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DPH  1,6-diphenyl-1,3,5-hexatriene 

EC  esterified cholesterol 

FC  free cholesterol 

G  grating correction factor 

HDL  high-density lipoprotein 

HPLC  high-pressure liquid chromatography 

LDL-C  low-density lipoprotein cholesterol 

METS  metabolic equivalents for task 

NMR  nuclear magnetic resonance spectroscopy 

PON  paraoxonase  

r   fluorescence anisotropy 

TC  total cholesterol 

TG  triglycerides  

VOHF  Virgin Olive Oil and HDL Functionality study 

VOO  virgin olive oil 
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Abstract  

Scope Cholesterol efflux capacity of HDL (CEC) is inversely associated with cardiovascular 

risk. HDL composition, fluidity, oxidation, and size are related with CEC. We aimed to 

assess which HDL parameters were CEC determinants after virgin olive oil (VOO) ingestion. 

Methods and Results Post-hoc analyses from the VOHF study, a crossover intervention with 

three types of VOO. We assessed the relationship of 3-week changes in HDL-related 

variables after intervention periods with independence of the type of VOO. After univariate 

analyses, mixed linear models were fitted with variables related with CEC and fluidity. 

Fluidity and Apolipoprotein (Apo)A-I content in HDL was directly associated, and HDL 

oxidative status inversely, with CEC. A reduction in free cholesterol, an increase in 

triglycerides in HDL, and a decrease in small HDL particle number or an increase in HDL 

mean size, were associated to HDL fluidity.   

Conclusions HDL fluidity, ApoA-I concentration, and oxidative status are major 

determinants for CEC after VOO. The impact on CEC of changes in free cholesterol and 

triglycerides in HDL, and those of small HDL or HDL mean size, could be mechanistically 

linked through HDL fluidity. Our work points out novel therapeutic targets to improve HDL 

functionality in humans through nutritional or pharmacological interventions.  
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Determinants for HDL cholesterol efflux capacity (CEC) were assessed. Post-hoc analyses from data 

of a crossover intervention with three types of virgin olive oil (VOO), were performed to assess the 

relationship of 3-week changes in HDL-related variables after intervention periods. HDL fluidity, 

ApoA-I concentration, and oxidative status were major determinants for CEC after VOO. The impact 

on CEC of an increase in HDL-free cholesterol and HDL mean size, and a reduction in HDL-

triglycerides and small HDL particle number could be mechanistically linked through HDL fluidity. 
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Introduction 

High-density lipoprotein (HDL) cholesterol levels have been shown to be inversely related to 

cardiovascular disease [1]. However, data from multiple gene association [2] and intervention 

[3] studies lead to consider the functional quality of HDL as a more important parameter than 

the circulating quantity of HDL. The main functional property of the HDL particle, the 

reverse cholesterol transport pathway, is the capacity of HDL to remove the excess of 

cholesterol in peripheral cells and transport it to the liver cells to be metabolized. In 

particular, cholesterol efflux, the first step of the reverse cholesterol transport, from 

macrophages to HDL in atherosclerotic plaques is thought to be critical in the anti-

atherogenic effect of HDL [4]. Cholesterol efflux capacity of HDL (CEC) has been shown to 

be inversely associated with both prevalent coronary disease and incident atherosclerotic 

cardiovascular disease and it is considered a useful biomarker for cardiovascular risk [5,6]. 

Several HDL characteristics have been related to its CEC, namely composition, 

fluidity of the monolayer, oxidative status, and size [7]. Interrelationships among these 

features have also been described. First, HDL composition deeply affects its function. The 

distribution of HDL lipids between surface and core is crucial for apolipoprotein (Apo) A-I 

stability in HDL, a key protein involved in CEC [4], although ApoA-II is also able to 

efficiently remove cholesterol from macrophages in vivo [8]. From our previous data, 

changes in HDL composition also modulate HDL fluidity [9, 10], considered an intermediate 

marker of enhanced HDL functionality [11]. Low levels of phospholipids, or high levels of 

free cholesterol (FC), on the HDL surface may contribute to a less fluid HDL, and therefore 

to a less functional one [4]. Second, HDL oxidation also plays a pivotal role in HDL 

functionality. We have previously reported that oxidized HDL are less fluid, and therefore 

less able to perform cholesterol efflux from human THP-1 macrophages [11, 12]. This 
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decrease in HDL functionality could be promoted through the impairment of the ApoA-I 

binding to cholesterol transporters due to ApoA-I/HDL oxidation [13,14]. Finally, the 

relationship between HDL particle size and CEC remains controversial [15,16]. On one hand, 

in some in vitro studies small HDL particles were the most efficient mediators of CEC [15]. 

On the other hand, large HDL particles were the best promoters for CEC in human studies, 

being also related to coronary endothelial dysfunction [16].  

From our data, and those from others, consumption of virgin olive oil (VOO) 

increases not only the plasma HDL cholesterol concentration levels [17], but also the CEC, 

and HDL fluidity [10, 18, 19], due, at least in part, to a transcriptomic effect [20]. As we have 

previously reported in experimental and human studies, phenol-containing VOO, besides to 

increase HDL fluidity [10, 18], has shown to: modify HDL composition by increasing the 

HDL content of oleic acid [21] and ApoA-I and ApoA-II levels [22], increase the HDL 

antioxidant content [23], improve the HDL oxidative status [18, 20, 23], and promote a less 

atherogenic HDL subclasses profile [18, 24]. However, it still remains unknown how these 

functional enhancements are inter-related and how they all explain an improvement in HDL 

functionality. Due to this, in this study we examined the associations between CEC and 

variables related with HDL composition, fluidity, oxidative/antioxidative status, and particle 

size after VOO consumption. Our aim was to define which parameters can be the best 

predictors for CEC after a dietary intervention which enhances it.  

Methods 

Subjects  

Thirty-three hypercholesterolemic (total cholesterol >200 mg/dL) individuals (19 men and 14 

women) were recruited from newspaper and University advertisements. Volunteers were 

preselected when non-smokers, and their clinical record, physical examination, and blood 
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pressure were within a normal range. Next, complete blood count, routine biochemical 

laboratory analyses, and urinary dipstick tests were performed. Candidates were included 

when values, other than total and low-density lipoprotein cholesterol (LDL-C), were within 

the reference range. Exclusion criteria were: LDL-C ≥190 mg/dL, triglycerides ≥350 mg/dL, 

fasting blood glucose >126 mg/dL, plasma creatinine levels >1.4 mg/dL for women and >1.5 

mg/dL for men, body mass index (BMI)>35, smokers (>1 cigarrete/day), athletes with 

physical activity (>3000 Metabolic Equivalents for Task (METS).min/day), hypertension, 

multiple allergies, intestinal diseases, chronic diseases (i.e. diabetes, cardiovascular, etc.), or 

other conditions that would impair the adherence to the study. Participants provided written 

informed consent, and the local institutional ethics committee approved the protocol (CEIC-

IMAS 2009/3347/I).  

Design and study procedure 

This work was conducted in the frame of the VOHF (Virgin Olive Oil and HDL 

Functionality) Study. A crossover, double-blind, controlled trial was performed with three 

types of olive oil: 1) a natural VOO containing its phenolic compounds; 2) this natural VOO 

enriched with its own phenolic compounds, and 3) the natural VOO enriched with both VOO 

phenolic compounds plus those from thyme in a 1:1 ratio. The three VOOs did not differ in 

fat and micronutrient composition, with the exception of the phenolic content (80, 500, and 

500 ppm, respectively). Three-week intervention periods (25 mL/day VOO) were preceded 

by two-week washout periods with refined olive oil. 24-hour urine and blood samples were 

collected at fasting state at the start of the study and before and after each treatment. A 3-day 

dietary record was administered at baseline and after each intervention period. Participants 

were asked to avoid a high intake of rich antioxidant foods (i.e. vegetables, legumes, fruits, 

etc.). A nutritionist advised to participants for replacing all types of habitually consumed raw 
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fats with the olive oils catered. Plasma EDTA and serum samples were obtained by whole 

blood centrifugation and preserved at−80ºC. The clinical trial was conducted in accordance 

with the Helsinki Declaration and the Good Clinical Practice for Trials on Medical Products 

in the European Community (http://ec.europa.eu/health/files/eudralex/vol-

10/3cc1aen_en.pdf). The protocol is registered with the International Standard Randomized 

Controlled Trial register (www.controlled-trials.com: ISRCTN77500181).                                   

 The present study is a post-hoc analysis with samples of the participants in the VOHF 

study assessing, with independence of the type of olive oil consumed, the relationship of the 

3-week changes after all intervention periods among CEC, the fluidity of the HDL 

monolayer, and variables related to HDL composition, oxidative/antioxidative status, and 

size. 

Data collection 

Anthropometric variables were recorded. Blood pressure was measured with a mercury 

sphygmomanometer after at least a 10-min rest in the seated position. Physical activity, 

recorded at baseline and at the end of the study was assessed by the Minnesota Leisure Time 

Physical Activity Questionnaire which has been validated for its use in Spanish men and 

women [25]. Plasma glucose, total cholesterol (TC), and triglycerides (TG) were measured 

by standard enzymatic automated methods, plasma HDL-cholesterol by an accelerator 

selective detergent one (ABX-Horiba Diagnostics, Montpellier, France), and ApoA-I and 

ApoA-II by immunoturbidimetry, in a PENTRA-400 automated analyzer (ABX-Horiba 

Diagnostics, Montpellier, France). Low density lipoproteins (LDL) cholesterol was calculated 

by the Friedewald equation. 

http://www.controlled-trials.com:%20ISRCTN77500181).%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%0d
http://www.controlled-trials.com:%20ISRCTN77500181).%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%0d
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HDL isolation  

HDL was isolated from plasma by ultracentrifugation with a density gradient preparation 

method [26], using at once two solutions of different densities, 1.006 g/mL and 1.21 g/mL. 

To ensure the purity of the HDL fractions, ApoB100 and albumin levels were determined in 

the samples by automatic immunoturbidimetric methods (ABX-Horiba Diagnostics). 

HDL composition  

Fatty acids in HDL.  HDL lipids were trans-esterified and after methanolysis, 1 mL of 

saturated NaCl solution was added to stop the reaction and 0.75 mL of hexane to extract the 

fatty acid methyl esters. Samples were centrifuged at 2212 g for 10 min and the supernatant 

injected into the chromatograph. The analysis was performed by gas chromatography 

(Agilent 7890A Series) using a capillary SP-2330 column (30 m x 0.25 mm x 0.2 μm) 

(Supelco, Bellefonte, USA), coupled to a flame ionization detector.  

Lipids and proteins in HDL. TC, FC, TG, and phospholipids in HDL were quantified by 

automatic enzymatic-colorimetric methods, and ApoA-I and ApoA-II by automatic 

immunoturbidimetric methods. Determinations were performed in a Cobas-Mira Plus 

automated analyzer (Roche, Basel, Switzerland) with reagents from Spinreact (Barcelona, 

Spain). Esterified cholesterol (EC) was quantified as TC minus FC. The TG content of the 

HDL core was assessed as the ratio between TG and EC in HDL [18].   

HDL oxidative/antioxidative status 

HDL resistance to oxidation. It was determined by the conjugated dienes formation after 

copper oxidation of isolated HDL [27]. Briefly, dialyzed HDL (10 mg/dL of HDL 

cholesterol) was incubated with cupric sulphate (5 M) in phosphate buffered saline at 37ºC 
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for 4h. Absorbance at 234 nm was continuously monitored at 3 min intervals in an INFINITE 

M200 reader (Tecan Group Ltd). The length of the lag phase was defined as the time 

(minutes) to the intercept of the tangent of the absorbance curve in the propagation phase 

with baseline. Propagation rate was expressed as the slope of the tangent (change in 

absorbance/min). Maximum dienes formation was calculated by the maximum increase of the 

absorbance at 234 nm using the molar absorbance 234nm for conjugated dienes (29.5000  L 

 mol
-1 

 
cm

-1
). Determinations were performed in duplicate. We used an HDL pool from 

healthy volunteers as between assay control. Data from HDL resistance to oxidation were 

only available from a subsample of 25 volunteers. 

Antioxidant compounds in HDL. Carotenoids, retinol, ubiquinol, tocopherols, and phenolic 

compounds from olive oil and thyme were analyzed by high-pressure liquid chromatography 

(HPLC) [28, 29]. Compounds were identified by their retention time compared with pure 

standards or, when unavailable (lutein and β-cryptoxanthin), with compounds obtained and 

purified in the laboratory. Determinations were run in duplicate. 

Paraoxonase 1(PON1) activity assessment 

PON1-associated lactonase activity was measured in human sera using 5-thiobutyl 

butyrolactone (a synthetic lactone) as substrate as previously described [30, 31]. This activity 

is expressed as U/L (1 U = 1μmol of substrate hydrolyzed per minute). 

Nuclear magnetic resonance spectroscopy (NMR) HDL lipoprotein particle count and 

subclasses 

Serum samples were shipped to the National Heart Lung and Blood Institute, National 

Institutes of Health (NIH; Bethesda, MD, USA). Lipoprotein subclasses measurement was 

performed by NMR in a Vantera clinical spectrometer, produced by LipoScience (Raleigh, 
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NC, USA). The NMR LipoProfile test by LipoScience involves measurement of the 400 MHz 

proton NMR spectrum of samples and uses the characteristic signal amplitude of the lipid 

methyl group broadcasted by every lipoprotein subfraction as the basis for quantification. 

LipoProfile-3 algorithm was performed to quantify the mean particle size and concentrations 

of HDL lipoproteins. Subparticle concentrations were determined for three HDL subclasses 

(large: 8.8–13 nm; medium: 8.2– 8.8 nm; and small: 7.3–8.2 nm) [32]. 

HDL monolayer fluidity 

HDL particle fluidity was determined by the steady-state anisotropy of 1,6-diphenyl-1,3,5-

hexatriene (DPH) [18]. Briefly, HDL samples were incubated with DPH 1μM (30 min) and 

stimulated with a vertically polarized light at 360 nm. Fluorescent emission intensities were 

detected at 460 nm in a Perkin-Elmer LS5OB spectrofluorometer (Perkin Elmer, Waltham, 

MA, USA), through a polarizer orientated in parallel and perpendicular to the direction of 

polarization of the emitted beam. The steady-state fluorescence anisotropy (r) was calculated 

with the Ip values, and with the grating correction factor of the monochromator (G), using the 

following formula: r = (Ivv-GIvh)/(Ivv+2GIvh). The steady-state anisotropy refers to the 

rigidity of the sample, therefore the inverse value of this parameter (1/r) is the fluidity index. 

Determinations were performed in duplicate. 

Cholesterol Efflux determination 

Murine J-774A.1 macrophages were labeled for 1 h with TopFluor-Cholesterol, a fluorescent 

cholesterol probe in which the cholesterol molecule is linked to boron dipyrromethene 

difluoride (BODIPY) moiety (Avanti Polar Lipids, USA). The labeling of cells was 

performed in Dulbecco's Modified Eagle's medium (DMEM) containing 0.125 mM of total 

cholesterol, where TopFluor-Cholesterol accounted for 20 % of total cholesterol. Labeled 

cells were incubated for 18 h with TO-901317 (3 µM; Sigma-Aldrich, USA) to upregulate 
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ATP-binding cassette (ABC) transporters, in low-glucose DMEM supplemented with bovine 

serum albumin (BSA; 0.2 %). This assay determines CEC mediated predominantly via 

ABCA1 but also via ABCG1. Cells were then incubated for 24 h with volunteers’ HDL (100 

µg/mL). The Acyl-CoA cholesterol acyltransferase (ACAT) inhibitor Sandoz 58-035 (5 µM; 

Sigma-Aldrich, USA) was present during the whole experimental procedure. All incubations 

were performed at 37ºC in a humidified incubator. Cells were solubilized with cholic acid (1 

%) and mixed on a plate shaker for 3 h at room temperature. Fluorescence intensity of media 

and cells was monitored in Microplate Reader Synergy HT (BioTekInstruments; USA) at 

λEx/Em=485/528 nm. CEC was calculated as: [media fluorescence/(media fluorescence + 

cells fluorescence)] *100. Background efflux was subtracted from values obtained in the 

presence of HDL. Data were adjusted by the HDL particle number. We used an HDL pool 

from healthy volunteers as a between assay control. All conditions were run in triplicate. 

Intra- and inter-assay coefficients of variability (CV%) of the method were 4.87% and 6.61% 

respectively.  

Statistical analyses Normality of continuous variables was evaluated by probability plots. 

Non-normally distributed variables were log transformed. Student’s T test for related 

measurements was used for change comparisons. Univariate associations were examined by 

Pearson’s correlation coefficients. Stepwise mixed linear models were fitted with variables 

significantly associated with 3-week changes in CEC or fluidity in the univariate analyses. 

When collinearity between variables exists, separate models were fitted. Models were 

adjusted by age and sex, and individual level of test subjects as random effect. Significance 

was defined at the 5% level using a two-tailed test. Analyses were carried out using SPSS 

software version 21.0 (SPSS, Inc., Chicago, IL).   
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Results 

Baseline characteristics of the subjects are shown in Table 1. Subjects under antilipidemic 

medication did not change either their dose or type of medication through the study. No 

changes in physical activity were observed from the beginning to the end of the study. No 

changes in daily energy intake or those of micro or macronutrients were observed among 

intervention periods.  Table 2 shows pre- and post-intervention values in HDL related 

variables. A significant increase at post-intervention versus pre-intervention values was 

observed in CEC (p=0.042), HDL oleic acid concentration (p=0.009), HDL ApoA-I 

concentration (p=0.014), and antioxidants in HDL: α-tocopherol (p=0.017), β-cryptoxanthin 

(p<0.001), coenzyme-Q (p=0.005), lutein (p<0.001), retinol (p=0.011), and phenolic 

compounds (p<0.001). 

Cholesterol efflux associations 

Table 3 shows the Pearson’s correlation coefficients for the association between changes in 

CEC and in HDL fluidity, and changes in variables related to HDL composition, 

oxidative/antioxidative status, and size. CEC was directly related with the fluidity of the HDL 

(p=0.004). CEC was inversely related with concentration of linoleic acid in HDL (p=0.034) 

and with that of small HDL particles (p=0.001), but directly related to the concentration in 

HDL of stearic acid (p=0.003), ApoA-I (p=0.004), ApoA-II (p=0.001), TC (p=0.008), EC 

(p=0.40), TG (p=0.021), phospholipids (p<0.001), lag time of conjugated dienes formation 

(p=0.006), concentration in HDL of β-cryptoxanthin (p=0.008), and concentration of medium 

(p=0.012) and large (p=0.041) HDL particles.  

Results of the stepwise mixed linear models are shown in Table 4. Given that 

determinations of the lag time of conjugated dienes were not available in the whole sample 

we performed Model 1 with all variables which had significance in the univariate analyses, 
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but without entering the lag time in the model. Model 2 shows the results with all variables 

that had significance in the univariate analyses. Results of these models point out an increase 

in HDL fluidity, ApoA-I, and resistance against oxidation (lag time of conjugated dienes) as 

main determinants for CEC. Model 3 shows the results without entering HDL fluidity in the 

full model. In this case, small HDL particle number appear inversely and significantly 

related, indicating that it could be a variable which reflects the effect of fluidity on CEC. 

Thus, we performed the same analyses with fluidity as the dependent variable.  

HDL fluidity associations  

Table 3 shows the Pearson’s correlation coefficients for the univariate association between 

changes in HDL fluidity and in CEC, and changes of those variables related to HDL 

composition, oxidative/antioxidative status, and size. HDL fluidity was inversely related to 

the concentration of FC (p= 0.003) in HDL, and that of small HDL particles (p<0.001). HDL 

fluidity was directly related to the concentration of EC in HDL (p=0.036), total TG content 

(p<0.001), TG in HDL core (p=0.044), HDL mean size (p< 0.001), and with the 

concentration of medium HDL particles (p=0.027).   

Results of the stepwise mixed linear model including all variables which reached 

significance in the univariate analyses showed that the content of FC and TG in HDL and the 

concentration of small and medium HDL particles appeared as main determinants of the 

fluidity of HDL monolayer. However, the strong inverse relationship between small and 

medium HDL particles number (r= -0.752, p<0.001) (see Supplemental Figure 1) promotes a 

collinearity in the model distorting the results. Due to this, two models were fitted including 

or not small or medium HDL particles in them. Results of the models are shown in Table 5. 

An increase in TG and a decrease in FC levels in HDL, together with a decrease in small 
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HDL particle number or an increase in the HDL mean size appear as main determinants of 

the fluidity of the HDL particles. 

Discussion 

In this study, we examined the association between 3-week changes in CEC and HDL fluidity 

after VOO ingestion, as well as the association of the changes in both variables with those of 

several characteristics of the HDL. Our results point out an increase in HDL fluidity and in 

the concentration of ApoA-I in HDL, and a decrease in HDL oxidative status as major 

determinants of CEC. A reduction in FC together with an increase in TG in HDL, and a 

decrease in the concentration of small HDL particle number or an increase in HDL mean size 

appeared to be the main determinants for HDL fluidity. A schema of the interrelationships is 

depicted in Figure 1.  

 The molecular determinants of CEC are still largely unknown, and multiple pathways, 

which can be modulated by HDL composition and modification, are involved [31]. 

Mechanisms accounting for CEC include passive diffusion process as well as active pathways 

mediated by ABCA1, ABCG1, and the scavenger receptor class B type I (SR-BI). The 

posttranscriptional regulation of cholesterol efflux via ABCA1 includes mechanisms that 

involve the stabilization of ABCA1 protein by ApoA-I [4, 13]. In this sense, oxidation of 

HDL and ApoA-I results in a selective inhibition of ABCA1-dependent cholesterol efflux 

from macrophages [13]. The ABCA-1/ApoA-I complex absorbs antioxidants (i.e lutein, 

zeaxanthin, etc.) which are LDL-protecting molecules, thus contributing to the formation of 

nascent HDL [32]. ABCA1/ApoA-I activity is fundamental for the formation of the nascent 

HDL (pre-β1 fractions), which are also efficient acceptors of cell cholesterol via ABCG1 [4]. 

In agreement with our past findings, HDL oxidation decreases HDL fluidity and 

concomitantly CEC [11, 12]. Lipoprotein oxidation promotes the linkage between fatty acids 
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reducing the mobility of the chains which increases the rigidity of the lipid monolayer [33]. 

In turn, the fluidity of the HDL monolayer influences ApoA-I conformation and binding to 

HDL [34]. Thus, a close interrelationship exists between HDL oxidative status, ApoA-I, and 

HDL fluidity, the three main factors which appear related to CEC in our study. 

Changes within the HDL lipid core can also promote HDL dysfunction. The main 

constituents of the HDL lipidome are the phospholipids, followed by EC, and by TG and FC. 

They are spatially organized according to their hydrophilic properties: phospholipids and FC 

in the external hydrophilic monolayer which encloses a hydrophobic core rich in EC and TG 

[35]. An upregulation of the activity of the cholesterol ester transfer protein (CETP), like 

occurs in insulin resistance states, alters the TG/EC ratio in HDL, the index used to assess the 

quantity of TG in the core of the HDL [18]. Higher TG contents in the lipid core impair 

transfer of EC through SR-BI, hindering CEC [36]. Despite all this referred before, data from 

human in vivo studies show that to maintain a critical pool size of triglyceride-rich 

lipoproteins, that affects cholesterol from HDL, promotes the efficiency of CEC [37]. A 

positive correlation between the capacity of plasma to effect cholesterol efflux and plasma 

levels of TG has been demonstrated in several studies [37]. Thus, the controversy concerning 

the role of TG on CEC lead us to hypothesize that maintaining an equilibrium in the TG 

content of HDL versus other lipids could be the clue for the HDL functionality. From our 

data, the influence of TG and FC on CEC could be mediated through their effect on the HDL 

fluidity. We have previously described a positive association between the content of TG, 

oleic acid, and phospholipids in HDL and the fluidity of the lipoprotein, FC content of the 

HDL being negatively associated [9]. Fluidity depends on the length and saturation of the 

fatty acids present in the phospholipids of the HDL monolayer. In this sense, a decrease in 

acyl chain length and an increase in chain unsaturation, such as in the case of oleic acid, 

increase the fluidity of the lipoprotein [38, 39]. In contrast, FC complexes with phospholipids 
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form the lipid rafts which are known to harden the membrane and to decrease its fluidity [39].  

An increase in TG, a well know effector for increasing lipid membranes fluidity [40], and a 

decrease in FC in HDL were major determinants for the HDL fluidity in our population.  

A huge body of data, somewhat contradictory, exists concerning HDL size and CEC. 

On the basis of the phospholipid content, small HDL more potently promote CEC [15, 41, 

42], whereas on a particle number basis, large HDL are more effective [16, 40]. In this sense, 

recent studies in peri-menopausal women and elderly adults show CEC to be directly related 

to large and medium HDL particle concentration and inversely to that of small HDL particle 

number in multivariate adjusted models [43, 44]. In agreement with these data, in our lineal 

mixed model small HDL particles were inversely related with CEC, when fluidity was not 

present in the model. When entering the fluidity of the HDL in the model, small HDL particle 

number was no longer associated with CEC, but it was, however, inversely related with HDL 

fluidity in the mixed model when HDL fluidity was the dependent variable. In a similar way 

that occurred for the lipid HDL composition, in our models the size of the HDL lipoprotein 

seem to exert their effect on CEC through changes in the HDL monolayer fluidity, with an 

improvement at larger HDL particle size. The fluidity of the HDL, as well as its CEC, is 

considered to be inversely related to the sphingomyelin content of the HDL. The 

sphingomyelin content of the HDL subpopulations remains, at present, controversial [44]. 

The complexity of sphingomyelin species, their distribution in the different HDL particles, 

and their role in HDL fluidity and CEC is considered a promising target for future studies 

[45]. 

Our study has limitations. First, cholesterol efflux was measured ex vivo, but the 

transport of the cholesterol to the liver, the second part of the reverse cholesterol transport 

was not assessed. Because our CEC assay involved the use of cell lines [30] our results may 

not reflect the real in vivo situation. However, CEC as measured by a similar method with 
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J744 cells, but using ApoB-depleted plasma as acceptor, has been shown to be inversely 

related with cardiovascular risk [6].  A determining limitation in the study is the method used 

to isolate HDL for measuring CEC. This method limits HDL density to 1.063-1.210 g/mL 

and does not accurately represent the contribution of pre-β HDL, which is found in the 

density range 1.210–1.250 g/mL [48]. We have measured ApoA-I concentration as a 

surrogated marker for ApoA-I functionality in our study. Also, we have related 3-week 

changes in HDL variables with independence of the olive oil intervention period, the possible 

confounding effect avoided by the introduction of the individual level of test subjects as 

random effect in the model. Although this approach has advantages in mitigating the effect 

from confounding factors, it could buffer the pre-post differences. Also, the fact that our 

population was hypercholesterolemic subjects, can limit the extrapolation of the results to a 

more general population. A major strength of this study was its crossover, double-blind, 

placebo controlled design, which helps to limit the effect from confounding factors such as 

differences in physical activity or diets in tests subjects. As essential strength of our work, it 

is one of the first comprehensive association studies between HDL functional characteristics 

(also covering an intensive lipidomic and metabolomic profile) and the most relevant HDL 

functionality trait, CEC. 

Among factors which can modify CEC and HDL characteristics, besides VOO alone, 

we have reported that diets rich in VOO and antioxidants such as the Mediterranean diet have 

shown to increase the CEC together with improvements in HDL oxidative status, 

composition, ApoA-I, and HDL particle size [47–49]. Also, novel pharmaceutical approaches 

are being developed for improving HDL characteristics and functionality. Therapies based on 

the infusion of ApoA-I formulations (rHDL) in humans, increased ApoA-I levels and 

cholesterol esterification, and caused a transient accumulation of very small HDL species, 
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followed by an enlargement of particles present within medium and large HDL. These 

changes were concomitant with an increase in the CEC [50].  

In summary, by using a model as VOO consumption in which improvements in HDL 

characteristics and functionality have been reported [10, 17–24], we looked for the major 

determinants of the CEC. From our results, an increase in the fluidity of the HDL and in the 

concentration of ApoA-I in HDL, and a decrease in HDL oxidative status appear as major 

determinants of CEC. The impact of a reduction in FC, together with an increase in TG in 

HDL on CEC could be mediated by their effect increasing the fluidity of the HDL monolayer. 

The same occurs for the decrease in small HDL particle number or the increase in the HDL 

mean size. Our work point out several promising new therapeutic targets, besides HDL 

cholesterol levels, for improving HDL functionality in humans through dietary, nutraceutical, 

or pharmaceutical interventions.   
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Figure 1. A proposal model for the interrelationship among the main determinants 

(dense arrows) of HDL cholesterol efflux capacity in hypercholesterolemic subjects 

after virgin olive oil ingestion. Intermittent arrows point out the expected contribution 

of the main virgin olive oil components.  
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Table 1. Baseline characteristics of the participants 

Variable Mean ±SD 

Age, years 55.6 ± 10.0 

Gender, male/female  19/14 

Body mass index, kg/m 26.6 ± 4.5 

Physical activity, METs.min/w
*
 2423 (897-4544) 

Systolic blood pressure, mmHg 128.2 ± 14.6 

Diastolic blood pressure, mmHg 73.15 ± 10.0 

Glucose, pl,  mg/dL 90.8 ± 11.6 

Cholesterol ,pl, mg/dL  

     Total 226.4 ± 35.2 

     LDL 148.3 ± 28.8 

     HDL 53.01 ± 11.13 

Triglycerides, pl, mg/dL
 *

 114.2 (85.5 ± 145.0) 

Use of antilipemic medication, yes/no 14/19 
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Table 2. Pre- and post-intervention values in HDL related variables 

Variable Pre-intervention Post-intervention 

HDL mediated cholesterol efflux, % 3.93 ± 1.16  4.13 ± 1.40* 

Fluidity of the HDL monolayer, 1/AU 4.96 ± 0.48 5.00 ± 0.34 

HDL composition   

    Fatty acids in HDL, %   

        Arachidonic 10.32 ± 5.13 10.61 ± 7.06 

        Eicosatreanoic  0.77 ± 1.56 0.61 ± 1.15 

        Linoleic 29.40 ± 9.55 27.78 ± 15.36 

        Oleic 19.61±7.26 20.78 ± 7.15
†
 

        Palmitic  22.33 ±14.13 23.61 ± 7.27 

        Stearic 10.93 ±10.04 11.55 ± 6.85 

   Proteins in HDL, g/L   

       Apolipoprotein A-I 0.63  ± 0.16 0.66  ± 0.17
†
 

       Apolipoprotein A-II           0.17 ± 0.05 0.17 ± 0.04 

   Lipids in HDL, mg/dL   

       Total Cholesterol 31.84 ± 11.60 31.82 ± 12.05 

       Free Cholesterol 13.42 ± 6.25 12.73 ± 5.86 

       Esterified cholesterol 18.41 ± 8.05        18.45 ± 8.07 

       Triglycerides 7.22 ± 2.09 7.28 ± 2.24 

       Phospholipids 61.13 ± 18.44 60.66 ± 17.71 

Oxidative status of HDL
b
   

       Lag time, min
a
 34.09 (26.60-52.78) 35.38 (26.94-46.07) 

       Maximum absorbance, Abs 0.48 ± 0.10 0.47 ± 0.14 

       Oxidation rate, Abs/s 7.96 ± 2.52 8.14 ± 2.52 

Antioxidative status of HDL, µmols/L   

       Total phenolic content
a
 
c
 14.41 (0-144.5) 63.78 (0-585.3)

‡
 

       α-tocopherol 12.64 ± 0.70 12.77 ± 0.79
*
 

       γ-tocopherol 0.13 ± 0.35 0.15 ± 0.44 

       β-carotene
a
 1.27 (0-3.18) 1.79 (0-3.45) 

       β -cryptoxanthin 7.95 ± 2.96 8.73 ± 3.44
‡
 

       Coenzime-Q 299.2 ± 192.2 324.2 ± 191.1
†
 

       Luteine 2.26 ± 1.93 2.58 ± 2.02 

       Retinol 3.39 ± 1.67 3.71 ± 2.01 

       PON1 activity, U/L
d
 5.18 ± 1.58 5.31± 1.74 

HDL particle size, µmol/L   

       HDL mean size (total)
e
  9.24 ± 0.46 9.27 ± 0.45 

       Small HDL particles 17.71 ± 6.03 16.93 ± 5.32 

       Medium HDL particles 10.80 ± 6.09 9.35 ± 4.96 

       Large HDL particles 7.07  ± 3.68         7.09 ± 3.53 

Values expressed as mean and standard deviation. AU, arbitrary units
 a

 Values expressed as 

median (25th-75th percentile) 
b
Conjugated dienes formation curve. 

c
Expressed in nmol/L. 

d
PON1, Paraoxonase-1. 

e
Expressed in nanometers. 

*
P<0.05; 

†
P<0.01;

 ‡
P<0.001  
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Table 3. Correlation coefficients (R) between 3-week changes in HDL cholesterol efflux and fluidity of the HDL 

monolayer and HDL characteristics after olive oil ingestion 

 Cholesterol     efflux Fluidity 

Variable (3-week changes)        R   P value           R P value 

 

Cholesterol efflux, % 

 

Fluidity, 1/anisotropy (AU) 

 

1 

 

0.308 

 

1 

 

0.004 

 

0.308 

 

1 

 

0.004 

 

1 

     

HDL Composition     

   Fatty acids in HDL, %     

          Arachidonic 0.043 0.700 0.097 0.387 

          Eicosatreanoic 0.084 0.456 0.033 0.768 

          Linoleic -0.235 0.034 0.057 0.613 

          Oleic 0.025 0.823 0.004 0.972 

          Palmitic 0.128 0.256 -0.155 0.156 

          Stearic 0.328 0.003 0.140 0.213 

    Proteins in HDL, g/L     

          Apolipoprotein A-I 0.309 0.004 0.123 0.264 

          Apolipoprotein A-II 0.364 0.001 0.070 0.537 

   Lipids in HDL, mg/dL     

          Total Cholesterol 0.287 0.008 -0.010 0.927 

          Free Cholesterol 0.073 0.509 -0.322 0.003 

          Esterified Cholesterol 0.225 0.040 0.229 0.036 

          Triglycerides 0.251 0.021 0.383 <0.001 

          Phospholipids 0.382 <0.001 0.186 0.091 

          Triglycerides in HDL core
* 

-0.041 0.713 0.220 0.044 

  

Oxidative/Antioxidative status of HDL 

    

  Oxidative status
†
     

          Lag time, min 0.331 0.006 -0.049 0.606 

          Maxim absorbance, Abs 0.053 0.708 0.125 0.375 

          Oxidation rate, Abs/s -0.168 0.189 0.175 0.215 

Antioxidative status of HDL, µmol/L     

          α-tocopherol, -0.021 0.859 -0.001 0.903 

          γ-tocopherol -0.022 0.850 0.069 0.549 

          β-carotene 0.044 0.701 0.016 0.892 

          β-cryptoxanthin 0.306 0.008 0.034 0.772 

          Coenzime-Q 0.128 0.291 0.075 0.539 

          Luteine 0.211 0.066 0.065 0.575 

          Retinol 0.158 0.170 -0.179 0.120 

          Phenolic compounds
‡
 0.138 0.182 0.127 0.271 

          PON1 activity, U/L 0.139 0.210 0.108 0.332 

HDL particle size, µmol/L     

          HDL mean size (total)
 ¥
 0.076 0.494 0.379 <0.001 

          Small HDL particles -0.349 0.001 -0.635 <0.001 

          Medium HDL particles 0.273 0.012 0.241 0.027 

          Large HDL particles 0.224 0.041 0.155 0.158 

 

AU, arbitrary units. PON1, Paraoxonase-1. *
Calculated as triglycerides/esterified cholesterol ratio.

 †
Conjugated 

dienes formation curve. 
‡
 nmol/L. 

¥
nanometers 
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Table 4. Determinants of 3-week changes in cholesterol efflux in hypercholesterolemic 

subjects after virgin olive oil ingestion.  

Predictor variable   

(3-week changes) 

Β coefficient SE T P value 

 

Model 1
*
 

    

  Fluidity of the HDL monolayer 0.731 0.279 2.62 0.010 

  Apolipoprotein A1 2.54 0.73 3.45 0.001 

Model 2
†
     

  Fluidity of the HDL monolayer 0.777 0.289 2.69 0.009 

     Apolipoprotein A1 2.47 0.892 2.77 0.007 

Lag time 0.008 0.004 2.36 0.022 

Model 3
‡
     

Apolipoprotein A1 1.92 0.94 2.04 0.046 

Lag time of conjugated dienes 0.008 0.004 2.26 0.027 

  Small HDL particle number -0.042 0.016 -2.68 0.009 

 

Stepwise mixed linear models adjusted for age and sex, and individual level of test subjects 

as a random effect. SE, standard error. 
*
Model 1. Without the lag time of conjugated dienes 

formation; 
†
 Model 2, including all variables; 

‡
Model 3, without fluidity of the HDL 

monolayer 
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Table 5. Determinants of 3-week changes in the HDL fluidity in hypercholesterolemic subjects 

after virgin olive oil ingestion.  

Predictor variable  

(3-week changes) 

Β coefficient SE T P value 

   

Model 1
*
 

      Free cholesterol in HDL 

 

-0.032 

 

0.007 

 

-4.73 

 

<0.001 

   Triglycerides in HDL 0.035 0.013 2.68 0.010 

   Small HDL particles -0.025 0.004 -6.28 <0.001 

Model 2
† 

    
Free cholesterol in HDL 

 

-0.035 

 

0.077 

 

-4.47 

 

<0.001 

  Triglycerides in HDL 0.061 0.014 4.25 <0.001 

   HDL mean size 0.290 0.104 2.79 0.007 

Stepwise mixed linear model adjusted for age and sex, and individual level of test subjects as 

a random effect. SE, standard error. 
*
Model 1, without medium HDL particles.

 †
Model 2, 

without small HDL particles. 


