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Abstract 
A form to combine two kinds of indirect measurements to be processed together is proposed for ill-

conditioned problems. Linear individual measurements with unknown proportionality constants jointly 

considered determine a unique non-linear problem. To solve this problem a method that includes in a single 

step the recovery of the signal and the calculation of the regularization parameter according to the Generalized 

Cross Validation technique is proposed. In order to investigate the convenience of simultaneous versus 

individual processing, a set of synthetic experiments performed on suspensions of polystyrene particles is 

analyzed. The results clearly show that when the data are jointly processed the quality of the Particle Size 

Distribution estimated is highly superior. This work shows that simultaneous processing of experimental data 

from different sources seems to be a valid alternative to improve the quality of indirect measurements.  
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1. Introduction 

 

The aim of this work is to develop a methodology 

to process simultaneously two different kinds of 

indirect measurements of an unknown signal, in order 

to produce a unique estimation, with less error than 

that obtained processing any of the given 

measurements separately. The case where the relation 

between the unknown signal and the measured 

function is linear is considered. The additional 

uncertainty of having an unknown parameter related 

to the relative nature of the measurements is also 

taken into account.  

 

The situation described above may appear in the 

problem of determining the Particle Size Distribution 

(PSD) of a polymer latex. Turbidimetry and Elastic 

Light Scattering (ELS) are two popular techniques 

used to determine sizes of suspended particles in the 

range between 100 nm and several micrometers. 

Recent technological improvements in laboratory 

equipment made possible to readily obtain turbidity 

and ELS spectra for a range and number of 

wavelengths and angles, not commonly attainable in 

the past using standard laboratory equipment. The 

information contained in these spectra can be related 

through Mie theory (van de Hulst, 1981; Kerker, 

1969; Bohren and Huffman, 1983) to the PSD of the 

sample of dispersed particles analyzed. 

Turbidity at several wavelengths was used in 

Eliçabe and García Rubio (1989; 1990) to determine 

the PSD of polystyrene latex. The size distribution 

was estimated by solving a linear inverse problem in 

which the turbidity determinations and their model 

were incorporated. The wavelengths used in those 

references were between 200 and 900 nm. In that 

range the technique can be used to characterize 

particles of diameters from 50 nm to several 

micrometers. However, not in all cases the refractive 

index of the particles is well known in that whole 

range of wavelengths. In polymers, the refractive 

index at the lower end (200 – 300 nm) of the 

wavelength range is normally not known because of 

the presence of absorption in that region. This effect 

limits the use of the whole set of measurements to 

those corresponding to wavelengths larger than 300 

nm. This limitation reduces the resolution of the 

recovered PSD at the lower end of the diameter axis 

as shown in Eliçabe and García Rubio (1989).  

The problem of obtaining the PSD from ELS 

measurements using Mie theory was treated in Glatter 

et. al (1985) for homogeneous spherical particles in 

general, and applied by Hofer et. al. (1989) for the 

determination of the PSD of oil-water emulsions. 

Again, a linear inverse problem was solved to 

estimate the size distribution. Using ELS it is possible 

to demonstrate, in the Rayleigh-Debye-Gans 

approximation, that there exists an upper value for the 

maximum diameter that can be found without error by 

an ideal scattering experiment. Therefore, lack of 

resolution for the larger diameters may be expected in 

this case. This result is discussed in Eliçabe and 

Frontini (1996).  

From the previous paragraphs it can be concluded 

that, in general, a recovered distribution from 

turbidity data will be more unstable at the lower end 

of the diameter range, whereas a distribution obtained 

from ELS data will be more unstable at the higher end 

of the diameter range. This is clearly shown in Eliçabe 

and Frontini (1996) where turbidity and ELS are 
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compared in that respect. Therefore it is expected that 

the concurrent use of both techniques should improve 

the accuracy of the estimated distribution. 

This idea was explored in a previous publication 

(Eliçabe and Frontini, 1996) in which it was 

demonstrated that it is possible to take advantage of 

the complementary characteristics of both techniques. 

In that publication turbidity and ELS determinations 

for a given sample were processed independently and 

properly combined. It was shown that the predicted 

undesirable effects suffered by the recovered 

distributions from the individual experiments could be 

greatly reduced when both experiments are processed 

together. However in that work, it was implicitly 

assumed that the ratio of scattered intensity to incident 

intensity, Is( )/Ii, can be precisely determined, and 

that all proportionality constants relating the 

measurements with the theoretical models such as: i) 

distance from sample to detector in ELS and ii) 

optical path length in turbidity, are also well known. 

Thus the combination procedure, developed under 

those restrictions, resulted in the formulation of a 

linear inverse problem. 

The measurement of both incident and scattered 

intensities in the same experimental setup is not easy. 

The experiment could be conducted by measuring 

intensity at zero angle without the sample and, after 

swinging the detector arm to the desired angle, 

measuring it again with the sample in place. The main 

problem to be encountered is that Ii may be thousands 

of times greater than Is() and then appreciable errors 

are likely to occur because of the lack of detector 

linearity over such a range. The distance from the 

sample to the detector, r, in ELS, and the optical path 

length, l, in turbidity are parameters that have to be 

determined through calibration. 

In this work, to avoid the determination of Is()/Ii, 

r and l, the models to be used to estimate the PSD are 

assumed to have unknown proportionality constants 

independent of angle for ELS, and of wavelength for 

turbidity. This assumption gives to the proposed 

combination technique a more realistic basis. The 

problem to be solved to recover the PSD is not a 

linear inverse problem anymore, but it becomes a 

non-linear one. To solve this problem a method that 

includes in a single step the recovery of the PSD and 

the calculation of the regularization parameter 

according to the Generalized Cross Validation (GCV) 

technique (Golub et. al.,1979) is proposed. The 

method is demonstrated using a set of synthetic 

experiments generated with distributions of different 

characteristics. 

 

2. Theory 

If in an extinction experiment performed on a 

sample of thickness l of suspended particles, Ii(o) is 

the intensity at the light source and It(o) is the 

intensity at the light detector, then the attenuation 

experienced by the beam of light traversing the 

sample is defined as ln[It(o) Ii(o)]. This quantity, 

also known as turbidity (o), can be related to a 

function of the wavelength of the incident light in 

vacuum o, for spherical particles with number PSD, 

f(D), using Mie scattering theory (Bohren and 

Huffman, 1983) as follows, 
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In Eq [1] Qext(o,D) is the extinction efficiency of 

a particle of diameter D at o and k= l /4. Upper and 

lower limits for o (omax, omin) are considered. 

A similar equation can be obtained, using Mie 

theory (Bohren and Huffman, 1983), to relate the 

sample light scattering, Is( ), at different angles , 

with its PSD: 
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Where S11(, D) is the (1,1) element of the 

corresponding amplitude scattering matrix and  
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Upper and lower limits for     (max, min)  are also 

considered. This kind of relative measurements are 

easy to make and are the type most commonly 

reported in angular light scattering determinations. A 

single determination of Ds( ) = K Is( ) could be 

used, in which case ki would be equal to 
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where no is the refractive index of the suspending 

medium and K is the instrument calibration constant.  

 Two sets of measurements [(0i)  i=1, ... , n1 

and I(i) i=1, ... , n2] are considered. If these 

measurements are grouped, two vectors can be 

defined: 
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The discrete versions of Eqs [1] and [2] can be 

written in general as: 
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and e, ei are error vectors with zero mean and 

covariance matrix I and Ii respectively. F stands 

for some density distribution of two parameters. 

These errors are in part due to quadrature and in part 

to measurement noise. A and Ai are quadrature 

matrices calculated in the examples below as in 

Eliçabe and García Rubio (1990), using the software 

provided in the book of Bohren and Huffman (1983) 

to calculate S11(,D) and Qext(o,D). The diameter 

axis was discretized in m points. Note that fr and k in 

Eqs [5] and [6] are the unknown variables. 

When Eqs [5] and [6] have to be solved together, a 

proper normalization must be performed to take into 

consideration the different magnitudes of the involved 

variables. Assume that the errors in Eqs [5] and [6] 

are such that (other alternatives could be also 

handled), 
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)()( max

io and 

I(i)
(max)

, the combined equation can be written as: 

    
e

i

fa

i e

e

A

A

i
g

g
g































































(max)
i

(max)
o

k

(max)
i

(max)
o

(max)
i

(max)
o

II

k

I

i

r

ii

)(/

)(/

)(/

)(/

)(/

)(/

 - - - - - - - - - - - - -

),(

 - - - - - - - - - - - - - - - - - - - - - - - - - -
2

1











 

 [8.a] 

with 

),(~
)(

)(

)(

)(




 I0
e

e

i

F
I max

i

max
io














    [8.b] 

where I is the covariance matrix of the normalized 

errors.  

fr and k can be estimated by solving the following 

non-linear minimization problem: 
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where K
T
K=H is the regularization matrix selected in 

most cases as in Eliçabe and García Rubio (1990). 

The second term in Eq [9], that contains the 

regularization matrix, is needed as it is in the linear 

case, to regularize the solution which in all cases 

would be unstable without it because of the ill-posed 

nature of the original equations (Eqs [1] and [2]). 

 If k were known, the problem would be linear 

and would have the well known analytical solution 

due to Phillips (1962) 
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In this case  could be chosen according to the 

GCV technique (Golub et al.,1979) as the value that 

minimizes 
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 When k is unknown, as proposed here, GCV 

can still be used to select  if Eq [9] is rewritten taking 

into account that the value of  obtained from Eq [12] 

depends now also on k. Thus two consecutive 

minimization problems have to be solved to estimate 

fr and k, 

),(
)(

kVMin
k




   [13.a] 

})(),({),(

,

2
r

T

r
rr kkk

k
Min

r

Hfffagf

f

  [13.b] 

Formaly, the first problem (Eq [13.a]) is a one 

dimensional minimization that has to be solved 

repeateadly for k in the range of posible solutions. The 

result of this minimization is (k). For the second 

minimization problem (Eq [13.b]) one has to 

recognize that the pair k, fr that minimizes (k, fr) is a 

stationary point of that function, and then 
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From Eq[13.b] can be derived that the stationary 

point results in the following relations: 
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Eq [14.a] can be analytically solved to give 
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as in the linear case, but now as a function of k 

through the function (k) calculated before. If fr(k) is 

replaced in Eq [14.b], the resulting equation has now 

just one unknown; i.e. k. Any method can be used to 

solve this equation, which result replaced in Eq [15] 

gives the sought solution to the inverse problem, i.e. 

fr. In practice only the values of (k) needed by the 

algorithm used to calculate k from Eqs [14.a] and 

[14.b] need to be evaluated, and then the 

computations can be performed in a single step. Each 

time a value of (k) is calculated for k, the same 

function must be evaluated for neighboring values of 

k in order to compute the derivative that appears in Eq 

[14.b]. 

In the next section the proposed methodology will 

be used to process synthetic data generated with Eqs 

[1] and [2] for different PSD's. 
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Fig.1:  Normalized noisy turbidity and ELS measurements 

 

 

 

3. Results and Dicussion 
The same examples as in Eliçabe and Frontini 

(1996) will be used to show how the proposed 

methodology works in practice.  Turbidity and ELS 

spectra were generated using lognormal distributions 

and combinations of them. As before the experiments 

were simulated for polystyrene particles in water. The 

spectra were generated using Eqs [5] and [6]. The 

PSD’s were discretized in m=51 equally spaced points 

on the diameter axis. The parameters of the PSD's 

used in each example are listed in Table 1 and the 

corresponding spectra are shown in Figure 1. In all 

cases the turbidity spectra were generated using a 

range of wavelengths from 306 to 701 nm, with a 

wavelength step of 5 nm (n1=80). Data of refractive 

index as a function of wavelength were taken from 

Maron et al (1963) for water and from Inagaki et. al 

(1977) for polystyrene. Eighty (n2) ELS 

determinations were simulated for a He-Ne Laser 

source (o=632.8 nm), in a range of angles from 12º 

to 150º. The refractive indexes of water and 

polystyrene were taken as 1.33411 and 1.58072. The 

generated spectra were corrupted with a 3% 

maximum value (relative to the maximum of the 

turbidity or ELS spectrum) zero-mean random noise, 

sampled from a uniform distribution. The label “i” for 

the x-axis in Figure 1 stands either for the index of the 

discretized wavelengths, oi, for turbidity 

measurements, or for the index of the discetized 

angles, i, for ELS measurements.   

 

Table 1: PSD's utilized in the simulated experiments. 
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Figure 2 shows the results of recovering the PSD's 

of Table 1 from the noisy spectra of: turbidity, ELS, 

and the combination of both. The behavior of the 

recovered PSD's is in agreement with the qualitative 

analysis discussed previously for turbidity and ELS. 

In all the examples the distributions recovered from 

turbidity determinations, using Eq. [8], behave poorly 

at the small diameter edge, whereas at large diameters 

the behavior is quite correct. Oppositely, the PSD's 

recovered from ELS, using Eq. [9], have an excellent 

response at the small diameter end, and a poor 

response for large diameters.  
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Fig. 2: Original and estimated PSD's from turbidity, 

ELS and turbidity-ELS spectra, for cases A and B. 
 

The results of processing the combined 

experiments as proposed in Eq. [14.b] and Eq. [15] is 

shown in Figure 2. In all cases the recovered PSD's 

capture the best features of each one of the individual 

methods. As a result, the distributions recovered from 

the combined experiments present a notorious 

improvement with respect to any of the obtained using 

the individual experiments. 

Conclusions 

The nonlinear inverse problem resulting from the 

combination of a pair of indirect relative 

measurements was solved satisfactorily to determine 

the PSD of latex particles. The two techniques  

commonly used to independently estimate PSD’s, 

turbidimetry and ELS, were processed at the same 

time to obtain a single estimation. Synthetic 

experiments were generated to demonstrate the 

convenience of processing the experimental data 

jointly. The information content of turbidity and ELS 

processed individually is highly reduced in the 

presence of moderated noise. Simultaneous 

processing increases the resolution of the recovered 

PSD's capturing the best features of both individual 

techniques. In principle, if the current technique in use 

is ELS, a simple additional measurement in a diode 

array spectrophotometer could drastically improve the 

quality of the obtained PSD. As far as the authors 

know this combination was not used before in the 

form and with the results exposed here. 
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