set of density
operators. The quantity

pi(A; ρ) = Tr (Aiρ)

represents the probability of measuring the ith outcome
of A when the system is in the state ρ [13]. In the con-
text of observables with nondegenerate spectra and pure
states, the operators take the form of rank one projectors,
Ai = |ai〉〈ai| and ρ = |Ψ〉〈Ψ|.

Let us now turn to the consideration of a measure of
uncertainty that allows us for the generalization of the
LPI. We start with continuous functions f : [0 ; 1] 7→ R+,
that are strictly decreasing and satisfy f(1) = 0, and
such that for two (normalized) pure states |Ψ〉 and |Φ〉,
f
(
|〈Ψ|Φ〉|2

)
= df (|Ψ〉 , |Φ〉) defines a metric between

them. This kind of metrics is interesting as they depend
on the inner product between two quantum states and,
hence, they are invariant under unitary transformations.
Some well-known cases are:

• f(x) = arccos
√
x, leading to the Wootters metric,

or Bures angle [15],

• f(x) =
√

2 (1−
√
x), leading to the Bures met-

ric [13, 16],

• f(x) =
√

1− x, related to the root-infidelity met-
ric [17], or Hilbert–Schmidt or trace distance [13].

We notice that these metrics extend to (or, indeed, were
defined for) mixed states, with function f being applied
to the fidelity between two mixed states [13, 18]. From
such metrics df , the quantity

Uf (A; ρ) = f (PA;ρ) (2)

with

PA;ρ = max
i

Tr (Aiρ) = max
i

pi(A; ρ) (3)

defines an uncertainty measure corresponding to the mea-
surement of a set A of operators that describe observable
A, for a system in a state ρ, in the sense that [12]

• Uf (A; ρ) ≥ 0 for all PA;ρ ∈
[

1
NA

, 1
]
, and

• Uf (A; ρ) is decreasing in terms of the maximal
probability PA;ρ, with

� Uf (A; ρ) is maximum iff PA;ρ = 1
NA

, that
is equivalent to the equiprobability situation
pi(A; ρ) = 1

NA
for all i,

� Uf (A; ρ) vanishes iff PA;ρ = 1, that is equiv-
alent to the certainty situation pi(A; ρ) = δik
for a given k.
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Our main result in the present contribution is a two-
fold generalization of Landau–Pollak-type uncertainty
relations, comprising the cases of mixed states and of
POVM descriptions. We establish the following theorem,
whose proof is postponed until Apps. A 1–A 3, and give
a discussion below.

Theorem 1. Let A = {Ai}i=1,...,NA
and B =

{Bj}j=1,...,NB
be two positive operator valued measures

describing discrete observables A and B, respectively, and
acting on an N -dimensional Hilbert space H. Then for
an arbitrary density operator ρ ∈ D acting on H, the
following relation holds:

Uf (A; ρ) + Uf (B; ρ) ≥ f
(
c 2
A,B
)

(4)

where

cA,B = max
ij

∥∥∥√Ai√Bj∥∥∥ = max
ij

∥∥∥√Bj√Ai∥∥∥ (5)

is the generalized overlap between the two POVM sets.

The overlap (5) is given in terms of an operator norm.
For the sake of completeness, we recall here its defini-

tion: for any operator O on H, ‖O‖ = max
|ϕ〉∈H

‖O|ϕ〉‖
‖|ϕ〉‖

=

max
|ϕ〉∈H

〈ϕ|O†O|ϕ〉 12
〈ϕ|ϕ〉 12

= max
|Ψ〉∈H:‖|Ψ〉‖=1

‖O|Ψ〉‖, where O† is

the adjoint operator of O [19].
Notice that, in the case of observables with nondegen-

erate spectra, letting Ai = |ai〉〈ai| and Bj = |bj〉〈bj | then
one has cA,B = maxij |〈ai|bj〉| = c. The generalization of
LPI to mixed states proved in Ref. [12] is then recovered
from Theorem 1. Moreover, in this case, inequality (4)
is sharp whatever f , in the sense that there exists at
least one state that renders equality. Indeed, denoting by
(i′, j′) the pair of indices such that cA,B = ‖

√
Ai′

√
Bj′‖,

and choosing |Ψ〉 = |ai′〉 or |Ψ〉 = |bj′〉, together with the
fact that f(1) = 0, allows to prove the assertion.

A way to look at the family of inequalities (4) is in
the sense that they establish a restriction to the values
that the pair of maximal probabilities (PA;ρ , PB;ρ) can

take jointly, within the rectangle
[

1
NA

; 1
]
×
[

1
NB

; 1
]
.

We point out that the fact discussed in the preceding
paragraph for the context of nondegenerate observables,
does not mean that the whole family of inequalities ren-
ders the same permitted domain for the pair; that is
neither the case in the POVM context. And, in fact,
the restriction imposed by (4) manifests in a reduced
rectangle. Indeed, if PA;ρ ≤ c 2

A,B (resp. PB;ρ ≤ c 2
A,B),

then f(PA;ρ) ≥ f(c 2
A,B) [resp. f(PB;ρ) ≥ f(c 2

A,B) ] and

thus inequality (4) is satisfied whatever PB;ρ ∈
[

1
NB

; 1
]

(
resp. PA;ρ ∈

[
1
NA

; 1
])

. But if (and only if) the pair

(PA;ρ, PB;ρ) is within the square (c 2
A,B ; 1]2, the inequal-

ity becomes restrictive. A careful look at (4) suggests us

to define the function

hfc : [c2 ; 1]→ [c2 ; 1]

hfc (x) = f−1
(
f(c2)− f(x)

) (6)

Thus, the restriction due to inequality (4) writes down
as

PB;ρ ≤ hfcA,B

(
PA;ρ

)
for PA;ρ ∈ (c 2

A,B ; 1] (7)

(a similar relation is valid exchanging the roles of A and
B).

In the case of nondegenerate spectra, the fact that the
lower bound to the uncertainty sum can be reached what-
ever f , is evidenced in the maximum-probabilities plane
in the fact that the points (c2, 1) and (1, c2) coincide for
all curves y = hfc (x), as already mentioned in Ref. [12],
and there do exist states for which (PA;ρ, PB;ρ) = (1, c2)
and those for which (PA;ρ, PB;ρ) = (c2, 1). The question
that had remained open, was to know which function f
of the family considered leads to the most restrictive in-
equality (7), i.e., which f minimizes hfc (P ) when c and
P ∈ (c2 ; 1) are fixed. The answer is given in the follow-
ing theorem, the proof of which is presented in App. A 4:

Theorem 2. Within the whole family of uncertainty in-
equalities given by Theorem 1, the strongest restriction
for the pair of maximal probabilities (PA;ρ, PB;ρ), rewrit-
ten as inequality (7), and its counterpart changing A with
B, corresponds to Wootters case, namely for the function
f(x) = arccos

√
x.

It is important also to address the following situa-
tion: when considering only one observable, in the gen-
eral POVM context, there exists a possible uncertainty
that is intrinsic to the POVM representation itself [20].
Indeed a POVM set A can be such that whatever the
state of the system is, no outcome appears with certainty.
This situation arises when no operator in A has an eigen-
value equal to unity. An inequality quantifying such an
intrinsic uncertainty is given in the following corollary to
Theorem 1, whose proof is presented in App. A 5:

Corollary 1. Let A = {Ai}i=1,...,NA
be a POVM

set describing an observable A, and acting on an N -
dimensional Hilbert space H. Then for an arbitrary den-
sity operator ρ ∈ D acting on H, the following relation
holds:

Uf (A; ρ) ≥ f
(
c 2
A
)
, (8)

where

cA = max
i

∥∥∥√Ai∥∥∥ ∈ [
1√
NA

, 1

]
(9)

is a generalized intrinsic overlap of the POVM set. The
bound is nontrivial (only) when the eigenvalues of any
operator Ai are different from unity.
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Combining Theorem 1 and Corollary 1, it appears that
the lower bound for the sum of metric-based uncertainties
of the form (2) can be improved as follows:

Corollary 2. Let A = {Ai}i=1,...,NA
and B =

{Bj}j=1,...,NB
be two POVM sets describing observables

A and B respectively, and acting on an N -dimensional
Hilbert space H. Then for an arbitrary density operator
ρ ∈ D acting on H, the following relation holds:

Uf (A; ρ) + Uf (B; ρ) ≥ max
{
f
(
c 2
A
)

+ f
(
c 2
B
)
, f
(
c 2
A,B
)}

(10)
where cA, cB and cA,B are the intrinsic and joint gener-
alized overlaps.

We notice that the overlap cA,B is bounded from below
and above in the following way (see App. A 6 for the
proof):

max

{
cA√
NB

,
cB√
NA

}
≤ cA,B ≤ cA cB (11)

Consequently, from the last inequality and since cAcB ≤

min {cA, cB}, we get f(c 2
A,B) ≥ f

(
min

{
c 2
A , c 2

B
})

=

max
{
f(c 2
A ) , f(c 2

B )
}

. When at least one operator Ai
(and/or Bj) of the POVM set A (and/or of B) has an
eigenvalue equal to unity, cA = 1 (and/or cB = 1), thus
we get f(c 2

A,B) ≥ f(c 2
B ) (and/or f(c 2

A,B) ≥ f(c 2
A )): to-

gether with f(1) = 0, f(c 2
A,B) ≥ f(c 2

A ) + f(c 2
B ), i.e., the

bound in Eq. (10) reduces to that of Eq. (4).

It turns out that the allowed domain for the pair of
maximal probabilities (PA;ρ, PB;ρ) is constrained as given
in the following corollary, the proof of which is given in
App. A 7:

Corollary 3. Let A = {Ai}i=1,...,NA
and B =

{Bj}j=1,...,NB
be two POVM sets describing observables

A and B respectively, and acting on an N -dimensional
Hilbert space H. Then for an arbitrary density oper-
ator ρ acting on H, the pair of maximal probabilities
(PA;ρ, PB;ρ) is constrained to the domain

DLP(cA, cB, cA,B) =

{
(PA, PB) ∈

[
1

NA
; c 2
A

]
×
[

1

NB
; c 2
B

]
: PB ≤ hcA,B

(
PA
)

when PA ≥ c 2
A,B

}
(12)

where hcA,B is given by (6) for f(x) = arccos
√
x. If

c 2
B ≤ hcA,B(c 2

A ), i.e., cA,B ≥ cAcB −
√

(1− cA)(1− cB),

the allowed domain becomes
[

1
NA

; c 2
A

]
×
[

1
NB

; c 2
B

]
.

Let us now illustrate both theorems by simulated
POVM sets and simulated states. These simulations al-
low us to comment on the uncertainty relations and, in
particular, on Corollary 3 in various contexts.

III. NUMERICAL ILLUSTRATIONS

This section aims at illustrating the constraints im-
posed on the simultaneous predictability of two observ-
ables as expressed by the uncertainty relations (4) in The-
orem 1. To this end, we draw randomly several POVM
pairs; and for any given pair (Ak,Bk) of POVM (k =
1, . . .), we draw randomly mixed states {ρl}l=1,.... Then
we calculate the uncertainty sums Uf (Ak; ρl)+Uf (Bk; ρl)
and the corresponding bounds f

(
c 2
Ak,Bk

)
for different

functions f (see App. B for technical details on the simu-
lation of POVM and states). In order to illustrate Corol-
lary 3, we analyze not only Uf (Ak; ρl) + Uf (Bk; ρl), but
also the cloud of points {(PAk;ρl , PBk;ρl)}l=1,... where
(Ak,Bk) is fixed, together with their allowed domain
DLP(cAk

, cBk
, cAk,Bk

).

Figures 1.(a)–(c) represent the simultaneous uncer-
tainty Uf (Ak; ρl) + Uf (Bk; ρl) versus the overlap cAk,Bk

,
compared to the lower bound f

(
c 2
Ak,Bk

)
for: (a) Woot-

ters metric given by f(x) = arccos
√
x, (b) Bures metric

with f(x) =
√

2 (1−
√
x), and (c) root-infidelity met-

ric with f(x) =
√

1− x, in the context of observables
with nondegenerate spectra, and for both pure and mixed
states. Here, the operators written as Ai = |ai〉〈ai|, i =
1, . . . , N , are built from the column vectors |ai〉 of a uni-
tary matrix (and similarly for the Bj). The dimension
is chosen to be N = 3. These figures illustrate Theo-
rem 1 and the fact that, in the nondegenerate case, the
bounds that we find are optimal. Figure 1.(d) depicts the
domain DLP(1, 1, 0.75) and functions hfcA,B

for the Bures
and root-infidelity metrics, together with snapshots of
pairs (PA;ρl , PB;ρl): this clearly illustrates that the case
corresponding to Wootters metric gives the most restric-
tive domain within the family of uncertainty inequalities
(Theorem 2). It also suggests that, in the nondegener-
ate context, DLP is the best domain in the sense that it
coincides with {(PA;ρ , PB;ρ) : ρ ∈ D}. This assertion
remains however to be proved.

Figure 2 depicts some examples of domains
DLP(cA, cB, cA,B), Eq. (12), together with snapshots of
pairs (PA;ρl , PB;ρl), in various contexts. The dimensions
chosen are N = 3, NA = 4 and NB = 5. In Figs. 2.(a)

and (b), cA,B < cAcB −
√

(1− cA)(1− cB), and in
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P
B;

ρ

(a) (b) (c) (d)

FIG. 1: Illustration of the uncertainty relations given in Theorem 1 in the case of nondegenerate observables and N =
3. Snapshots of the uncertainty sum Uf (Ak; ρl) + Uf (Bk; ρl) vs. the corresponding generalized overlap cAk,Bk (points), and

comparison to the bound f(c 2
A,B) (solid line) for: (a) f(x) = arccos

√
x (Wootters); (b) f(x) =

√
2 (1−

√
x) (Bures); (c) f(x) =√

1− x (root-infidelity). In the simulation, k = 1, . . . , 104 and l = 1, . . . , 25. (d) Domain DLP(1, 1, 0.75) that corresponds to
Wootters metric (solid line), and functions hfcA,B for the Bures (dashed-dotted line) and root-infidelity (dashed line) metrics;

the points represent the pairs (PA,ρl , PB,ρl) with (A,B) fixed and l = 1, . . . , 5× 104.

Figs. 2.(c) and (d) cA,B > cAcB −
√

(1− cA)(1− cB),
illustrating situations where DLP restricts to[

1
NA

; c 2
A

]
×
[

1
NB

; c 2
B

]
or not. In Figs. 2.(a) and

(b) [resp. Figs. 2.(c) and (d)], the overlaps are equal,
but the pairs of POVM are different. It can be seen that
the domain where the pairs (PAk;ρl , PBk;ρl) live does
not depend only on the overlaps, but also depend on the
pair of POVM itself. To be more precise, dealing with
optimality, two notions have to be considered:

• (A,B)−optimal domain DPOVM(A,B) =
{(PA;ρ , PB;ρ) : ρ ∈ D} is the smallest domain
containing all pairs (PA;ρ , PB;ρ) for any mixed
state ρ ∈ D acting on H.

• (cA, cB, cA,B)−optimal set Dc(cA, cB, cA,B) =⋃
(A,B) s.t. (cA,cB,cA,B)

DPOVM(A,B), is the union of

sets DPOVM(A,B) with (A,B) sharing the same
triplet (cA, cB, cA,B) of overlaps.

These two domains are probably not equal. More-
over, at this step, the illustrations seem to indicate that
DLP 6= DPOVM, but it remains to be proved formally.
The (cA, cB, cA,B)−optimality or not of DLP remains also
to be investigated, but the illustrations seem to indicate
that this last optimality is probable.

IV. CONCLUDING REMARKS

In summary, in this work we have been able to ex-
tend the Landau–Pollak inequality for degenerate observ-
ables described by the most general formalism of positive
operator-valued measures. We derived a family of uncer-
tainty relations, given in Theorem 1, in the most general
context of observables described by POVM sets and for
mixed quantum states. The relations obtained extend
and generalize the well-known Landau–Pollak inequality

in the general context and provide a whole family of in-
equalities. The starting point that gives rise to this set
of relations is the assimilation of measures of uncertainty
in terms of a conveniently defined metric, which satis-
fies the triangle inequality. We adopt metrics that lie on
decreasing functions of the square of the inner product
between pure states. It comes out that Wootters metric,
leading to the usual Landau–Pollak inequality (its ex-
tension to mixed states and POVM descriptions) is the
most restrictive within the family of inequalities we ob-
tain (Theorem 2). From these theorems, we recover that
in general, in the POVM representation context, there
exists an uncertainty intrinsic to the representation itself
(Corollary 1), and thus, that the allowable domain for
the pair of maximal probabilities corresponding to two
observables is constrained by both the joint uncertainty
relation and the intrinsic one (Corollary 2).

A direct consequence of our results is that a previous
work [8] dealing with generalized entropies of probability
vectors extends very easily in the most general case of
POVM representations of observables.

Finally, the simulated numerical results suggest that
for a given pair of POVM A and B, the allowable
domain for the pair (PA;ρ, PB;ρ) is tighter that do-
main DLP(cA, cB, cA,B) given by Corollary 3: the ques-
tions of finding the tightest domain for (PA;ρ, PB;ρ),
given POVM sets A and B [(A,B)− optimal set
DPOVM(A,B)] or given (cA, cB, cA,B) [(cA, cB, cA,B)− op-
timal set Dc(cA, cB, cA,B)], remain open. The structure
of the tight domains (convex or not?) and the proper-
ties of the states (pure or not?) reaching the border of
these domains are also open questions. These points give
possible directions for further investigation in the field.
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FIG. 2: Illustration of Corollary 3: domain DLP(cA, cB, cA,B) and snapshots of pairs (PA;ρl , PB;ρl) (points). In each figure,
N = 3, NA = 4, NB = 5, and the dotted lines represent respectively PA;ρ = 1

NA
, PB;ρ = 1

NB
, PA;ρ = c2A, PB;ρ = c2B, and PB;ρ =

hcA,B (PA;ρ). The domain DLP(cA, cB, cA,B) is delimited by the solid line. In (a) and (b): (cA , cB , cA,B) = (0.92 , 0.95 , 0.60);

in (c) and (d): (cA , cB , cA,B) = (0.84 , 0.86 , 0.84). The number of snapshots is of the order of 104.
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Appendix A: Proofs of the theorems and corollaries

1. Landau–Pollak-type uncertainty relation for sets
of projectors and pure states

The first step in our demonstration is to consider pure
states |Ψ〉 and sets of projectors P = {Pi}i=1,...,NP

, being
P 2
i = Pi. The case of PVM sets is a particular case,

where PiPi′ = Piδii′ . The following lemma extends the
LPI for these particular measurements.

Lemma 1. Let P = {Pi}i=1,...,NP
and Q =

{Qj}j=1,...,NQ
be two sets of projectors acting on an N -

dimensional Hilbert space H. Then for an arbitrary pure
state |Ψ〉 ∈ H, the following relation holds:

Uf (P; |Ψ〉〈Ψ|) + Uf (Q; |Ψ〉〈Ψ|) ≥ f(c 2
P,Q) (A1)

where cP,Q = max
ij

∥∥∥√Pi√Qj∥∥∥ = max
ij

∥∥∥√Qj√Pi∥∥∥.

Proof. Note first that for any operator O, the operator
norm satisfies ‖O‖ = ‖O†‖ [19]. This property together
with the Hermitian property of operators Pi and Qj jus-

tifies the equality
∥∥√Pi√Qj∥∥ =

∥∥√Qj √Pi∥∥. Consider
now the two normalized pure states:

|ψi〉 =
Pi|Ψ〉
‖Pi|Ψ〉‖

and |ϕj〉 =
Qj |Ψ〉
‖Qj |Ψ〉‖

(A2)

for ‖Pi|Ψ〉‖ 6= 0 and ‖Qj |Ψ〉‖ 6= 0, then

|〈Ψ|ψi〉|2 = 〈Ψ|Pi|Ψ〉 and |〈Ψ|ϕj〉|2 = 〈Ψ|Qj |Ψ〉
(A3)

using that P 2
i = Pi and Q 2

j = Qj .
Now, the triangle inequality fulfilled by the metric df

applied to the triplet |ψi〉, |ϕj〉 and |Ψ〉 reads:

f (〈Ψ|Pi|Ψ〉) + f (〈Ψ|Qj |Ψ〉) ≥ f

(
|〈Ψ|PiQj |Ψ〉|2

‖Pi|Ψ〉‖2‖Qj |Ψ〉‖2

)
.

(A4)
Notice that

|〈Ψ|PiQj |Ψ〉| =
∣∣∣〈Ψ| √Pi √Pi √Qj √Qj |Ψ〉∣∣∣

≤
∥∥∥√Pi |Ψ〉∥∥∥ ∥∥∥√Pi √Qj √Qj |Ψ〉∥∥∥

≤
∥∥∥√Pi |Ψ〉∥∥∥ ∥∥∥√Qj |Ψ〉∥∥∥ ∥∥∥√Pi √Qj∥∥∥

≤
∥∥∥√Pi |Ψ〉∥∥∥ ∥∥∥√Qj |Ψ〉∥∥∥ cP,Q, (A5)

where the first inequality follows from the Cauchy–
Schwartz inequality, the second one from the definition
of the operator norm, and the third one from the def-
inition of cP,Q. The proof ends noting that

√
Pi = Pi

and
√
Qj = Qj , choosing i′ and j′ so that 〈Ψ|Pi′ |Ψ〉 =

maxi〈Ψ|Pi|Ψ〉 (necessarily nonzero) and 〈Ψ|Qj′ |Ψ〉 =
maxj〈Ψ|Qj |Ψ〉, together with the decreasing property of
the function f and the definition of Uf given by Eq. (2).
Let us mention that the interchange of the roles of Pi and
Qj leads to the same result due to |〈ψi|ϕj〉|2 = |〈ϕj |ψi〉|2
and the symmetry satisfied by the operator norm.

Note that the sets P and Q do not need to satisfy the
resolution of the identity, i.e., the inequality applies be-
yond the scope of the complete description of observables
by sets of projectors.
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2. Landau–Pollak-type uncertainty relation for
POVM pairs and pure states

We can extend now the previous result to general
POVM sets.

Lemma 2. Let A = {Ai}i=1,...,NA
and B =

{Bj}j=1,...,NB
be two POVM sets describing observables

A and B and acting on an N -dimensional Hilbert space
H. Then for an arbitrary pure state |Ψ〉 ∈ H, the follow-
ing relation holds:

Uf (A; |Ψ〉〈Ψ|) + Uf (B; |Ψ〉〈Ψ|) ≥ f(c 2
A,B) (A6)

where cA,B = max
ij

∥∥∥√Ai√Bj∥∥∥ = max
ij

∥∥∥√Bj√Ai∥∥∥.

Proof. Let us consider the pure state |Φ〉 = |Ψ〉 ⊕ 0 ⊕
0 belonging to the extended Hilbert space which is the
direct sum H ⊕Haux ⊕ Haux, where Haux has the same
dimension as H. Consider also projectors Pi and Qj of
the form [10]

Pi =


Ai

√
Ai(I −Ai) 0√

Ai(I −Ai) I −Ai 0

0 0 0

 ,

Qj =


Bj 0

√
Bj(I −Bj)

0 0 0√
Bj(I −Bj) 0 I −Bj

 .

Using that

〈Φ|Pi|Φ〉 = 〈Ψ|Ai|Ψ〉,
〈Φ|Qj |Φ〉 = 〈Ψ|Bj |Ψ〉,

|〈Φ|PiQj |Φ〉|
‖Pi|Φ〉‖‖Qj |Φ〉‖

=
|〈Ψ|AiBj |Ψ〉|

‖
√
Ai|Ψ〉‖‖

√
Bj |Ψ〉‖

,

then inequality (A4) applied to any triplet Pi, Qj and |Φ〉
so that 〈Φ|Pi|Φ〉 6= 0 6= 〈Φ|Qj |Φ〉, leads to

f (〈Ψ|Ai|Ψ〉) + f (〈Ψ|Bj |Ψ〉)

≥ f

(
|〈Ψ|AiBj |Ψ〉|2

‖
√
Ai|Ψ〉‖2‖

√
Bj |Ψ〉‖2

)
. (A7)

Now, as done in (A5), we have
|〈Ψ|AiBj |Ψ〉|

‖√Ai|Ψ〉‖‖
√
Bj |Ψ〉‖

≤ cA,B.

The end of the proof is similar to that of Lemma 1.

Note that, here again, the sets A and B do not need
to fulfill the resolution of the identity. Thus, Lemma 2
applies in a more general context than that of the de-
scription of observables by POVM.

3. Landau–Pollak-type uncertainty relation for
POVM sets and mixed states

We are ready now to prove inequality (4) in Theorem 1.
To this end, let us consider a density operator ρ acting
on H. Since it is Hermitian and positive semidefinite, it
can be diagonalized on an orthonormal basis {|l〉} of H,

i.e., ρ =
∑N
l=1 ρl |l〉〈l| with ρl ≥ 0 and

∑
l ρl = Tr ρ = 1.

Let us then consider a purification |Φ′〉 of ρ, belonging to

a product Hilbert space H⊗ H̃aux,

|Φ′〉 =

N∑
l=1

√
ρl |l〉 ⊗ |laux〉, (A8)

where {|laux〉} is an arbitrary orthonormal basis of H̃aux

(without loss of generality, we assume H̃aux of the same
dimension as H). The mixed state on H is recovered by
the partial trace, that is

Tr aux (|Φ′〉〈Φ′|) =

N∑
l=1

ρl|l〉〈l| = ρ. (A9)

It can be verified that

〈Φ′|Ai ⊗ I|Φ′〉 = Tr (Aiρ) , 〈Φ′|Bj ⊗ I|Φ′〉 = Tr (Bjρ) ,

and that∥∥∥(√Ai ⊗ I) (√Bj ⊗ I)∥∥∥ =
∥∥∥(√Ai ⊗ I) (√Bj ⊗ I)∥∥∥

=
∥∥∥(√Ai√Bj)⊗ I∥∥∥ =

∥∥∥√Ai√Bj∥∥∥ .
Applying inequality (A6) to the triplet Ai⊗I, Bj⊗I and
|Φ′〉, leads to inequality (4), that concludes the proof of
Theorem 1.

4. Proof of Theorem 2: Wootters metric gives the
most restrictive domain for (PA;ρ, PB;ρ)

The inner product defines the cosine of an angle be-
tween two states of H. Thus, in the context of pure
states, since PA;ρ and PB;ρ are closely linked to inner
products, it can be intuitively guessed that within the
family of inequalities (4), the most restrictive one occurs
when f = arccos

√
x. Indeed, in this case inequality (4)

links the angles between the possible pairs among three
vectors of H. In the general context of Theorem 1, this
guess turns out to be true.

First of all, recall that inequality (4) is restrictive only
when the pair (PA;ρ, PB;ρ) belongs to (c 2

A,B ; 1]2 under

the form (7):

PB;ρ ≤ hfcA,B

(
PA;ρ

)
for PA;ρ ∈ [c 2

A,B ; 1]

where hfc (x) = f−1
(
f(c2) − f(x)

)
. Note now that

Wootters metric, given by f(x) = arccos
√
x, leads to
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hc(x) =
(
c
√
x+
√

1− c2
√

1− x
)2

(the superscript arccos
has been suppressed for the sake of simplicity). Thus, de-
noting

γ = arccos c and x = cos2 θ with θ ∈ [0 ; γ],

we can write

hc(cos2 θ) = cos2(γ − θ).

Fix now a decreasing function f and assume that there
is a θf ∈ [0 ; γ] such that

hfc (cos2 θf ) < hc(cos2 θf ) = cos2(γ − θf ).

From the definition (6) of hfc and the decreasing property
of f , this inequality becomes

f
(

cos2 θf
)

+ f
(

cos2(γ − θf )
)
< f(cos2 γ) (A10)

Let us then consider two orthogonal pure states |ψ1〉 and
|Ψ〉 of H and let us define the pure states:

|φ〉 = cos θf |ψ1〉+ sin θf |Ψ〉,
|ψ2〉 = cos γ |ψ1〉+ sin γ |Ψ〉.

It can be verified that |〈φ|ψ1〉|2 = cos2 θf , |〈φ|ψ2〉|2 =
cos2(γ − θf ) and |〈ψ2|ψ1〉|2 = cos2 γ, such that inequal-
ity (A10) writes

f
(
|〈φ|ψ1〉|2

)
+ f

(
|〈φ|ψ2〉|2

)
< f

(
|〈ψ2|ψ1〉|2

)
For such a function f , df

(
|Φ〉, |Ψ〉

)
= f

(
|〈Φ|Ψ〉|2

)
is not

a metric since it does not satisfy the triangle inequality.
In conclusion, for any function f defining a metric df
between pure states, hfc (x) ≥ hc(x) in [c2 ; 1], proving
that Wootters metric gives the most restrictive inequality
of the family (4), as stated in Theorem 2.

5. Proof of Corollary 1: Intrinsic uncertainty
relation for POVM representations

The proof of (8) is immediate from Theorem 1, taking
B = I ≡ {I}. It can also be proved directly by not-
ing that pi(A; |Ψ〉〈Ψ|) = 〈Ψ|Ai|Ψ〉 ≤ ‖|Ψ〉‖ ‖Ai|Ψ〉‖ ≤
‖|Ψ〉‖2 ‖Ai‖ = ‖Ai‖ for any (normalized) pure state.
Writing a mixed state as a convex combination of pure-
states density matrices, we get again pi(A; ρ) ≤ ‖Ai‖ =
‖
√
Ai‖2. The proof ends by choosing the index i′ that

maximizes pi(A; ρ) together with the decreasing property
of f .

Regarding the interval for the intrinsic overlap in (9),

by definition c 2
A ≥

∥∥√Ai∥∥2 ≥ 〈Ψ |Ai|Ψ〉 for any i and
normalized state |Ψ〉. Summing over i, from the res-
olution of the identity and since |Ψ〉 is normalized, it
yields NA c

2
A ≥ 1. Moreover, 〈Ψ |Ai|Ψ〉 ≤ 1 implies that∥∥√Ai∥∥ ≤ 1 for all i, and thus cA ≤ 1.

6. Proof of the bounds for the overlap cA,B in (11)

The first inequality in (11) comes from c 2
A,B ≥∥∥√Ai √Bj∥∥2 ≥

〈
Ψ
∣∣√Ai Bj √Ai∣∣Ψ〉 for any i, j and

unitary |Ψ〉. Summing over j, from the resolution of the
identity, and taking the maximum over |Ψ〉 and then over
i, leads to NBc

2
A,B ≥ c 2

A . By inverting Ai and Bj in the

expression of cA,B the overlap also satisfies NAc
2
A,B ≥ c 2

B .
The second inequality is a consequence of the submul-
tiplicative property

∥∥√Ai √Bj∥∥ ≤ ∥∥√Ai∥∥∥∥√Bj∥∥ ≤
cA cB (see Ref. [19]).

7. Proof of Corollary 3: Allowed domain for the
pair of maximal probabilities (PA;ρ, PB;ρ)

The proof is immediate from Theorems 1
and 2, Corollary 2, and the definition hc(x) =

cos2 (arccos c− arccos
√
x) =

(
c
√
x+
√

1− c2
√

1− x
)2

.
By symmetry, the roles of A and B can be interchanged,
leading naturally to the same domain.

Appendix B: Simulation of states and of POVM

Here, we present the algorithms used in Sec. III to
simulate quantum states (pure or mixed) and POVM.

Pure states can be simulated as |Ψ〉 = Φ(ϑ) |ϕ〉‖|ϕ〉‖ where
|ϕ〉
‖|ϕ〉‖ has a uniform distribution on the unit sphere SN by

drawing |ϕ〉 according to a zero-mean Gaussian law with
identity covariance matrix [21]; Φ(ϑ) is a diagonal matrix
of phases eıϑi where the ϑi (i = 1, . . . , N) are mutually
independent and uniformly distributed on [0 ; 2π), and
independent of |ϕ〉.

In order to simulate mixed states, we can use the
fact that an Hermitian, positive semidefinite operator
can be diagonalized on an orthonormal basis, ρ =∑N
m=1 αm|Ψm〉〈Ψm| where αm ≥ 0 are the eigenval-

ues of ρ, with
∑
m αm = 1 because of the normaliza-

tion of ρ [22]. Thus, we can simulate orthonormal bases
{|Ψm〉}m=1,...,N as the columns of a randomly drawn uni-

tary matrix [23]; the coefficients αm can be drawn inde-
pendently according to a uniform law on [0 ; 1], and nor-
malized to add to unity. Another way of making should
be to generate a complex Gaussian random matrix M

and to compute ρ = MM†

Tr (MM†)
as proposed for instance in

Ref. [22], or from a pure state in a higher dimensional
space and taking the partial trace (see App. A 3 and
Refs. [22, 24]).

As far as we know, there are no ways to simulate
POVM sets with a specific distribution. For A (and sim-
ilarly for B), a simple approach may consist in drawing
a unitary matrix U [23] and a set of NA diagonal ma-
trices Di of positive elements, and to consider the set

of matrices Ai = U
(∑NA

j=1Dj

)−1

DiU
† that satisfies the
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resolution of identity. In this case the Ai give a resolution
to the identity, but they share the same eigenspace. To
avoid this drawback, we simulate sets of NA self-adjoint
matrices in the following way, that can be viewed as an
extension of the previous approach [25]. Let

Ai = Ri Ui ∆i U
†
i R

†
i for i = 1, . . . , NA − 1

and

ANA
= RNA−1 UNA−1 (I −∆NA−1) U†NA−1 R

†
NA−1

where

• Ui are unitary matrices independently drawn ac-
cording to the Haar (uniform) distribution on the

set of unitary matrices [23],

• ∆i are diagonal matrices, where the components
are independently drawn according to a uniform
distribution on [0 ; 1],

• R1 = I, and Ri = Ri−1 Ui−1

√
I −∆i−1 for

i = 2, . . . , NA − 1.

It can be verified recursively that the Ai form
a resolution of the identity, evaluating the sum
((ANA

+ANA−1) +ANA−2)+. . .+A1 step by step. More-
over, the Ai do not share the same eigenspace.
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