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GRAPHICAL ABSTRACT 

 

Abstract. We present an effective and simple method for the synthesis of poly(3-aminobenzylamine) 

(PABA) using a chemical oxidation strategy in aqueous solution. The polymer was characterized by NMR, 

LDI-TOF mass spectrometry, UV-visible, XPS and ATR-FTIR spectroscopies. Stable acidic dispersions 

were employed for the construction of layer-by-layer assembled films with polyanions, which effectively act 

as dopants of the electroactive component as revealed by spectroscopic analysis. The assembled films were 

electroactive in neutral solutions, probably owing to the combination of the doping effect by the polyanions 

and the self-doping effect of the protonated amino groups of the PABA backbone. These layers showed an 

electrocatalytic effect on the ascorbic acid oxidation. The advantages of employing PABA instead of 

polyaniline include improved electroactivity in neutral solution, good processability owing to its higher 

solubility in acidic solutions and increased interaction with anionic counterparts, which may propel its 

integration with electroactive biomolecules or conducting nanomaterials for the design of bioelectrochemical 

devices and energy storage applications. 
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1. Introduction 

In the last decades, organic conducting polymers (CPs) have become interesting materials for many 

applications owing to their low cost, ease of synthesis and versatile electronic properties [1,2]. Within the 

vast universe of CPs, polyaniline (Pani) has been one of the most studied materials [3–5]. Its inexpensive 

simple synthesis, high conductivity and chemical stability have propelled its application in different areas 

from biosensing [6] to energy storage [7]. For biosensing applications, Pani-like materials offer the 

advantage of an adequate non-denaturing environment for the immobilization of redox enzymes and proteins 

and in some cases they can also act as physicochemical transducer of the chemical signals into an electrical 

response or simply mediate the electron transfer [6,8,9]. However, both mediation and transduction depend 

critically on the conducting and redox performances, which are generally excellent in acidic media but poor 

in neutral solutions. This is a clear disadvantage for most bioelectrochemical devices whose biochemical 

components are designed to operate efficiently at physiological pH. In some cases, the electroactivity of Pani 

in neutral solutions has been improved by incorporation of doping agents as polyanions [10–12] and complex 

anionic molecules [13] or conducting counterparts as metal nanoparticles [14] and carbon nanomaterials 

[15,16] yielding more complex materials or even composites. An alternative strategy to doping is the 

polymerization of substituted anilines, whose additional chemical groups can act as self-dopants of the 

resulting polyaniline in neutral pHs [17]. Particularly, in the case of polyaminobenzylamines, the protonable 

pendant amine groups confer additional charges to the polymer chains, which in turn improve the proton 

doping level and the electroactivity. Although low reactive, the backbone nitrogen groups of Pani have been 

used to link  covalently the polymer through amide [18] and phosphoroamide [19] bonds in biodevices. The 
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presence of additional more reactive primary amino groups would allow functionalization by addition of 

either chemical moieties or biorecognition elements yielding multifunctional materials [20]. 

In this sense, we have recently shown that it is possible to electrosynthesize copolymers of aniline and 

aminobenzylamines to produce amino-functionalized Pani-like films with enhanced electroactivity in neutral 

solution [21]. Although the electrochemical methods allow for a precise control of the amount of polymer, 

batch chemical synthesis would make possible a large-scale production of materials as it is necessary for 

some practical applications and for large production of devices. Chemical synthesis of Pani is simple and 

well-known, but its subsequent processability poses complex challenges [22]. Water dispersions of Pani are 

not stable over the long term. Most of the works on assemblies of Pani employ dispersions prepared based on 

the Rubner’s method with small variations [23]. This procedure includes several laborious steps. Briefly, 

Pani is synthesized by oxidation with persulfate in acidic solution, then neutralized with NH4OH, dried and 

redispersed in dimethylacetamide after several hours of stirring and sonication, and the remaining particles 

are filtered. This organic solution is then diluted with acidic water to form aqueous dispersions of pH about 

2.5, which are said to be stable for some days. Significant effort has been devoted to improve the 

processability of Pani-like materials, by either post-synthesis chemical modification[24] or copolymerization 

[25,26]. 

On the other hand, the complementary properties of CPs and carbon nanomaterials, have recently promoted 

a great interest in producing composites for energy storage and sensing applications [7,27–29]. Although 

several methods have been developed for the construction of these complex interfaces [29], the layer-by-

layer (LbL) assembly has become one of the most employed methods for coating a wide variety of substrates 

with films of well-ordered nanoarchitecture [30,31]. All LbL-based methods critically depend on the 

interaction between the counterparts, which is mainly electrostatic. The presence of additional protonable 

amino groups in the CPs could enhance this interaction improving the stability of the LbL assemblies.  
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Herein, we present a simple chemical method to obtain water dispersions of polyaminobenzylamines 

(PABA). The presence of additional amino groups in this Pani-like material yields good electroactivity in 

neutral solutions as desirable for the construction of functional bioelectrochemical assemblies. Furthermore, 

the protonable amino moieties allow both the preparation of stable aqueous dispersions and the integration of 

this material with negative counterparts for the construction of more complex electroactive LbL assemblies.  

2. Experimental Section 

2.1. Chemicals  

Ammonium persulfate (APS), 3-mercapto-1-propanesulfonic acid sodium salt (MPS) and 3-

aminobenzylamine (ABA) (Scheme 1) were purchased from Sigma-Aldrich. L-ascorbic acid (AA), HCl, KCl 

and sulfuric acid were purchased from Anedra. Poly(sodium 4-styrenesulfonate) (Mw 70 kDa) (PSS), poly(4-

styrenesulfonic acid-co-maleic acid) sodium salt (Mw 20 kDa) (PSSMA) and polyethylenimine (Mw 10 kDa) 

(PEI) were also purchased from Sigma-Aldrich. All chemicals were employed as received without further 

purification. All solutions were prepared with Milli-Q water (18.2 MΩ cm). 

2.2. PABA synthesis 

The polymerization of PABA was achieved by chemical oxidation with APS. Briefly, a 50 mM ABA 

solution was prepared in water. The pH of this solution was about 9-10. This solution was magnetically 

stirred for 15 minutes. Then, solid APS was added to form a 50 mM solution under continuous stirring. Some 

minutes later, the initial transparent solution became dark brown and finally, dispersed brown solid particles 

were formed. After reaction, typically 1 hour, the pH of the solution was about 2.5. PABA was then purified 

by alkaline precipitation. Briefly, a 10% KOH solution was added to the synthesis solution to shift the pH to 

10. Then, the solution was centrifuged at 7000 rpm for 10 minutes and the precipitate was re-dissolved in 
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0.5M HCl up to the same initial volume. This solution was used as a stock solution for assembly (nominally 

about 5 mg mL-1).  

(Scheme 1) 

2.3. Instrumentation 

Nuclear Magnetic Resonance (NMR) experiments were performed in D2O using a 500MHz Bruker 

AVANCE III NMR spectrometer equipped with a 1H/19F BBI 5mm probe.  LDI-TOF mass analyses were 

performed on an Ultraflextreme III time-of-flight mass spectrometer equipped with a pulsed Nd:YAG laser 

(λ 355 nm) and controlled by FlexControl 3.3 software (Bruker Daltonics). The acquisitions were carried out 

in positive ion linear mode at a laser frequency of 1000 Hz.  Laser power was adjusted for an optimal 

resolution and the spectra were obtained by addition of 1000 shots. Acquisition conditions were set as 

follows: Ion source 25 kV; ion source 2, 23.7 kV; lens voltage, 6.87 kV; detector gain 6.5x. LDI mass 

spectrum of PABA was performed from 0.5 M HCl solution. 

Surface Plasmon Resonance (SPR) experiments were carried out by using a SPR Navi 210A instrument 

(BioNavis Ltd, Tampere, Finland).  An electrochemistry flow cell (SPR321-EC, BioNavis Ltd.) was 

employed for all measurements. Gold sensors (BioNavis Ltd) were employed for SPR measurements were 

cleaned by immersion in boiling NH4OH (28%) /H2O2 (100 vol) 1:1 for 15 min and then rinsed with water 

and ethanol. Injection was performed manually and SPR angular scans (785 nm laser) were recorded with no 

flow in the cell. Temperature was kept at 20°C. All SPR experiments were processed using the BioNavis 

Data viewer software. 

Atomic Force Microscopy (AFM) was performed with a Veeco Multimode AFM connected to a 

Nanoscope V controller was used to image the substrate.  AFM measurements were performed in tapping 

mode in air using a TESP-V2 (Bruker, K = 42 N m-1) cantilever.  



 7

X-ray Photoelectron Spectroscopy (XPS) was performed using a SPECS SAGE HR 100 system 

spectrometer.  A Mg Kα (1253.6 eV) X-ray source was employed operating at 12.5kV and 10mA. Survey 

spectra were obtained with pass energy of 30 eV whereas 15 eV was employed for detailed spectra of C1s, 

N1s, and S2p regions.  The take-off angle was 90° and operating pressure was 8 10-8 mbar. Quantitative 

analysis of spectra was carried out by using the Casa XPS 2.3. 16 PR 1.6 software, employing Shirley 

baselines and Gaussian\Lorentzian (30%) product functions. Surface-charging effects were corrected by 

setting the binding energy (BE) of the main component of the core level C1s at 285 eV [32]. The full width at 

half maximum (fwhm), was kept fixed for different components of a given element. For quantitative N/S 

determinations, calculations were performed by recording the XPS spectrum of (NH4)2S2O8  powder in the 

same conditions as internal reference. 

UV-visible absorption spectra were acquired with a Perkin-Elmer Lambda 35 UV-vis spectrometer. 

Fourier transform infrared spectroscopy in the attenuated total reflection mode (ATR-FTIR) was performed 

using a Varian 600 FTIR spectrometer equipped with a ZnSe ATR crystal with a resolution of 4 cm-1. 

Background-subtracted spectra were corrected for ATR acquisition by assuming a refractive index of 1.52 for 

all of the samples. Ellipsometry was performed with a spectroscopic ellipsometer (alpha-SE) from J. A. 

Woollam Co with three different incidence angles.    

Dynamic light scattering (DLS) measurements were performed with a Zetasizer Nano (Nano ZSizer-

ZEN3600, Malvern, U.K.) in water at 25ºC. The zeta-potential was determined from the electrophoretic 

mobility measured by Laser Doppler Velocimetry with a Zetasizer Nano. The Smoluchowski approximation 

of the Henry equation was employed for calculations. Measurements were performed in triplicate using 

disposable capillary cells (DTS 1061 1070, Malvern) at 25ºC with a drive cell voltage of 30 V and employing 

the monomodal analysis method.  
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Cyclic voltammetry (CV) was performed using a Gamry REF600 potentiostat in a conventional three 

electrodes electrochemical cell. The counter electrode was a Pt wire and a Ag/AgCl (3 M NaCl) electrode 

was employed as reference.  

3. Results and Discussion 

3.1. PABA Characterization 

3.1.1 NMR. 1H-NMR spectra acquired at different stages of the PABA synthesis are presented in Fig. 1. A 

50 mM solution of ABA in D2O was prepared (spectrum a). The NMR signals are in agreement with the 2 

protons (3.62 ppm) from the methylene group and 4 aromatic protons of the disubstituted benzenic ring of 

ABA. After adding the oxidizing agent (50 mM APS, spectrum b) the methylene signal shifts to 4 ppm 

probably owing to the pH decrease caused by the APS. For comparison, the spectrum of an acidic ABA 

solution was added (ABA 50 mM, H2SO4 100mM, spectrum e).  In this case, the methylene signal is at 4.17 

ppm and the aromatic signals also appeared at higher chemical shifts as a consequence of the protonation of 

both the aromatic and benzyl amino groups.  After 40 min of reaction (spectrum c), the methylene signal 

appears at 4.16 ppm and the aromatic protons shows broader bands. The solution is dark and some 

aggregation occurs. After overnight incubation, the reaction solution was diluted 1:10 with 0.01 M H2SO4 in 

D2O and sonicated. The 1H-NMR results (spectrum d) show the aromatic protons between 7.25 and 7.5 ppm 

and the main signal attributed to methylene moiety at about 4.06. The ratio between aromatic to methylene H 

signals (right column in Fig. 1) indicates the polymerization has taken place as it changes from 2 for the 

monomer to ca. 1.5 for the polymer as it is was expected from the chemical structures in Fig. 1. The 13C-

NMR spectra of ABA and PABA, corresponding to 1H-NMR spectra (e) and (d) in Fig. 1 respectively, are 

presented in the SI. As a consequence of polymerization, 13C-NMR peaks become broader and appear at 

slightly lower chemical shifts. There is also a new peak at about 161 ppm that can be assigned to the C bound 
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to N in a quinone-imine structure of the emeraldine-like state in PABA. This peak has been also reported for 

the chemical synthesis of Pani [33–35]. Finally, NMR data confirms that the methylene group remains next 

to a N moiety after the chemical polymerization. Further confirmation of the chemical structure was 

performed by mass spectrometry. 

(Figure 1) 

3.1.2. Laser-Induced Desorption- Mass Spectrometry (LDI-MS). MALDI-TOF has become a powerful 

tool for the structural analysis of synthetic polymers and macromolecules [36,37]. In the case of Pani, it has 

been found that the analysis by MALDI-TOF shows no molecular peaks, but only fragments. The use of 

matrix compounds does not generally help and it is preferable to employ directly laser desorption [38,39]. 

Additionally, Pani strongly absorbs radiation in the UV region, so laser-induced desorption (LDI) is possible 

[40]. Reported LDI-TOF results for Pani and poly(anisidine) show main peaks separated by 91 and 121 units, 

which agrees with the molecular weight of the monomer units and indicates that the peaks are owing to 

different number of monomers in the segments. There are also several secondary peaks separated by 15 units 

that corresponds to NH groups [38]. Successive peaks of Δm/z=14-16 in Pani has been attributed to chain 

fragmentation under the desorption/ionization conditions [39,40]. With DHB as matrix, Pani oligomers up to 

7 monomers were clearly observed, but poor signals were obtained for higher masses (up to 10 monomers) 

[39]. In other cases, oligomers up to 20 unit were detected by LDI-TOF [40]. The solvent-free LDI-TOF of 

Pani has been reported to be complex owing to the fragmentation of the phenyl groups induced by the laser. 

This fragmentation is inhibited when DHB is employed as matrix, absorbing most of the laser power and 

protecting the polymer chains from fragmentation [41]. Again, the presence of lateral peaks with Δm/z=15 

were observed and attributed to additional NH2 or phenylene terminal groups present from the synthesis 

[42,43] or generated by the desorption/ionization conditions [40,42].   
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In the case of PABA, the LDI mass spectrum shows sets of peaks separated by about 120 units of mass 

(Fig. 2). The repetitive sets are notable up to about 1400 Da, which indicates oligomers of about 11-12 

monomer units. These sets are composed by peaks separated by about 14-16 Da as it generally happens with 

Pani derivatives and indicates gain or loss of N, NH and NH2 moieties [39,40].  

3.1.3. Size and zeta-potential measurements. In order to study the incorporation of PABA into LbL 

assemblies with polyanions, the zeta-potential of acidic dispersions of PABA, poly(sodium 4-

styrenesulfonate) (PSS) and poly(4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSMA) were 

measured. Electrostatic interactions mostly dominate the LbL assembly of charged species. As it is an 

indication of the surface charge, zeta-potential is a critical parameter in the study of polyelectrolytes as 

building blocks in interfacial nanoarchitectonics [44–46]. The electrolyte employed for DLS determinations 

and LbL assembly was 0.5 M HCl to guarantee the stability of the PABA dispersions. Solutions of 

concentration 1mg mL-1 were prepared for the polyanions whereas PABA solution was obtained by dilution 

1:100 from the stock solution with 0.5 M HCl (nominally 0.05 mg mL-1). All solutions were filtered with a 

0.22 µm filter (Schleicher & Schuell). No precipitation of PABA was observed even as long as several days 

after filtering. The zeta-potential values determined for PABA, PSS and PSSMA were 14+2, -32+5 and -

20+3 mV respectively. This is consistent with the protonation of PABA in acidic media and the negative 

charge in the polyanions is attributed to the sulfonic groups which remain dissociated even at pH about 0. 

The lower charge of PSSMA indicates that the MA residues are probably non-dissociated in these solutions 

(see ATR-FTIR results). Sizes determined by DLS (effective hydrodynamic diameters) were 10+4 and 5+3 

nm for PSS and PSSMA respectively, based on the volume distribution fit (Fig. 3). This is consistent with 

the different molecular weight of the polyanions employed (70 and 20 kDa respectively). The z-average 

hydrodynamic diameter of PABA was determined to be 280 nm (PDI=0.26), whereas the volume distribution 

fit was centered at 350 nm.   
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(Figure 2) 

(Figure 3)  

3.2. Layer-by-layer formation and structure of PABA-containing multilayers 

The assembly of PABA and polyanions was monitored by SPR. Au sensors were first chemically modified 

with MPS to confer a net negative charge to the substrate. The functionalization was performed by 

immersion in 10 mM MPS aqueous solution overnight. Then the Au/MPS sensors were washed with water 

and ethanol and dried with N2 flow. The assembly was performed by injecting the solutions in a 200 µL-

volume quiescent SPR cell. Polyelectrolytes solutions (1 mL) were flowed through the cell and left 10 

minutes to allow the adsorption, whereas the washing solutions (3 mL 0.5M HCl) were left 5 min. Fig. 4 

shows the evolution of the angle of minimum reflectivity of the Au sensors during the assembly of the LbL 

film of PABA with both PSS and PSSMA. As shown by this sensogram, the film effectively grows up and 

the deposited material remains after solvent washing. The changes of the minimum reflectivity angle are 

linear on the number of deposition cycles (Fig. 4), which indicates that the amount of material deposited is 

similar in the subsequent steps.  After a deposition cycle, a bilayer (bl) is formed and the amount of deposited 

material is indicated by the number of bilayers (n). After eight deposition cycles, the sensors were washed 

with 0.5 M HCl and water and dried with N2. The thickness of the assembled films was determined by 

spectroscopic ellipsometry (see SI), yielding 33 and 27 nm for films with PSS and PSSMA, respectively. The 

increment 3.3-4 nm/bl is similar to that reported for LbL assemblies of Pani with other polyelectrolytes 

[47,48] as well as with nanomaterials as carbon nanotubes [49] and graphene oxide [50,51]. This indicates 

that LbL deposition behavior is mainly determined by the Pani-like component. In the case of Pani fibers, the 

thickness reported per bilayer is lower than the fibers’ diameter as determined by DLS, which indicates that 

the films are formed by patchy adsorption [52]. The same fact had been found in the assembly of Pani with 

polyelectrolytes, for which a minimum number of deposition cycles was required to obtain conductivity 

values similar to the bulk ones [47]. This reinforces the idea that several layers are needed to produce a fully 

continuous film with a percolation of the conducting  components [29]. We have employed AFM to more 

deeply study the structure of the LbL assemblies. AFM images of 10-bilayer films are presented in Fig. 5. 

These images show the presence of globular aggregates of PABA. The root-mean-square surface roughness 

5.7 nm and 5.3 nm for (PABA/PSS)10 and (PABA/PSSMA)10 assemblies respectively. In the case of Pani in 

LbL assemblies, the reported root-mean-squared roughness values depend on the quality of Pani dispersions. 
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Values lower than 1 nm have been reported for LbL of Pani and polyanions from dispersions made by 

Rubner’s method [48,23], but higher values (10-30 nm) have been also reported for the same systems 

assembled in other conditions [53]. In the case of assemblies of Pani complexes or Pani with nanomaterials, 

reported values are even higher; i.e.  5-15 nm for Pani/graphene oxide [54,55,51], 20-40 nm for Pani /CNTs 

[56] and 60-600 nm for Pani complexes with polyelectrolytes [57]. In general, values higher than 1 nm 

indicate the deposition of Pani grains [54] or fibers yielding highly entangled porous films [56]. In some 

cases, however, the roughness has been reported to decrease by thermal treatment of the Pani/CNTs films 

[55,56] or reduction of the Pani/GO films [51], improving the mechanical stability.  

(Figure 4)   

(Figure 5) 

The assemblies were also tested on glass substrates. For this purpose, glass slides were previously modified 

by PEI adsorption (1 mg mL-1, 30 min incubation) to confer a positive surface charge to the substrate. The 

same solutions employed for the assembly on Au/MPS were used. Substrates were immersed in 

polyelectrolyte solutions for 12 minutes and then in the washing solution (0.5 M HCl) for 10 minutes. After 

LbL film deposition, the substrates were washed with 0.5 M HCl and water and dried with N2 flow. The 

transmission UV-visible absorption spectra of the modified substrates with different number of bilayers up to 

25 are also presented in Fig. 6. The absorption features correspond to that of the acidic PABA dispersion 

shown in Fig. 6 (e). As in the case of Pani, the band bellow 350 nm is assigned to π-π* transitions of the 

benzenic rings distorted by the presence of backbone amino groups [58–60].  The other band at about 500 nm 

could be attributed to the excitonic transition that comes from an interchain absorption, leading to a separate 

charge state (molecular exciton) with a positive charge on a benzenic unit and a negative charge on a quinoid 

one [60–62]. Being this transition from the HOMO of benzenic to the LUMO of quinoid ring, it is sometimes 

indicated as (πB-πQ) [63]. As shown in the insets in Fig. 6 (a) and (d), both absorption bands increase 
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linearly with the number of deposition cycles, reinforcing the idea that a similar amount of polymer is 

deposited at each step.   

The assemblies were further characterized by ATR-FTIR. The ATR-FTIR spectrum of PABA in the region 

600 to 2000 cm-1 is shown in Fig. 7. The band at 1135 cm-1 has been assigned to the aromatic C-H in-plane 

bending in both IR [40,64] and Raman spectra of Pani and Pani assemblies [65]. Alternatively, it has been 

also assigned to a N=Q=N stretching mode [40,66]. This band is related to other band at 1612 cm-1, assigned 

to the N=Q=N stretching [40,64,66,67]. There are also other less important bands at 1455 cm-1, assigned to 

aromatic C-C [64]  or C-N stretching [67];  and at  1500 cm-1, which has been assigned to N-B-N stretching 

[66]; C-C in benzenic units [40,67]; N-H bending [40]; or Q=N-B stretching [67]. The vibrational 

spectroscopic information reveals that PABA presents a high degree of oxidized quinone-imine-like units. A 

complete FTIR characterization of PABA and a comprehensive list of the assignments of the bands are 

presented in the SI. The spectra of both the polyanions (commercial sodium salts) and the LbL assemblies 

are also presented in the Fig. 7. The spectra of PSS in this region is dominated by the typical sulfonate bands: 

a doublet at about 1124 and 1178 cm-1 assigned to the asymmetric stretching of the sulfonate group [68] and 

a band at 1038 cm-1 assigned to a symmetric stretching of the same group [68,69]. There is also a band at 

about 1010 cm-1 that has been assigned to in-place aromatic CH bending [68,70]. Finally, the band at 830 cm-

1 has been assigned to the out-of-plane aromatic CH deformation [69]. In the case of PSSMA there is also a 

band at about 1580 cm-1 attributed to the asymmetric stretching of the dissociated carboxylate group [71] and 

a lower band at 1410 cm-1 assigned to the symmetric stretching [71,72]. In the case of the assemblies, the 

FTIR confirms the presence of the chemical moieties of both components. The position of the sulfonate 

bands is basically the same, which shows that they remain in the salt form. Contrarily, in the case of 

PABA/PSSMA, there is also a shoulder at about 1710 cm-1 (arrow in Fig. 7) that can be assigned to the 
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protonated carboxylic moiety as a consequence of the protonation of the maleic units in the assembling 

conditions.  

(Figure 6) 

(Figure 7) 

To gain additional information on the composition and chemical state, we have performed XPS of the LbL 

assembled films.  The N1s region of XPS spectra of PABA and its assemblies with polyanions are depicted 

in Fig. 8.  Based on works on Pani, we have already assigned the N1s contributions in a previous work for 

the case of electrosynthesized PABA [21]. The N1s core spectrum level of PABA can be deconvoluted into 5 

peaks (fwhm 1.5 eV) (Table 1). The backbone N atoms can be considered to contribute with 4 bands 

corresponding to the uncharged N species (neutral imine [32,73–75] and neutral amine [73,75]) and positive 

N species from oxidized secondary amines (delocalized polaron-type structure) [73–76] and protonated imine 

(localized bipolaron-type structure) [73,75]. In the case of the primary amine pending moieties, the 

contributions are expected to appear at about 399 eV (indistinguishable from the backbone neutral amines) 

and 401 eV for the neutral and protonated forms respectively [77,78]. Results of fitting with these five 

components are shown in Fig. 8 and Table 1. The proportion of oxidized forms of N (polaron and imine 

structures, BE > 400 eV) increases when interacting with the polyanions, which reveals the role of the 

polyanions as dopants in the assembly. This is a proof of the chemical interaction between both components 

within the composite material which promotes an increased doping-state. This doping effect has been shown 

to be the responsible for the increased electrochemical performance of Pani composites in neutral solutions 

[79–81]. C1s and S2p XPS regions are presented in the SI. There are no major differences between PSS and 

PSSMA with the exception of the presence of a COO component signal in the case of the copolymer owing 

to the maleic units. Interestingly, there is some signal of S also in the case of chemically synthesized PABA. 
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This could be attributed to some residual sulfate anions from the synthesis that could be retained within the 

PABA fibers as dopants. Moreover, the sulfur-to-nitrogen (S/N) ratio is lower in the case of the copolymer 

probably owing to the lower proportion of sulfonic groups. The interaction with the polyanions induces a 

higher proportion of the charged forms of the PABA units. This proportion is higher in the case of PSS, 

which is consistent with the idea that the maleic units of PSSMA are not dissociated in the acidic assembling 

conditions as also inferred from the FTIR results. However, as indicated by the SPR and UV-visible results, 

this does not affect the film formation, which is essentially the same as with PSS. This is not surprising as 

Pani has been also reported to form LbL assemblies with nonionic polymers via hydrogen bonding formation 

[48], as not all backbone N atoms are expected to be protonated even in acidic solutions [82].  

(Table 1) 

(Figure 8)  

 

3.3. Electrochemical Response of PABA and the LbL Assemblies 

The electroactivity of the LbL assembled films was studied by cyclic voltammetry. Firstly, the 

voltammetric response of the chemically synthesized PABA block was evaluated in acidic solution (Fig. 9 

(a)). For this purpose, PABA was previously adsorbed on a MPS-modified gold electrode by immersion in 

the stock solution for 10 min. The linear dependence of the peak current on the sweep rate (Fig. 9 (b)) 

confirms that it corresponds to the electron-transfer process of an adsorbed redox couple [83]. As it happens 

with the electrosynthesized PABA, there is not only a single redox couple but several peaks corresponding to 

different redox transformations [21]. The voltammetric response of an LbL assembly of PABA and PSS in 

the same solution is presented in Fig. 9 (c). As shown in this figure, there is an increase in the voltammetric 

current as the number of deposition cycles increases (arrows), showing that it is possible to build an 
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electroactive LbL assembly of PABA. At this high sweep rate, there is no defined redox peaks but a 

pseudocapacitive-like response. Furthermore, the voltammetric charge reaches a plateau on the number of 

deposited layers, which indicates that the charge transfer mechanism is effective up to about 8 bilayers (Fig. 

9 (d)). This indicates that the presence of the non-electroactive polyelectrolyte leads the formation of linearly 

increasing LbL assemblies, but it somehow limits the dynamics of the charge transport across the assemblies. 

Similar results were obtained for the PABA/PSSMA assemblies.  

The electro-oxidation of ascorbic acid (AA) onto these modified electrodes was also studied by CV (Fig. 

10). The biochemical importance of AA has promoted an intense work in the field of electrochemical sensing 

and several aspects of  the electrochemistry of AA are well-known [84]. Even, it has been extensively 

employed to evaluate the electroactivity of Pani-based modified electrodes in neutral solutions [79,80,85]. 

Here, AA will be employed as a probe for testing the ability of the chemically synthesized PABA assemblies 

to interact with biologically relevant species and mediate electron transfer in neutral solution. As compared 

with the Au/MPS control substrate, the LbL-modified electrodes show an increase in the oxidation current 

with a lowering of the onset potential (Fig. 10). These results not only indicate that the assemblies are 

electroactive but also show the existence of an electrocatalytic effect [86]. Similar results are presented in the 

SI for PABA/PSSMA assemblies. The linear increase of the peak current on the AA concentration suggests 

that this system could be employed for voltammetric sensing. Typically, for thicker films the outer parts of 

the assemblies are not electrochemically connected and they block the interaction with the electroactive 

species in solution. This is a usual situation found in the electrochemical performance of LbL assemblies 

based on Pani.  However, a strategy employed to improve the electrical connectivity in Pani assemblies has 

been the usage of conducting carbon nanomaterials. Being Pani not conducting at neutral pH, these building 

blocks could provide the necessary electronic connection within the films.  In a recent work, chemically 

polymerized Pani assembled PSS-grafted graphene sheets was tested as an amperometric sensor of H2O2 in 
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neutral solution [87]. With the increasing number of bilayers, the electroactive area of the electrode becomes 

larger, which can effectively improve the electrochemical response. However, further increase led to a 

decrease in the peak current, which was attributed to the blocking of the electron transfer from the substrate 

to the electrode by the non-conducting polymer, with an optimum number of 6 bilayers.  For the first bilayers 

in an LbL assembly there is always a significant degree of interdigitation between layers as for these layers 

usually the surface coverage is not complete.  At a certain number of layers the coating will be denser and 

interdigitation will decrease, reducing for our case with PABA the electronic connectivity. Even in LbL 

assemblies of reduced graphene oxide chemically modified by a cationic ionic liquid and sulfonated Pani 

[88], the voltammetric response in the presence of H2O2 in neutral PBS showed an increased cathodic current 

after the polymer reduction peak with an optimum  amperometric performance for 8 bl.  A similar situation 

was reported for the LbL assembly of Pani and oxidized MWNTs, which shows a better response towards 

H2O2 for 5 bilayers and this number was selected for the construction of a choline biosensor [89]. In other 

case, LbL films of Pani and PSS-capped MWNTs were reported to be electroactive in neutral PBS solution 

with a quasi-reversible unique couple and  was shown to amperometrically sense H2O2 [90]. In this case, the 

electrochemically active material increased up to 7 bilayers, but a limiting value was obtained after further 

deposition cycles.  

(Figure 9)  

To study the influence of the electrochemical connectivity in PABA/polyanions assemblies, two 

thicknesses were compared: about 15 nm (4 bl, below the connectivity limit determined in acidic solution) 

and 50 nm (14 bl, within the plateau reached in the Fig. 9 (d)). Results are presented in the SI. Previous 

results on electrochemically synthesized films showed that at low sweep rate, the global process is AA 

diffusion-limited [21]. The AA must diffuse through the outer polyelectrolyte layers before reacting on the 

electroactive part of the assembly, being this process slower for thicker films. In the case of the LbL 
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assemblies of PABA/polyanions, this yields a decrease of the AA oxidation current. The decrease of AA 

voltammetric current is lower in the case of the PSSMA (17% for PSSMA and 35 % for PSS, see SI) and it 

could be related to the additional charges that can be induced in the maleic units when changing from the 

acidic assembling conditions to the neutral pH as it was recently reported for non-electroactive 

polyelectrolyte multilayers [91]. The additional charges could be responsible for a higher doping and the 

better electrochemical connection in neutral solution. From comparison with previous published results 

mentioned above on the electrochemical performance of the LbL assemblies of Pani and carbon 

nanomaterials, it can be seen that the PABA assemblies studied in this work show similar results even when 

the simple polyelectrolytes employed as counterparts are neither conducting nor electroactive. This could be 

attributed to the increased electroactivity of PABA as compared with Pani in neutral solution [21]. These 

promissory results open the door to the assembly of PABA with carbon nanomaterials to further increase the 

electrochemical connectivity.  

(Figure 10)  

4. Conclusions 

In summary, we have presented a method to obtain water dispersions of polyaminobenzylamine by chemical 

oxidation of ABA. The procedure is simple and does not involve laborious steps, yielding dispersions that 

remain stable in acidic solution. The resulting polymer was characterized by diverse techniques and 

dispersions were employed for the construction of LbL assemblies with polyanions. The assemblies 

presented a linear dependence on the number of deposition cycles up to 25 bl and the spectroscopic 

characterization showed a doping effect of the anionic counterpart that indicates an integration of the diverse 

counterparts within the films.  Additionally, the assemblies were electroactive both in acidic and neutral 

solutions. The good electroactivity at pH 7 is probably owing to the combination of the doping effect by the 
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polyanions and the self-doping effect of the protonated amino groups of the PABA backbone. Even, the 

PABA/polyanions LbL-modified electrodes showed electrocatalysis of the ascorbic acid oxidation in neutral 

solutions. As the number of bilayers increases, the electrochemical response decreases probably due to the 

lower interdigitation of the successive layers and the blocking effect of the non-conducting polyanions.  

The present results also open the door to further studies involving the assembly of PABA with other 

electroactive biomolecules for the construction of bioelectrochemical devices or even other conducting 

counterparts, e.g.: carbon nanomaterials, for the construction of highly interconnected electroactive films for 

energy storage applications. 
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Captions 

Figure 1. 1H-NMR spectra of different stages of the PABA synthesis in D2O. Refer to main text for further 

details.  On the top of the figure the chemical formula of ABA and the possible structures formed after 

polymerization in PABA. The methylene groups have been marked to emphasize that remain unaltered 

during polymerization. 

Figure 2. LDI mass spectrum of PABA from 0.5M HCl solution.  

Figure 3. Volume distribution determined by DLS for the polyelectrolytes in this work. Z-averaged 

diameters are indicated in the plot. 

Figure 4. Change in the minimum reflectivity angle of the SPR scan (measured at 785 nm) during the LbL 

formation of assemblies of PABA with PSS and PSSMA on Au/MPS substrates from 0.5 M HCl dispersions. 

Figure 5. AFM images of Au/MPS/(PABA/PSS)10  (left) and Au/MPS/(PABA/PSSMA)10 (right) assemblies.  

Figure 6. UV-visible absorption spectra of LbL assemblies on glass substrates: (a) PABA/PSS, (d) 

PABA/PSSMA. The insets show the linear increase of the absorbance on the number of layers. (b-c) Digital 

images of the glass substrates after different number of deposition cycles. (e) UV-visible spectrum of PABA 

(ca. 0.25 mg mL-1) in 0.5 M HCl. The inset shows the scattering corrected spectrum.  

Figure 7. ATR-FTIR spectra of components and assemblies deposited on Au substrates. From bottom to top: 

PSS, PABA/PSS assemblies with 10, 14 and 18 bilayers, PABA, PABA/PSSMA assemblies with 10, 14 and 

18 bilayers, and PSSMA. Stars indicate bands assigned in the main text. 
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Figure 8. N1s XPS spectra of PABA and PABA/polyanion assemblies (10 bl). Grey lines are experimental 

spectra; red lines mean the global fittings.   

Figure 9. (a) CV response of a Au/MPS/PABA electrode at different sweep rates in 0.5M HCl and (b) sweep 

rate dependence of the current for the anodic (0.36 V) and cathodic (0.065 V) main peaks. (c) CV response of 

an Au/MPS/(PABA/PSS)n  electrode for increasing number of bilayers (n) from 0 to 10 at 0.5 Vs-1 in 0.5 M 

HCl and (d) voltammetric integrated charge as a function of n. 

Figure 10. (a) Ascorbic acid electro-oxidation on Au/MPS (dash line) and an LbL-modified electrode 

Au/MPS/(PABA/PSS)4 (solid line) at 0.01 V s-1 in 0.1 M KCl 10 mM HEPES buffer pH 7. (b) Current 

density at 0.45 V as a function of the AA concentration for these electrodes.  

Scheme 1. Chemical structure of ABA. 
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Table 1. N1s core XPS components of PABA and LbL assemblies (fwhm=1.5 eV) and atomic compositions 

fitted. 

Component 

=N- 

 

-NH-

/NH2 

-N.+- 

 

-NH3
+

 

=NH+- 

 

S/N 

BE (eV) 398.8 399.7 400.4 401.5 402.5  

PABA 14% 22% 28% 29% 7% 0.09 

PABA/PSS 3% 13% 23% 35% 26% 0.64 

PABA/PSSMA 4% 16% 27% 34% 19% 0.43 

 

 


