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Abstract8

In the last years, multi-objective optimization techniques became into one of the main challenges of the buildings9

energy efficiency area. The objective of this paper is to develop and validate a computational code for multi-10

objective buildings performance optimization by linking an evolutionary algorithm and a building simulation11

software in a powerful cluster. A sophisticated version of the multi-objective Non-dominated Sorting Genetic12

Algorithm-II (NSGA-II) was implemented in Python code to determine the optimal building design, which allows13

working with categorical and discrete variables, and the objectives were evaluated using the building energy14

simulation software EnergyPlus. NSGA-II was implemented to run in a high-performance cluster for the parallel15

computing of the fitness of each population (set of possible designs). In this work, the strengths of the proposed16

method were demonstrated by its application to the optimal design of a typical single-family house, located in17

the Argentine Littoral region. This house has some rooms conditioned only by natural ventilation, and other18

rooms with natural ventilation supplemented by mechanical air-conditioning (hybrid ventilation). The most19

influential design variables like roof types, external and internal wall types, solar orientation, solar absorptance,20

size, type, and windows shading of this house among others were studied in two complex cases of 108 and 101621

possibilities to obtain the best trade-off (Pareto front) between heating and cooling performance. Finally, a22

decision-making method was applied to select one configuration of the Pareto front. Optimal simulation results23

for the study cases indicated that is possible to improve up to 95% the thermal comfort in naturally ventilated24

rooms and up to 82% energy performance in air-conditioned rooms of the building with respect to the original25

configuration by using a design that takes simultaneous advantage of passive strategies like thermal inertia and26

natural ventilation. The methodology was proved to give a robust and powerful tool to design efficient dwellings27

reducing the optimization time from almost 12 days to 4,4h.28

Keywords: Multi-objective optimization, NSGA-II, Energy consumption, Thermal comfort, Hybrid29

ventilation, High-performance cluster application30

1. Introduction31

Today, Argentine electricity sector faces an emergency state since the operation reserve under extreme weather32

conditions is less than 5% of the available power, while the thermoelectric power plants (providing more than33

Preprint submitted to Elsevier July 5, 2017
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60% of the total electric power) have low reliability, mainly because of their obsolescence, and the availability of34

imported gas and diesel is uncertain in the middle term [1]. Such crisis has multiple reasons [2]: the lack of state35

policies in the energy sector, the poor diversification of primary energy sources, the lack of criteria to reduce the36

energy intensity, among others.37

However, even though the residential buildings are the largest energy consumers (36.3% and 46.6% of the total38

electricity and gas, respectively [3]), the only Argentine regulation on building energy efficiency [4] has serious39

gaps: 1) it is not compulsory and gives no incentive, 2) it is exclusively based on the envelope transmittance,40

and 3) it just addresses the labeling for heating, which is actually not the main concern in large areas of the41

country, including the so-called Littoral region we are particularly interested in.42

Littoral is a 0.5-million km2 area located in northeastern Argentina, southeastern South America, where the43

climate is Cfa according to the Köppen-Geiger classification [5]. More specifically, Littoral can be divided into44

three zones [6]: I) very hot in the north, II) hot in the center, and II) warm temperate in the south. In addition,45

according to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) [7], the46

temperature will be 2 to 4.5◦C higher by 2100 (referred to 2014) in southeastern South America. Consequently,47

taking as reference the work of Invidiata and Ghisi [8] on two southern Brazilian locations whose climate is close48

to that of Littoral, the annual energy demand is expected to increase around 200% by 2050 with respect to 201649

(while the energy demand for heating should decrease around 80% by this time).50

Under these circumstances, it urges to improve the energy efficiency of buildings. To this end, a broad enough51

spectrum of alternative designs for a given building has to be evaluated, with each design characterized by a set52

of design variables like the building orientation, the type of internal and external walls and roof, the size, glazing,53

shading and infiltration rate of windows, the HVAC equipment, etc. Such variables are usually correlated and54

have a nonlinear effect on the thermal and energy response of the building. Given such complexity, recourse has55

to be made to building performance simulation (BPS) using general purpose software like EnergyPlus, ESP-r,56

and TRNSYS or dedicated codes like OBEM for office building envelopes [9].57

In addition, when the number of alternatives is very large, it is necessary to automate this task and make it in58

an intelligent form to find a good design without the need of exploring all of these alternatives. This problem has59

been tackled by many authors by means of simulation-based optimization techniques. But, even if a particular60

design can be quickly evaluated using BPS, the usually so huge number of alternatives makes also essential to61

use building performance optimization (BPO), coupling BPS with a numerical optimization algorithm.62

Several applications of BPO can be found in the recent literature. For instance, Islam et al. [10] coupled63

linear programming with AccuRate (the thermal rating tool accredited in Australia) to minimize the weighted64

sum of the life cycle cost and the environmental impact of residential buildings by acting on three categorical65

design variables (type of wall, roof and floor); Delgarm et al. [11] applied multi-objective optimization togetehr66

with EnergyPlus to minimize the cooling and lighting demand of a one-thermal zone building, taking as design67

variables the building size and orientation and the overhangs; Lu et al. [12] combined mono- and multi-objective68

genetic algorithms running under Matlabr with TRNSYS to optimize the renewable energy systems in low69
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energy buildings; Yu et al. [13] used multi-objective genetic algorithms in conjunction with EnergyPlus to70

simultaneously maximize the thermal comfort and minimize the energy consumption in building design.71

A critical aspect of BPO is the computational time to achieve optimal solutions. Some authors [14, 15] tackled72

this problem by using a metamodel (model of a model) of the building performance, which is previously trained73

on the base of a representative sample made of BPS results for different sets of design variables. The Latin74

Hypercube sampling (LHS) method is usually applied to obtain small yet statistically representative samples.75

The size of the sample is problem-dependent [16], and it can varies from 2.2× [17, 18] to 4166.6×the number76

of design variables [19] in different BPS applications. Actually, until today, the correct size of the sample for a77

given building has to be determined by trial and error, which may seriously compromise the advantages of this78

method.79

Then, the main objective of this paper is to take advantage of high performance computing as an alternative80

way of reducing the computational time of solving multi-objective optimization problems. To this end, we81

developed a Python code to use NSGA-II for multi-objective optimization, calling EnergyPlus for evaluating the82

fitness of a large number of individuals of a population (even the whole population itself) in parallel in a cluster.83

Another contribution of this work lies in the definition of the multiple objectives, which account for the84

performance of a house under cooling as well as heating conditions, considering that the house has both naturally85

and hybrid ventilated rooms. Finally, a decision making criterion is proposed to choose the final solution from86

the set of optimal solutions given by NSGA-II.87

The objective of this paper is to develop and validate a computational code for multi-objective buildings88

performance optimization by linking an evolutionary algorithm and a building simulation software in a powerful89

cluster.90

2. Methodology91

This section defines the architectural design of an energy efficient dwelling as a multi-objective optimization92

problem. In section 2.1, the different approaches for multi-objective optimization are discussed, justifying the93

choice of NSGA-II solver for the current work. Section 2.2 presents an automatic method for the selection of the94

final solution from the set of optimal solutions obtained with NSGA-II. Section 2.3 describes the current BPO95

implementation BPO, where NSGA-II is linked to EnergyPlus using the parallel Python library. Section 2.496

describes the building model of a typical house taken as the base case and introduces indicators of the performance97

of the rooms having natural ventilation either exclusively or complemented with mechanical air conditioning.98

These indicators serve to define the multiple objectives to be optimized, as discussed in section 2.5. Finally,99

section 2.6 is devoted to explain the current choice of design variables.100

2.1. Multi-objective optimization101

The architectural design of an energetically efficient building usually faces different objectives: to improve102

the comfort of naturally ventilated rooms and to reduce the energy consumption in air-conditioned rooms [20],103

3
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to reduce environmental impact and energy consumption while improving the indoor thermal comfort [21], to104

reduce the energy consumption for cooling as well as for lighting by acting on solar shading [22], to minimize the105

life cycle cost as well as the carbon dioxide equivalent emissions of residential buildings [23], etc.. In all these106

cases, the optimal design is the argument of the multi-objective optimization problem107

min
x

[f1(x) f2(x) . . . fN (x)], (1)

where fi denotes a specific objective and x is the set of design variables.108

In presence of mutually conflicting objectives, the solution of problem (1) is not a unique optimal design109

but a set of non-dominated solutions whose locus is commonly referred to as Pareto front because of Pareto110

dominance concept [24]. A solution is non-dominated (or Pareto-optimal) if there is not any other feasible111

solution that improves one objective without deteriorating at least one another. In the case of two objectives the112

set of non-dominated solutions (Pareto front) is a plane curve like that depicted in Fig. 1. More precisions on113

the mathematical foundations of Pareto optimality can be found in the multi-objective optimization literature,114

e.g. [25, 26].115

A first approach to solve a multi-objective optimization problem consists of defining a unique objective as116

the weighted sum of all the individual objectives fi (this was our choice in [20]), or as a norm of the vector117

of components fi (as done by Koo et al. [27], for instance). This yields a mono-objective problem, which can118

be solved using classic optimization algorithms. The goodness of the solution depends on the choice of the119

weight factors wi, each choice giving a single solution of the Pareto front. If multiple solutions are desired, the120

problem must be solved several times with different weight combinations [28], which is more expensive than121

using Pareto-based optimization from the beginning. Another disadvantage of this approach is that not all the122

Pareto-optimal solutions can be attained when the true Pareto front is non-convex [25].123

Truly multi-objective optimization solvers have been developed to overcome these problems, for instance124

MOPSO [29], SPA2 [30], and NSGA-II [31]. Being evolutionary algorithms, these solvers are well suited for125

parallel computing, do not “get stuck” in local optima, and have low sensitivity to discontinuities in the objective126

function, making them the preferred solvers for BPO [32, 33]. Among them, NSGA-II [31] stands out thanks127

to its efficient sorting of non-dominated solutions, accounting for elitism (which speeds up the convergence),128

and giving a set of Pareto-optimal solutions that are well distributed along the Pareto front. Because of these129

properties, widely appreciated in BPO [11, 13, 22, 34–37], NSGA-II was adopted for this work.130

2.2. Decision-making process131

Once the set of Pareto-optimal solutions (or Pareto front) xopt
1 , xopt

2 , . . . , xopt
P (with P denoting the popula-132

tion size) was obtained (using NSGA-II, for instance), a decision must be made to determine the final optimal133

solution xopt among them. Such a decision depends on the relative importance of the objective functions, whose134

a priori assessment relies on the user’s expertise. Here, we propose to use an automated decision-making strategy135

based on the distance of the Pareto-optimal solutions to the “ideal point”, defined as the set of the best solutions136
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to each independent problem [38], i.e.137

Pideal = [min(f1) min(f2) . . . min(fN )]. (2)

Normally, this point is not attainable in a multi-objective optimization problem because these objectives cannot138

be minimized simultaneously due to their conflicting nature [38].139

The distance of a Pareto-optimal xopt
k to the ideal point is determined as140

d(xopt
k ) =

√[
f1(xopt

k )−min(f1)
]2

+
[
f2(xopt

k )−min(f2)
]2

+ · · ·+
[
fN (xopt

k )−min(fN )
]2

(3)

Then, the final optimal solution xopt is defined as that Pareto-optimal with the shortest distance to the ideal141

point. Fig. 1 schematizes the Pareto front, the ideal point and the final optimal solution for the problem of142

minimizing two conflicting objectives.143

f2

f1

Non-dominated solutions

Optimal solution

Feasible solutionsPareto front

Ideal point

m
in

(d
)

Figure 1. Schema of the Pareto front, the ideal point, and the final optimal solution for the minimization of two

contradictory objectives f1 and f2.

2.3. Current multi-objective BPO implementation144

The multi-objective BPO methodology applied in this work consists of using NSGA-II [31] as optimization145

solver combined with EnergyPlus (E+) [39] for fitness evaluation. We took as platform the Distributed Evolu-146

tionary Algorithms in Python (DEAP) [40], which includes the NSGA-II solver as it was revisited by Fortin et147

al. [41]. Furthermore, in order to improve the performance of this solver in presence of integer design variables,148

we implemented Laplace crossover and power mutation techniques [42] to replace the binary crossover and the149

polynomial mutation used in the NSGA-II proposed by Fortin et al. [41].150

The core of the NSGA-II is a genetic algorithm [43], where a population of individuals is randomly seeded,151

then undergoes mutation (random changes) and crossover (interpolation between individuals). A selection152

process is used to find high-performing individuals to form the next generation. The process is then repeated153

for a given number of generations. In particular, for NSGA-II, the individuals are selected by non-domination154

rank taking as many complete ranks as will fit in the new population. Any remaining spaces are then filled155

5
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according to crowding distance. This selection process drives the population towards the optimum Pareto front156

while maintaining diversity along the front [31].157

Briefly, the steps of NSGA-II are summarized in the following pseudo-code:158

pop = random(popsize)159

Fitness(pop)160

pop = Selection(pop)161

From 1 to #generations do162

offspring = Non-dominated-selection(pop)163

offspring = Crossover(offspring)164

offspring = Mutation(offspring)165

Fitness(offspring)166

pop = selection (offspring)167

End168

At each fitness step, the objectives fi(xj) are calculated for each individual xj (j = 1, 2, . . . , P ) in the169

population. To this end, we wrote a Python routine that reads xj from the mutation offspring (that is, from170

DEAP), converts the entries of xj in E+ inputs, writes the corresponding E+ input file (.idf), calls E+ to run171

this file and reads the E+ output file to finally determine fi(xj). This DEAP/E+ interface makes use of the172

Parallel Python library [44], enabling a whole population to be evaluated at once taking advantage of parallel173

computing. Here, we used the Pirayu cluster [45] installed in our laboratory.174

Fig. 2 shows the diagram of the computational implementation of the proposed multi-objective BPO method-175

ology.176
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Figure 2. Diagram of the computational implementation of the current multi-objective BPO methodology.
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2.4. Case study177

Without a reference house for energy efficiency in Argentine building regulations, we adopted as typical house178

the so-called Roble2D house funded by PROCREAR [46] (a massive credit program subsidized by the Argentine179

national government). The Roble2D house is a 83 m2 two-story, detached house with the kitchen, the living180

room and a bathroom on the ground floor, and two bedrooms, a corridor, and a bathroom on the first floor,181

as shown in Fig. 3. It is assumed to be located at Paraná, a city in the center of Littoral with latitude 31.78S,182

longitude 60.48W and altitude 78 m.a.s.l.. We have recently generated the typical meteorological year (TMY)183

at 15 locations in Littoral [47], including Paraná, for which files in EPW format are available online [48, 49].184

This is the same case study that was widely detailed in our previous work [20]. For the sake of completeness,185

the main features of this house and its BPS model will be recalled here. The original configuration of the186

Roble2D house, say Case 0, is summarized in Table 1.187
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Surface 4

S
u
rface 1

S
u
rface 3
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Ground floor

First floor

Figure 3. Roble2D single-family house from the Argentine credit program PROCREAR.

The E+ version 8.4.0 [50] to evaluate the thermal and energy performance of this house and its alternative188

designs was used. In all cases, the house was divided into eight thermal zones, corresponding to the kitchen, the189

living room, the two bathrooms, the two bedrooms, the corridor and the staircase of the Roble2D house, see190

Fig. 3. Each zone was assimilated to a FullExterior E+ object [51], where the effect of shadows on the external191

surfaces is accounted for.192

The Roble2D house is planned to be occupied by four people. In particular, we assumed each bedroom and193

the living room to accommodate two and four people, respectively, according to the schedules depicted in Fig. 4.194

Each one of these rooms had its respective internal heat load coming from the occupants, the lighting and the195

equipment, following ASHRAE [52].196
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Table 1. Original configuration (Case 0) of the Roble2D single-family house.

Element Characteristics

Building azimuth 0 (surface 1 facing North)

Type of external walls Hollow brickwork layer with mortar finish

External solar absorptance of external walls 0.7

Type of windows Simple clear 3 mm-thick glass

Shading fraction in windows 25%

Infiltration rate in windows and doors 0.02 kg/s/m

Window area fraction for natural ventilation 30%

Type of roof Ceramic tile, air gap and concrete liner

Type of internal walls Hollow brickwork layer with mortar finish

Type of the first floor Concrete with ceramic floor

a) Occupancy of the living room
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u
p
an

cy
 [
%

]

Hour
2 4 6 8 10 12 14 16 18 20 22 24

Weekdays Weekend days

Figure 4. Schedules of occupancy for the living room and the bedrooms.

2.4.1. Measurement of performance for naturally-ventilated rooms197

In a naturally-ventilated room, the thermal discomfort is measured using the cooling and heating degree-198

hours, defined as199

Dcool =
∑
h

〈Top(h)− Tupper(h)〉 , (4)

Dheat =
∑
h

〈Tlower(h)− Top(h)〉 , (5)

respectively, where 〈x〉 is the ramp function (〈x〉 = 0 if x < 0 and 〈x〉 = x if x ≥ 0), Top(h) is the operative200

temperature in the room at the hour h (obtained as an output of E+), Tlower and Tupper are the lower and upper201

admissible temperature; the range of the preceding sums is a whole year, excluding the hours when the room is202

not occupied.203

8
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The admissible temperatures Tlower and Tupper were defined as the lower and upper 80%-acceptability lim-204

its [53]:205

Tlower = 0.31Tpma(out) + 14.3◦C, (6)

Tupper = 0.31Tpma(out) + 21.3◦C, (7)

where Tpma(out) is the prevailing mean outdoor temperature, which is assumed to be the monthly mean of the206

local dry-bulb temperature, as shown in Fig. 5.207

In the current house, all the rooms except the bathrooms were assumed to be naturally ventilated, being208

modeled as AirflowNetwork E+ objects where windows and doors are temperature-controlled in order to allow209

airflow when the indoor temperature was higher than the outdoor and whenever the outdoor temperature was210

higher than 20◦C.211

Here, only the living room was considered for computing Dheat and Dcool. It is actually the busiest naturally-212

ventilated room, occupied according to the schedule in Fig. 4a.213

2.4.2. Measurement of performance for hybrid rooms214

In those rooms where the thermal comfort is artificially enforced if necessary, the thermal performance is215

rather measured by means of the annual energy consumption of the air conditioners for heating and cooling, say216

Eheat and Ecool respectively.217

This is the case of the bedrooms of the currently studied house, where the air-conditioner was turned on (and218

the airflow was blocked) whenever natural ventilation was not enough for ensuring the thermal comfort. This219

combined use of active and passive cooling and heating strategies is accounted for using the E+ HybridVentilation220

Manager. The air-conditioners in the bedrooms were modelled as packaged terminal heat pumps (PTHP). They221

were allowed to work for heating when the room temperature was less than or equal to 18◦C, and for cooling222

when the room temperature was greater than or equal to 26◦C, whenever the bedrooms were occupied at the223

given hour h (see the schedule of occupancy of the bedrooms in Fig. 4b).224

2.5. Definition of the objective functions225

As was mentioned before, the degree-hours in the naturally-ventilated living room and the energy consump-226

tion in hybrid bedrooms are assumed as indicators of the energy performance of dwellings. Other aspects of227

indoor environmental quality, such as visual comfort, acoustic comfort and indoor air quality, have not been228

included in this work.229

Then, we define the optimal design of a house as the solution of the multi-objective optimization problem230

min
x

[fheat(x) fcool(x) ] (8)

9



Page 10 of 27

Acc
ep

te
d 

M
an

us
cr

ip
t

T
em

p
er

at
u
re

 [
ºC

]

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Hourly outdoor dry-bulb temperature

Daily mean outdoor dry-bulb temperature

Upper limit of indoor operative temperature

Lower limit of indoor operative temperature

Prevailing mean outdoor temperature

Figure 5. Mean hourly and daily dry-bulb temperature, prevailing mean outdoor air temperature, and 80%

acceptability limits for the city of Paraná.

with the objective functions defines as:231

fheat(x) = wD
Dheat(x)

Dheat(x0)
+ wE

Eheat(x)

Eheat(x0)
, (9)

fcool(x) = wD
Dcool(x)

Dcool(x0)
+ wE

Ecool(x)

Ecool(x0)
, (10)

where wD and wE = 1− wD are weighting factors, and x0 is the set of design variables for Case 0, see Table 1.232

Note that each objective is at its turn a weighted sum of two sub-objectives. Each subobjective (either Dheat,233

Eheat, Dcool or Ecool) is an E+ output. In order to combine the degree-hours and the energy consumption, these234

sub-objectives were normalized with respect to a baseline case (here, Case 0), as frequently done in BPO235

[10, 20, 28]. Regarding the weighting factors, there is no rule to select them. Here, taking into account that236

the periods of occupancy of the living room (involved in Dheat and Dcool) and the bedrooms (involved in Eheat237

and Ecool) were similar in extension, we set wD = wE = 0.5, a choice that was validated by the results to be238

discussed in section 3.239

2.6. Specification of the design variables240

In a previous work [20], the Morris screening method [54] was used to determine the sensitivity of the241

subobjectives Dheat, Eheat, Dcool, and Ecool with respect to a large set of design variables. From this analysis,242

we determined a set of 12 design variables xi to be the most relevant ones. Among them, some variables, like the243

building azimuth and, the windows shading size, are continuous within a certain interval; these are the variables244

10
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x1, x2, . . . , x7 in Table 2 . Other variables, like roof type, external walls type, window type, etc., are categorical,245

being listed in Table 3. The material properties associated with these categorical variables are those defined by246

the Argentine standard IRAM 11603 for thermal conditioning of buildings [6], shown in Table 4.247

Table 2. Continuous design variables and their discretization.

Variable Description Minimum Maximum Step #Levels

x1 Building azimuth 0◦ 315◦ 45◦ 8

x2 Window shading size 25% 100% 25% 4

x3 Solar absorptance of external walls 0.3 0.9 0.2 4

x4 Windows infiltration rate 10−5 kg/s/m 2× 10−2 kg/s/m 6.67× 10−3 kg/s/m 4

x5 Doors infiltration rate 10−5 kg/s/m 2× 10−2 kg/s/m 6.67× 10−3 kg/s/m 4

x6 Window area fraction for natural ventilation 10% 50% 10% 5

x7 Window width [level]∗ 1 4 1 4

∗ Windows width becomes a categorical variable after discretization.

While the categorical variables are intrinsically discrete, we decided to discretize the continuous variables,248

that is, only certain discrete values or “levels” of them were allowed, mainly to account for constraints of the249

house building process. For instance, the azimuth x1 was allowed to have eight levels: from 0◦ to 315◦ every250

45◦.251

A particular way of discretization was applied to the window width. The corresponding variable x7 had252

four levels, each one denoting a different width depending on the façade containing the window: 0.70 m, 1.35 m,253

2.00 m, 2.70 m for surface 1; 0.70 m, 1.60 m, 2.50 m, 3.40 m for surface 3; 0.70 m, 1.40 m, 2.15 m, 2.90 m for surface254

4.255

Note that the azimuth x1 was more finely discretized than the other variables, as a result of the sensitivity256

analysis [20], where we found it to have a strong nonlinear effect on the outputs, and to be highly correlated257

with other variables.258

Let Case A denote the optimization problem (8) with these 12 recently described design variables, listed in259

Tables 2 and 3.260

Now, let us define a more sophisticated optimization problem, say Case B, having the same objectives but 22261

design variables. The new variables are the type of wall, external solar absorptance, window width and window262

shading size, which are now associated to each external surface. For instance, the unique variable x8 defining263

the type of all the external walls in Case A was replaced by four variables, each one defining the type of wall at264

one of the external surfaces of the house. Furthermore, each one of the new variables replacing the variable xi265

in Case A has the same levels as xi.266

3. Results267

This section summarizes the results of solving the optimization problem (8) for Cases A and B, that is, with268

12 or 22 variables respectively. In both cases, the optimization problem was solved using NSGA-II, setup as269
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Table 3. Categorical design variables.

Variable Description Level

x8 External walls

1: Wood with air gap

2: Hollow brickwork layer with mortar finish

3: Double hollow brickwork layers with insulation and mortar finish

4: Wood with insulation and plaster finish

5: Concrete block with cement-plaster finish

6: Double concrete block with insulation and cement-plaster finish

7: Concrete

x9 Roof type

1: Concrete with plaster ceiling

2: Concrete and hollow ceramic block with plaster ceiling

3: Ceramic tile, air gap and wood liner

4: Ceramic tile, air gap and concrete liner

5: Ceramic tile, air gap, insulation and concrete liner

6: Ceramic tile, air gap, insulation and wood liner

x10 Window type

1: Single clear 3 mm thick glass

2: Single clear 6 mm thick glass

3: Double clear 3 mm thick glass with air gap

4: Double clear 3 mm thick glass with air gap

x11 Internal walls

1: Wood with air gap

2: Hollow brickwork layer with mortar finish

3: Wood with insulation and plaster finish

4: Concrete block with cement-plaster finish

5: Concrete

x12 Floor type of the first floor

1: Concrete with ceramic floor

2: Concrete with wood floor

3: Insulation, concrete and ceramic floor

shown in Table 5.270

3.1. Optimization of Case A271

Considering Case A, Fig. 6 shows the trade-off between the optimal solutions for fheat and fcool, where it is272

apparent their conflicting nature. Note that fcool ≈ 2.9 is very large for the optimal heating solution fheat ≈ 0,273

while fheat ≈ 0.5 is not as bad for the optimal cooling solution fcool ≈ 0.1. So, it is considerably easier to274

improve the design for heating than for cooling, which is not surprising because of the hot weather at the chosen275

location.276
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Table 4. Thermal transmitance U , thermal capacity Ct, and thermal delay θ for the different cases of external

walls, roof, internal walls, and floor type of the fist floor.

Design variable Level U Ct θ

[W/m2/K] [kJ/m2/K] [hours]

External walls

1 1.99 64.32 2.75

2 2.09 136.06 3.38

3 0.93 189.34 7.38

4 0.88 59.21 3.65

5 2.78 124.95 3.06

6 0.87 233.30 9.71

7 4.32 240.00 2.40

Roof type

1 3.68 195.36 2.15

2 2.59 90.79 1.53

3 2.03 38.91 1.31

4 2.06 216.84 4.78

5 0.83 217.85 9.08

6 0.83 39.92 2.55

Internal walls

1 1.99 64.32 2.75

2 2.09 136.06 3.38

3 0.88 59.21 3.65

4 2.78 124.95 3.06

5 4.32 240.00 2.40

Floor type of the first floor

1 4.71 256.56 2.68

2 2.59 213.44 4.36

3 0.61 258.59 12.94

The optimal heating and cooling solution, say xopt
A , defined to be the closest to the utopia point, is given in277

Table 6.278

Taking as reference the Case 0 defined by the set of design variables x0 (see Table 1), for which fheat(x0) =279

fcool(x0) = 1, it is clear that the thermal and energy performance of the house was hugely improved via280

optimization: fheat(x
opt
A ) = 0.048, fcool(x

opt
A ) = 0.147.281

Now, let us disaggregate the results: on the one hand, Eheat vs. Ecool (Fig. 7a) and, on the other hand,282

Dheat vs. Dcool (Fig. 7b). In both cases, results are very close to those obtained for fheat vs. fcool in terms of283

trade-off between conflicting objectives. Actually, the optimal heating and cooling solution is identical for the284

three cases.285
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Table 5. Settings of NSGA-II for the current problems.

Case A Case B

Population size 64 64

Number of generations 100 150

Selection Tournament

Non-dominated selection TournamentDCD

Crossover method Laplace crossover

Crossover probability 95% 95%

Mutation method Power mutation

Mutation probability 0.5% 0.5%

Cooling optimal

Heating and cooling optimal

Heating optimal

Utopia point

Pareto optimal

Case 0
Initial population

f c
o
ol

fheat

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

Figure 6. Case A: Trade-off between the contradictory global objectives fheat and fcool (heating and cooling

performance, respectively).

But this denormalized analysis serves to highlight the improvement of the thermal and energy performance

of the given house by comparing the optimal design xopt
A with the original one x0:

Dheat(x
opt
A ) = 0.083Dheat(x0), Dcool(x

opt
A ) = 0.020Dcool(x0),

Eheat(x
opt
A ) = 0.020Eheat(x0), Ecool(x

opt
A ) = 0.202Ecool(x0).

In addition, these results confirm that the minimization of fheat was closely accompanied by the minimization286

of the subobjectives Dheat and Eheat, validating our decision of defining fheat as the weighted sum of Dheat and287
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Table 6. Case A: Design variables for the optimal heating and cooling solution.

Design variable Optimum

Building azimuth 270◦C (surface 4 facing North)

Window shading size 100%

Solar absorptance of external walls 0.5

Windows infiltration rate 10−5 kg/s/m

Doors infiltration rate 0.02 kg/s/m

Ventilation area fraction 50%

Window width Level 3

External walls Level 6

Roof type Level 5

Window type Level 4

Internal walls Level 5

Floor type of the first floor Level 1

Cooling optimal
Heating and cooling optimal

Heating optimal
Pareto optimal

Case 0
Initial population

2
 Energy demand for heating  [kWh/m /year]

Cooling optimal
Heating and cooling optimal

Heating optimal
Pareto optimal

Case 0
Initial population
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Figure 7. Case A: Trade-off between energy consumed by air-conditioners to heat and to cool the bedrooms (on

the left) and between the heating and cooling degree-hours in the living room (on the right).

Eheat as well as the current choice of the weighting factors. The same is true for fcool as the weighted sum of288

Dcool and Ecool.289

A final aspect to emphasize is the convexity of the Pareto front for the current choice of objective functions.290
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3.2. Optimization of Case B291

Regarding to Case B, Fig. 8 shows the results of minimizing fheat and fcool, and Fig. 9 shows results for292

Eheat vs. Ecool and Dheat vs. Dcool separately. In all the cases, the trade-off between conflicting objectives is293

similar to that observed for Case A.

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3

Cooling optimal

Heating and cooling optimal

Heating optimal

Utopia point

Pareto optimal

Case 0
Initial population

f c
o
ol

fheat

Figure 8. Case B: Trade-off between the contradictory global objectives fheat and fcool (heating and cooling

performance, respectively).

294

The optimal heating and cooling design xopt
B for Case B is given in Table 7. The thermal and energy295

performance of the so-designed alternative of the Roble2D house is not only much better than that of the296

original one (Case 0) but is also considerably better than that of Case A optimal, as shown below:297

fheat(x
opt
B ) = 0.029fheat(x0) = 0.615fheat(x

opt
A ), fcool(x

opt
B ) = 0.125fcool(x0) = 0.851fcool(x

opt
A ),

Dheat(x
opt
B ) = 0.055Dheat(x0) = 0.666Dheat(x

opt
A ), Dcool(x

opt
B ) = 0.004Dcool(x0) = 0.176Dcool(x

opt
A ),

Eheat(x
opt
B ) = 0.008Eheat(x0) = 0.403Eheat(x

opt
A ), Ecool(x

opt
B ) = 0.184Ecool(x0) = 0.910Ecool(x

opt
A ).

The most prominent improvement associated to xopt
B concerns the cooling degree-hours in the naturally-ventilated298

living room: only 7.8◦Ch/year.299

Table 8 gives a quantitative idea of all the improvements in the thermal and energy performance of the300

Roble2D house enabled by optimization.301
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Figure 9. Case B: Trade-off between energy consumed by air-conditioners to heat and to cool the bedrooms (on

the left) and between the heating and cooling degree-hours in the living room (on the right).

3.3. Discussion on optimal solutions302

In this section, let us go into detail about the performance of the optimally designed house, either for Case303

A or B, compared to its initial performance (corresponding to Case 0, see Table 1).304

Considering the bedrooms and the energy demand for their air-conditioning, Fig. 10, the original design305

was highly inefficient, especially in the heating case. Using the optimal designs, either A or B, there is energy306

demand for heating only from May to July (austral winter), and it is less than 2% of the energy needed by Case307

0 for heating along the year. For cooling, the energy demand appears during the spring and summer (October to308

March) for the optimal designs, while it is also needed during the first half of the autumn for Case 0. Annually,309

the optimal cooling demand is just a fourth of that of the original design.310

Regarding the naturally-ventilated living room, the operative temperature Topt all along the year for the311

reference as well as for the optimal designs is shown in Fig. 11. Evidently, Topt for Case 0 is mostly out of the312

80%-acceptability comfort range, while it is mostly acceptable for the optimal cases. Differences between the313

optimal Case A and B are mainly observed in the extreme periods (mid-summer and mid-winter), being usually314

Case B the better one. In any case, note that there are periods when Topt is out of the comfort range but the315

living room is not occupied, so they do not affect the computation of Dheat and Dcool.316

It is also interesting to evaluate the performance of the optimal designs compared to the reference one in317

those days of extreme hot and cold weather, namely January 9th (mid-summer) and July 10th (mid-winter). The318

operative temperature along these days is shown in Fig. 12. Note that Case 0 is always out of comfort during319

the occupied hours of the living room in these extreme days. During the extremely hot day, the living room is320
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Table 7. Case B: Design variables for the optimal heating and cooling solution.

Design variable Surface Optimum

Building azimuth 270◦ (surface 4 facing North)

Window shading size

1 75%

3 100%

4 50%

Solar absorptance of external walls

1 0.3

2 0.3

3 0.7

4 0.9

Windows infiltration rate 10−5 kg/s/m

Doors infiltration rate 0.02 kg/s/m

Ventilation area fraction 50%

Windows width

1 Level 1

3 Level 1

4 Level 4

External walls

1 Level 6

2 Level 6

3 Level 6

4 Level 6

Roof type Level 5

Window type Level 4

Internal walls Level 5

Floor type of the first floor Level 3

Table 8. Thermal and energy performance for Case 0 (reference) and the optimal solutions of Cases A and B.

Objective Case 0 Case A Case B

fheat 1 0.05 0.03

fcool 1 0.15 0.13

Heating degree-hours [◦Ch/year ] 1454.41 120.47 80.25

Cooling degree-hours [◦Ch/year ] 2235.78 44.51 7.84

Heating energy demand [kWh/m2/year ] 44.39 0.88 0.35

Cooling energy demand [kWh/m2/year ] 11.57 2.34 2.13
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Figure 10. Monthly heating and cooling energy consumption in bedrooms for the analyzed cases.
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Figure 11. Hourly operative temperature at the living room for the original and the optimal designs.

90% of the occupied hours outside the comfort range for Case A, while this percentage falls to 30 for Case B321

(with no more than 0.2◦C in excess). During the extremely cold day, the living room is 70% of the occupied322

hours outside the comfort range for Case A, while this percentage falls to 10 for Case B (with no more than323

0.1◦C in defect).324

So, it can be concluded that Case B gives not only an optimal solution considering a whole year, but it also325

performs well during the coldest and hottest days. We found this is the main reason to prefer Case B optimal326

to of Case A one as the optimal design of the Roble2D house.327

Let us evaluate the design corresponding to the heating and cooling optima A and B given by Tables 6 and 7328

respectively, in order to find out the best architectural practices for such a typical house in the Littoral region.329

The optimal azimuth was 270◦ for both cases, corresponding to surface 4 (actually, the largest windowed330
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Figure 12. Hourly operative temperature at the living room for the original and the optimal designs during

extreme days: a) January 9th (mid-summer); b) July 10th (mid-winter).

one) facing North.331

The optimal windows width was Level 3 for Case A (that is, for all windows). Note that Level 3 amounts for332

different width magnitudes depending on the surface containing the window, as explained in Section 2.6, but it333

always denotes the second largest one among the four assumed levels of window width. For Case B, the optimal334

window width was Level 1 (the narrowest) for surfaces 1 and 3 facing West and East respectively, and Level 4335

(the widest) for the North-facing surface 4.336

The optimal shading for Case A is 100% for all the windows. For Case B, the windows facing East and West337

were well shaded, while those facing North were 50% shaded.338

The optimal window area fraction for natural ventilation was 50% in both cases, which was the maximal339

prescribed level.340

The optimal external thermal absorptance was 0.5 for Case A for all the surfaces, while it was 0.9 (upper341

bound) for the North-facing surface, 0.75 for the South-facing surface, and 0.3 (lower bound) for the East- and342

West-facing surfaces.343

The optimal external wall was Level 6 for both cases. Compared to the other admitted choices, Level 6 has344

low thermal transmittance, high thermal capacity and high delay, as shown in Table 4.345

The floor of the first floor was Level 1, having the highest thermal transmittance, a high thermal capacity346

and lowest thermal delay in Case A. In Case B, Level 3 was chosen, having the lowest transmittance and the347

highest thermal capacity and delay in Table 4.348

Cases A and B were also coincident in the optimal values of the windows infiltration rate (10−5 kg/s/m, the349

lowest bound), the doors infiltration rate (0.02 kg/s/m, again the lowest bound), the type of roof (Level 5, the350

one with the lowest transmittance and the highest thermal capacity and delay in Table 4), the type of internal351

walls (Level 5, that with the highest thermal transmittance and capacity and the lowest delay in Table 4) and352

windows glazing (Level 4, the one having the lowest transmittance). General recommendations for building this353

type of house in Littoral can be easily derived from these common results for Cases A and B.354

Also, results from Case B show more sensitiveness to local weather: Solar gains were favored through the355
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North-facing façade (large and medium-shaded windows, high external thermal absorptance) while they were356

controlled through East- and West-facing façades (narrow and well-shaded windows, low external solar absorp-357

tance).358

3.4. Discussion on computational efficiency359

A crucial feature of the current methodology is its parallel computing capability, taking advantage of the360

Pirayu cluster installed at our laboratory. This cluster has 600 Intelr Xeonr CPU E5-2650 v3 @ 2.30GHz cores.361

Using one of these cores, it took 2 to 2.5 minutes to run E+ to determine the fitness of an individual. Now, using362

64 of these cores in parallel, the fitness of the whole population was evaluated in approximately the same time.363

So, the optimal solutions of Case A (after 100 generations) and Case B (after 150 generations) took 4.5h to 6.6h,364

respectively. Let us note that, running in a sequential mode in an Intelr CoreTM i7-5820K desktop PC, 12 days365

are needed to obtain the optimal solution for Case A, and more than 16 days for Case B. Using the current366

parallel tool running in the six cores of this PC a perfect speed-up can be obtained, i.e., the computational time367

is divided by 6 taking 2 days approximately. So, the current tool is also very efficient in regular multicore PCs.368

4. Conclusions369

In this work, a multi-objective optimization method to improve energy efficiency and thermal comfort in370

dwellings using a simulation-based optimization technique was proposed. The performance of the house was371

characterized by two normalized objectives taking into account different thermal zones and passive as well as372

active cooling and heating strategies. The set of more influent design variables were explored to find the optimal373

trade-off between cooling and heating performance.374

As a result of the optimization, reductions were achieved not only in the normalized objectives but also in375

the sub-objectives: up to 95% fewer heating degree-hours and 99% fewer cooling degree-hours in the living room,376

and up to 99% less heating energy consumption and up to 82% less cooling energy in the bedrooms (taking as377

reference the same house as it was originally designed and built). This validated the efficiency and robustness378

of the routines developed that couple the NSGA-II with EnergyPlus for solving the current multi-objective379

optimization problem through a computing cluster implementation.380

Regarding the current results for a typical house in the Argentine Littoral region, they served to dictate381

general recommendations for the design of dwellings in this region: external walls and roofs should have low382

thermal transmittance and high thermal capacity and high thermal delay, the internal ones should have high383

thermal transmittance and capacitance and low delay, the windows should have low transmittance, among others.384

The parallel implementation in Pirayu cluster allowed to reduce the optimization time from more than a385

week in a sequential PC to a few hours. This will permit to apply this methodology to optimize a wide variety386

of building typologies in Argentina, and to do that in real-world times as it is required by the current critical387

situation of the electrical sector, which is our next goal. By the way, we also plan to make the current BPO388

tool, running in the clusters installed at our laboratory, accessible to general users via a web-platform interface.389

21



Page 22 of 27

Acc
ep

te
d 

M
an

us
cr

ip
t

Furthermore, in future works will be addressed to include important aspects of indoor environmental quality390

(visual and acoustic comfort, indoor air quality, etc.) as well as the impact of the climate change in the definition391

of the objective functions. We will also work on further reducing the computational time by both using meta-392

models for fitness evaluation and going deeper on the efficiency of optimization solvers.393
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Highlights 

 A method for the multi-objective optimization of residential buildings, taking advantage of high 

performance computing, was introduced. 

 An actual single-family, two-story house in the Argentine Littoral region was the case study. 

 The normalized degree-hours and the energy consumption in a separate way for winter and 

summer were the objective functions. 

 The thermal and energy performance of the case study was drastically improved. 


