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Abstract. Identification and extraction of vortical structures and of waves in a disorganised flow is a mayor
challenge in the study of turbulence. We present a study of the spatio-temporal behavior of turbulent flows
in the presence of different restitutive forces. We show how to compute and analyse the spatio-temporal
spectrum from data stemming from numerical simulations and from laboratory experiments. Four cases are
considered: homogeneous and isotropic turbulence, rotating turbulence, stratified turbulence, and water
wave turbulence. For homogeneous and isotropic turbulence, the spectrum allows identification of sweeping
by the large scale flow. For rotating and for stratified turbulence, the spectrum allows identification of the
waves, precise quantification of the energy in the waves and in the turbulent eddies, and identification of
physical mechanisms such as Doppler shift and wave absorption in critical layers. Finally, in water wave
turbulence the spectrum shows a transition from gravity-capillary waves to bound waves as the amplitude
of the forcing is increased.

PACS. 47.27.-i Turbulent flows – 47.35.-i Hydrodynamic waves – 68.03.Kn Dynamics (capillary waves)

1 Introduction

Turbulence can be characterised as the disorganised spa-
tio-temporal and chaotic evolution of a flow, by the de-
velopment of multi-scale structures, and in many cases by
intermittency (i.e., the development of localised energetic
structures in space and time, see e.g., [1]). Although tur-
bulence is a spatio-temporal phenomena, limitations in ex-
periments and in numerical simulations led studies either
towards spatial characterisation of the flows (e.g., using
two-point spatial structure functions, or the wavenumber
energy spectrum), or towards temporal characterisation
(e.g., using the frequency spectrum of time series). On
the one hand, computers excel in the former approach, as
velocity fields can be obtained today in numerical simula-
tions with relatively high spatial resolution, but temporal
cadence tends to be low as a result of the high computa-
tional cost of writing large files in supercomputers. On the
other hand, experiments excel in the latter. Long time se-
ries are relatively easier to obtain, while spatial resolution
in the laboratory is often limited.

This led to different approaches to tackle the study of
turbulence. While some authors focused on spatial prop-
erties and scaling laws, others considered the evolution of
individual structures such as vortex filaments or hairpin
vortices [2,3]. Identification of individual (and coherent)
structures in the disorganised flow has always been a ma-
jor quest for turbulence research. Techniques such as the
proper orthogonal decomposition [4] allowed spatio-tem-
poral tracking of these structures, and the generation of
low dimensional models for some turbulent flows [5].

In the presence of restitutive forces (such as gravity
and buoyancy in a stratified fluid, or the Coriolis force in
a rotating fluid), the flow can also sustain waves that make
the problem stiff: for strong enough restitutive forces, waves
introduce a fast time scale and their amplitudes are slowly
modulated by the evolution of the vortical structures. The
ability of waves to affect the properties of turbulent flows
has been recognised for a long time; as a few examples,
it is now clear they can alter the diffusion process in the
ocean [6], make the flow anisotropic [7,8,9], and change
the very nature of nonlinear interactions [10]. Understand-
ing the effect of waves in turbulence has implications in
geophysical, astrophysical, and industrial flows. Although
separating waves from eddies in a turbulent flow has been
deemed impossible in the past [11], multiple advances al-
lowed a formal treatment of turbulence in the presence of
waves [7,8,10], as well as some ways to decompose a tur-
bulent flow into wave and vortical motions (see, e.g., [12,
13,14]). These decompositions are based on spatial infor-
mation and on the dispersion relation of the waves, defin-
ing Fourier modes with zero wave frequency as vortical
or “slow”, and modes with non-zero wave frequency as
waves or “fast”, with this approximation being valid only
for very strong restitutive forces.

The development of experimental techniques such as
Particle Image Velocimetry (PIV, see [15]) or fringe pro-
jection profilometry (including Fourier Transform Profilo-
metry or FTP [16,17], and Empirical Mode Decomposi-
tion Profilometry or EMDP [18]), and the growth of com-
puting power (as well as the development of new tech-
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nologies such as burst buffers for the next generation of
supercomputers [19]), allowed obtaining experimental and
numerical data with space and time information. In this
paper we will focus on recent methods developed to detect
and extract waves from the turbulent velocity field (and
in the case of water waves, also from the turbulent surface
deformation field), resulting from the superposition and
nonlinear interaction of waves and eddies.

Different methods can be employed to identify the pres-
ence of waves in a turbulent flow, provided data in the
spatial and temporal domain are available. This is needed
as waves are defined by their spatio-temporal structure,
i.e., by their dispersion relation. One approach, recently
used in experiments of rotating turbulence [20], is to cal-
culate the two-point spatial correlation of the temporal
Fourier transform of the velocity field, obtained from PIV
measurements. In [20], the authors were able to quan-
tify anisotropy and to identify inertial waves. Another ap-
proach is to use the fact that bounded domains give rise
to resonant frequencies and look for peaks in the temporal
Fourier spectrum, as was done in experiments of rotating
turbulence [21,22] in both cylindrical and square contain-
ers (see also [23] for a recent study in a closed container
considering temporal information as well as the full spa-
tial fields). Yet another approach is to study the decorre-
lation time of different spatial modes, and to see which are
decorrelated by wave dynamics (i.e., in one period of the
waves) and which are decorrelated by sweeping (i.e., in
one turnover time of the large-scale flow). This was done
for magnetohydrodynamic (MHD) turbulence simulations
[24] and for rotating turbulence simulations [25,26]. Using
a similar technique, some authors looked for peaks in the
frequency spectrum of particular modes, as these should
be located at the frequencies corresponding to the wave
dispersion relation; these studies were conducted in MHD
turbulence [27] and in stratified rotating turbulence [28].
Finally, some observational studies of stratified turbulence
in the oceans attempted identification of waves by study-
ing Lagrangian trajectories in the fluid [29].

Recently, computational and experimental advances
made it possible to calculate the complete spatio-temporal
spectrum for all modes resolved in an experiment or a sim-
ulation. This spectrum has been calculated, e.g., in exper-
iments [30,31] and simulations [32] of water waves, in ex-
periments of vibrating plates [17,33], in experiments [34]
and simulations [26] of rotating turbulence, in simulations
of magnetohydrodynamic turbulence [35], in simulations
of stratified turbulence [36], and in simulations of quan-
tum turbulence [37,38,39] for flows of superfluid helium
or for Bose-Einstein condensates. These studies allowed
identification of wave modes, a precise quantification of
how much energy is present in these modes as a function
of the length scale, and identification of physical effects
associated with the presence of waves.

Similar techniques were developed in other areas, spe-
cially in plasma physics and in space physics. Experimen-
tal investigations of space plasma turbulence have recently
turned from single-point measurements (which suffered in-
variably from ambiguities in disentangling temporal and

spatial variations) to multipoint measurements [40,41]. A
paradigmatic example of this is the CLUSTER mission,
which comprises an in situ investigation of the Earth’s
magnetosphere using four identical spacecraft simultane-
ously to distinguish between spatial and temporal varia-
tions [42]. The multi-spacecraft mission allows combina-
tion of multiple time series recorded simultaneously at dif-
ferent points in space to estimate the corresponding en-
ergy density in wavenumber-frequency space [41]. More
recently, data from the Coronal Multi-channel Polarime-
ter (CoMP) allowed reconstruction of the spatio-temporal
spectrum and identification of Alfvén waves in the solar
corona [43].

In the following sections we show how to compute and
analyse the spatio-temporal spectrum of turbulent flows,
from numerical simulations and experiments. We focus
on four cases. Two were reported extensively in [26,36]
and are briefly summarised here, and correspond respec-
tively to numerical studies of rotating turbulence, and of
stratified turbulence. The spatio-temporal spectrum al-
lows identification of the waves, quantification of the en-
ergy in the waves and in the turbulent eddies, and identi-
fication of physical mechanisms such as Doppler shift and
critical layer absorption. The two other examples are new.
We present the spatio-temporal spectrum of numerical
simulations of homogeneous and isotropic turbulence, and
the spatio-temporal spectrum of laboratory experiments
of water wave turbulence. In the former case, the analysis
allows identification of sweeping of the small scale vortices
by the large scale flow. In the latter, we show a transition
from gravity-capillary wave turbulence to bound waves as
the amplitude of the forcing is increased.

2 Methods

2.1 Numerical simulations

To compute spatio-temporal resolved spectra in three-di-
mensions (3D), we will consider data stemming from direct
numerical simulations of isotropic, rotating, and stratified
turbulence. In the most general case, the evolution of a
rotating and stratified fluid in the Boussinesq approxima-
tion is described by

∂u

∂t
+ u · ∇u− ν∇2u = −fẑ × u−Nθẑ −∇p+ F, (1)

∂θ

∂t
+ u · ∇θ − κ∇2θ = Nu · ẑ, (2)

along with the incompressibility condition

∇ · u = 0, (3)

where u is the velocity field, θ is the potential temperature
fluctuations, p is the pressure (including the centrifugal
contribution), f = 2Ω (where Ω is the rotation frequency,
and the axis of rotation is in the ẑ direction), N is the
Brunt-Väisälä frequency (note that stratification is also
in the ẑ direction), F is an external mechanical forcing,
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Simulation Re Fr Ro
Isotropic turbulence 5000 – –
Rotating turbulence 5000 – 0.015
Stratified turbulence 9700 0.01 –

Table 1. Dimensionless parameters for the three different nu-
merical simulations. Re is the Reynolds number, Fr is the
Froude number, and Ro is the Rossby number.

ν is the kinematic viscosity, and κ the thermal diffusiv-
ity (for simplicity we take κ = ν, i.e., a Prandtl number
Pr = ν/κ = 1). By linearising the equations, it is straight-
forward to verify that inertia-gravity waves are solutions
to these equations, with dispersion relation

ω(k) = ±

√
N2k2⊥ + f2k2‖

k
, (4)

where k⊥ = (k2x + k2y)1/2, k‖ = kz, and k = (k2⊥ + k2‖)
1/2.

All cases considered can be recovered from these equa-
tions. The incompressible Navier-Stokes equation used for
isotropic and homogeneous turbulence is obtained from
Eq. (1) for N = f = 0. In this case there are no waves,
and only vortical structures are present in the flow. Equa-
tion (2) then reduces to the equation for a passive scalar.

The purely rotating case is obtained from Eq. (1) for
N = 0. As the only restitutive force is the Coriolis force,
the system can sustain inertial waves, which from Eq. (4)
follow the dispersion relation given by

ωR(k) = ±
fk‖

k
. (5)

Finally, the purely stratified flow is obtained for f =
0. Equation (4) now becomes the dispersion relation of
internal gravity waves,

ωS(k) = ±Nk⊥
k

. (6)

To solve these equations we use GHOST [44,45,46],
a parallel 3D pseudospectral code with periodic bound-
ary conditions, which uses either a second or fourth order
Runge-Kutta method for the time evolution. A spatial res-
olution of 5123 points in a regular grid is used in all cases.
In all simulations the fluid starts from rest, and a con-
stant in time forcing is applied (constant forcing is used to
prevent introduction of external timescales to the system,
that may be visible in the time spectrum). The systems
are then allowed to reach a turbulent steady state. Once
this stage is reached, we let the systems run for at least 10
large-scale turnover times, in order to get enough statistics
on the slower timescales of the system. For isotropic and
homogeneous turbulence, and for stratified turbulence, we
use an isotropic and randomly generated three dimen-
sional forcing acting at k = 1. For rotating turbulence we
use Taylor-Green forcing with F = f0(sinx cos y cos zx̂ −
cosx sin y cos zŷ). See [26,36] for more details of the sim-
ulations of rotating and of stratified turbulence.

Fig. 1. Experimental setup to generate water wave turbulence.
The tank of (200 × 80) cm2 is filled with water tainted with
titanium dioxide to make it opaque and allow projection of a
pattern on its surface. The two wavemakers driven by indepen-
dent servomotors (not shown) excite random perturbations of
the free surface. A high resolution projector projects a fringe
pattern of known characteristics (not shown in the scheme),
and a fast speed camera captures the pattern deformation.
The profilometry technique then allows for reconstruction of
the surface deformation with high temporal cadence and high
spatial resolution [16,17,18].

The dimensionless parameters that describe these sys-
tems are the Reynolds number Re = UrmsL/ν, where
Urms is the r.m.s. velocity and L the energy-containing
length scale, the Rossby number Ro = Urms/(fL) which
measures the relative strength of rotation, and the Froude
number Fr = Urms/(NL) which measures the relative
strength of stratification. The values of these dimension-
less parameters for the three simulations considered below
are shown in Table 1.

2.2 Experimental setup

The data to compute the spatio-temporal resolved spec-
trum of water wave turbulence stems from an experimen-
tal setup to study waves in the free surface of a liquid (see
Fig. 1). The setup consists of a (200× 80) cm2 tank filled
with water with depth at rest h0 = 5 cm. Waves are gen-
erated in the tank by two piston-type wave makers (20 cm
large and ≈ 1 cm immersed) independently driven by two
linear tubular servomotors. Two independent random sig-
nals with frequency range between 0 and 2.7 Hz and with
amplitude A are used to control the wavemakers. Three
experiments were performed, one with A = 1 cm, another
one with A = 2 cm, and a third one with A = 3 cm. Under
this set of conditions, and in the absence of wave break-
ing, waves should follow the linear dispersion relation of
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Fig. 2. Spatio-temporal spectrum E(k, ω) in a numerical sim-
ulation of isotropic and homogeneous turbulence. The solid
curve corresponds to ω = Urmsk. As a result of sweeping of
the small scale eddies by the large scale flow, most of the en-
ergy is concentrated in the region ω ≤ Urmsk.

gravity-capillary waves

ωW (k) =

√
tanh(h0k)

(
gk +

γ

ρ
k3
)
, (7)

where γ is the surface tension, and ρ the density of water.
The surface height deformation h(x, y, t) is obtained

with high temporal cadence and high spatial resolution
using a fringe projection profilometry technique [16,17].
Titanium dioxide is added to the water as dye, in order
to render the free surface light diffusive without changing
significatively its rheological properties [47] and be able to
project onto it a controlled pattern by means of a high-
resolution, high-contrast projector. A fast speed camera,
with a resolution of 1024×1024 px2 and inspecting an area
of (41.6× 41.6) cm2, is then used to capture deformations
of the pattern as the result of the surface deformation. The
size of the projected pixel, about 0.04 cm, sets the spatial
resolution. The temporal resolution is 1/F , where F is the
acquisition frequency (in our case F = 250 Hz). The pro-
filometry technique reconstructs the height of the surface
h(x, y, t) from the distortion in the patterns captured by
the camera.

2.3 Construction of the spatio-temporal spectrum

In principle, computation of the spatio-temporal spectrum
reduces to computing Fourier transforms of the space and
time resolved numerical or experimental data. In practice,
some provisions may be made to allow for efficient storage
and correct handling of the data.

First of all, both in numerical simulations and in ex-
periments, the acquisition frequency must be at least two
times larger than the frequency of the fastest waves one
wants to study, and the total time of acquisition should be
larger than the period of the slowest waves in the system,
and larger than the turnover time of the slowest eddies.

In numerical simulations storage constraints (both in
space as well as in I/O speed) make it difficult to store the
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E(k(ω))dk/dω

Fig. 3. Frequency spectrum E(ω) for the homogeneous and
isotropic turbulence simulation, calculated directly as E(ω) =∑
k E(k, ω) (dashed blue line). The solid (green) line is ob-

tained by transforming the spatial spectrum E(k) into a fre-
quency spectrum E(k(ω))dω/dk using the sweeping relation
ω = Urmsk. As sweeping is the dominant Eulerian time scale
in the system, one spectrum can be recovered from the other
with reasonable agreement of both spectra in the inertial range.

velocity fields at all points in space with high temporal
cadence (e.g., every time step, or every a very few time
steps), specially at high spatial resolutions. As a result,
we store the Fourier transform of the velocity field û(k, t)
with high temporal cadence, and for selected Fourier modes
k. In most cases it suffices to store all Fourier modes in
three planes (corresponding to the planes with kx = 0,
ky = 0, and kz = 0). This allows reconstruction of the
spatio-temporal energy spectrum in three planes E(kx =
0, ky, kz, ω), E(kx, ky = 0, kz, ω), and E(kx, ky = 0, kz, ω),
where, e.g., the first is computed from the spatial Fourier
modes of the velocity field in the plane with kx = 0 as

E(kx = 0, ky, kz, ω) =
1

2

∣∣∣∣∫ û(kx = 0, ky, kz, t)e
−iωtdt

∣∣∣∣2 .
(8)

Note that in all cases the computation results in a four
dimensional spectrum, or in multiple three dimensional
spectra that are better studied by plotting slices for con-
stant values of the wavenumber Cartesian components or
of the frequency. Furthermore, if the spectrum is isotropic
(in the absence of external forces) or axisymmetric (in the
rotating or stratified cases), symmetry considerations al-
low for reconstruction of the isotropic spectrum E(k, ω)
or of the axisymmetric spectrum E(k⊥, k‖, ω) from these
three spectra. (see, e.g., [48]).

When the data is not periodic (as is the case with
the spatial data in experiments, or with temporal data in
both experiments and in simulations) it is advisable to use
a window function to avoid introducing artifacts when the
Fourier transforms are performed, and to mitigate spec-
tral leakage. In the following, a flat top filter will be used
when computing the temporal Fourier transforms for all
the data coming from simulations. For the experimental
data, a Hanning window will be used in both space and
time. Furthermore, in experiments it is relatively easier to
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Fig. 4. Spatio-temporal energy spectrum E(kx = 0, ky, kz, ω)
from numerical simulations of rotating turbulence. Two slices
are shown for fixed values of ky. Top: ky = 0, and bottom: ky =
1. The dispersion relation of inertial waves, ωR(k), is shown
by the solid line. For small wavenumbers most of the energy
is concentrated around this dispersion relation. Inset: Ratio of
the energy in the vicinity of the modes satisfying the dispersion
relation, to the total energy in the same wavenumber.

obtain long time signals; this allows us to perform a Welch
average in order to reduce noise in the frequency spectra.

3 Results

3.1 Homogeneous and isotropic turbulence

In the absence of restitutive forces, an incompressible fluid
cannot sustain waves. Isotropic and homogeneous turbu-
lence can then be characterised by two timescales which
follow from the Navier-Stokes equation: the eddy turnover
time at the scale `, given by τ` = `/u` where u` is the char-
acteristic velocity of an eddy of size `, and the sweeping
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E
(ω

)

2Ω

ETOT =
∑

ky,kz
E(ky, kz, ω)

Ev =
∑

ky
E(ky, kz = 0, ω)

Ew =
∑

kz,ky>0E(ky, kz, ω)

Fig. 5. Frequency spectra of kinetic energy in the simulation
of rotating turbulence. Here Ev(ω) (dashed green line) has
only the contribution from the vortical modes, while Ew(ω)
(dash-dotted red line) has the contribution of the so-called
“wave” modes (i.e., modes with kz > 0). The total frequency
spectrum ETOT (solid blue line) is obtained by summing the
spatio-temporal spectrum over all wavenumbers. The largest
peak in Ew corresponds to a frequency 2Ω, indicated by the
arrow. The contribution of the eddies dominate the smaller
frequencies with ω . 4, where waves are too slow and the two-
dimensional vortices are strong. For frequencies larger than 2Ω
modes cannot be described as inertial waves and eddies must
dominate all spectra.

time, given by T = `/Urms, which describes the sweep-
ing of vortices of size ` by the flow at the largest scale.
The former is related to the local interaction of modes in
Fourier space, i.e., of eddies of similar sizes, while the lat-
ter deals with the non-local interaction in Fourier space
resulting from the advection of small eddies by the energy
containing ones. It has been theorised [49,50] and later
shown [51,52] that the temporal decorrelation of Fourier
modes of the Eulerian velocity field in homogeneous and
isotropic turbulence is determined by this sweeping. In nu-
merical simulations sweeping is often quantified by com-
puting the decorrelation time of individual Fourier modes,
using two-time correlation functions. The spatio-temporal
spectrum of isotropic and homogeneous turbulence has not
been considered so far to quantify its effect.

Figure 2 shows the spatio-temporal energy spectrum
computed using the velocity field stemming from the simu-
lation of isotropic and homogeneous turbulence (see Table
1). The thick red line indicates the relation ω = Urmsk,
corresponding to the frequency of sweeping by a flow with
constant velocity Urms. Sweeping appears in the spectrum
as the concentration of energy along and below this line.
Structures of size ` ∼ 1/k are advected by the large-scale
velocity which roughly fluctuates between 0 and ≈ Urms.
In other words, at a given wavenumber k, all frequencies
are excited up to ω = Urmsk, and not just the frequency
corresponding to the eddy turnover time at that wavenum-
ber, ωk ∼ 1/τ`. Note that as was pointed out in [49,50],
the dominance of the sweeping time as the Eulerian decor-
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relation time, over the eddy turnover time, is needed for
the frequency spectrum of isotropic and homogeneous tur-
bulence to be E(ω) ∼ ω−5/3, provided the wavenumber
spectrum is Komogorov’s E(k) ∼ k−5/3.

Indeed, the spatio-temporal spectrum in Fig. 2 allows
direct computation of both spectra, E(ω) and E(k), with-
out relying on extra assumptions such as the Taylor hy-
pothesis. We can actually put this fact to good use to
further verify that the dominant timescale in the system
is the one given by the sweeping mechanism. In Fig. 3 we
show E(ω) computed as E(ω) =

∑
k E(k, ω) (i.e., comput-

ing it directly from the spatio-temporal spectrum), com-
pared with the spectrum E(ω(k))dω/dk obtained from the
spatial spectrum E(k) using Taylor (or sweeping) hypoth-
esis (i.e., from a change of variables using the relation
ω = Urmsk). The good agreement between the inertial
ranges of the two spectra confirms that sweeping is the
dominant time scale for the Eulerian velocity. Note also
the presence of the well known bottleneck in the dissipa-
tive range of the spatial spectrum.

3.2 Rotating turbulence

Rotation breaks down the isotropy of the flow, as the axis
of rotation establishes a preferred direction. The Coriolis
term also acts as a restitutive force that allows the fluid to
sustain inertial waves. For strong enough rotation, these
waves are much faster than the eddies, at least for a subset
of all Fourier modes corresponding to modes with k‖ 6= 0
(as for k‖ = 0 the dispersion relation of the waves van-
ishes), and to modes with k < kΩ (where kΩ is the Ze-
man wavenumber for which the eddies become as fast as
the waves and the flow recovers isotropy [53]). Non-linear
resonant interactions between triads of these waves then
become the preferred energy transfer mechanism [54,7,8].
Given three modes with wave vectors k, p, and q, they
can interact and transfer energy if

k + p + q = 0, (9)

ωR(k) + ωR(p) + ωR(q) = 0. (10)

The last relation is the resonant condition. These relations
dictate that energy in a rotating flow is transferred prefer-
entially towards modes with smaller k‖ [8] (as modes with
k‖ = 0 trivially satisfy the resonant condition), resulting
in a growth of the anisotropy and the quasi-bidimension-
alization of the flow.

Multiple wave turbulence theories have been proposed
for rotating turbulence based on these conditions (see, e.g.,
[7,9,55]). However, the theories often assume the rapidly
rotating limit in which waves overshadow the eddies com-
pletely. Thus, the slow or vortical modes with k‖ = 0
and the modes with k ≈ kΩ cannot be properly described
within the framework of these theories. Moreover, in simu-
lations and experiments the discrimination between waves
and eddies often reduces to considering modes with k‖ ≈ 0
(for which ωR(k) ≈ 0) as eddies, and all other modes
as waves. Computation of the spatio-temporal spectrum,

which has been recently performed for numerical simu-
lations [26] and for experimental data [34], allows for a
proper identification of the waves and a quantification of
their relevance at different scales.

The spatio-temporal spectrum of the kinetic energy
E(kx, ky, kz, ω) for the simulation of rotating turbulence
(see Table 1) is shown in Fig. 4, for kx = 0 and for two
fixed values of ky (ky = 0 and ky = 1). As mentioned
in Sec. 2.3, compared with results previously shown in
[26], the spectrum in Fig. 4 was computed using a flat
top window to reduce spectral leakage. Note that unlike
the spectrum in Fig. 2, sweeping effects cannot be ob-
served in these spectra. Instead, energy is accumulated
near modes satisfying the dispersion relation of inertial
waves. In Fig. 4 we also show the ratio of the energy in
these modes to the total energy in the same wavenumber

F (kz) =
E(kx = 0, ky = 0, kz, ω = ωR)∫
E(kx = 0, ky = 0, kz, ω)dω

(11)

(in practice, the energy of the modes satisfying the dis-
persion relation is computed with a finite width between
ωR ± 3). For wavenumbers up to kz ≈ 30, modes compat-
ible with waves concentrate a large fraction of the energy.
However, for kz > 30 the fraction of the energy in the
waves drops quickly to less than ≈ 10%. Interestingly, the
wavenumber kΩ for which waves become negligible and
isotropy is recovered is much larger in this simulation,
kΩ ≈ 460 (see [26]). In fact, it can be shown that waves
become subdominant in the spatio-temporal spectrum as
soon as the sweeping time becomes of the same order as
the wave period [26]. Thus, at moderate Rossby numbers,
eddies (although strongly anisotropic) are relevant for the
energetics of inertial-range rotating turbulence and cannot
be neglected.

To further quantify the contribution of vortical modes
and of eddies to the energy spectrum, we can estimate a
frequency spectrum of kinetic energy from the slices of
the E(k, ω) spectrum. As an example, from the three-
dimensional spectrum E(kx = 0, ky, kz, ω), we can esti-
mate a “total” frequency spectrum as

ETOT (ω) =
∑
ky,kz

E(kx = 0, ky, kz, ω), (12)

a “vortical” spectrum that has only contributions from
the slow or vortical modes (i.e., the modes with kz = 0,
such that the wave frequency is ωR = 0),

Ev(ω) =
∑
ky

E(kx = 0, ky, kz = 0, ω), (13)

and finally, the frequency spectrum of all the modes which
are often associated with fast or wave modes in wave tur-
bulence theories [12,13,14]

Ew(ω) =
∑

ky,kz>0

E(kx = 0, ky, kz, ω)

= ETOT (ω)− Ev(ω). (14)
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Fig. 6. Spatio-temporal spectrum of the potential energy,
Eθ(kx = 0, ky, kz = 10) in the simulation of stratified turbu-
lence. The dispersion relation of internal gravity waves, ωS(k),
is indicated by the solid line. Also shown are two Doppler-
shifted dispersion relations, corresponding to the horizontal
r.m.s. velocities Uy = ±0.4, and indicated by the dashed and
dash-dotted lines. Energy is not concentrated around the lin-
ear dispersion relation, instead it is spread in the fan between
these two Doppler-shifted branches. Moreover, the distribution
of energy is not uniform as waves with ω < Uyky are absorbed
by the mean flow in Critical Layers (indicated by the shaded
area labeled “CL”). Note the almost complete lack of energy
in this region. Inset: fraction of the energy contained within
the two Doppler shifted branches.

Note that Ew(ω), although often associated with the spec-
trum of the waves, contains contributions from modes in
Fig. 4 which do not satisfy the dispersion relation ωR(k).

The resulting spectra are shown in Fig. 5. The spec-
trum of vortical modes Ev gives the largest contribution
to ETOT for frequencies ω . 4, where the strong two-
dimensional modes carry most of the energy. For 4 <
ω ≤ 2Ω, Ew becomes dominant and wave modes give the
largest contribution to the energy. However, for ω > 2Ω
there are no inertial waves (as the frequency of inertial
waves has an upper bound of 2Ω), and all modes that
contribute to the spectra must be associated with vorti-
cal motions (even for Ew). All the spectra in this range
then show the same behavior. The coexistence of multiple
timescales in this system does not allow a simple transfor-
mation of the wavenumber spectrum into the frequency
spectrum, as was done in Sec. 3.1 for isotropic and homo-
geneous turbulence.

3.3 Stratified turbulence

Stratified turbulence shares similarities with the rotating
case, as the buoyancy force gives rise to internal gravity
waves, which in turn create anisotropy as resonant non-
linear interactions transfer energy preferentially to modes

100 101 102
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10−3
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(ω

)

N

ETOT =
∑

ky,kz
E(ky, kz, ω)

Ev =
∑

kz
E(ky = 0, kz, ω)

Ew =
∑

ky>0,kz
E(ky, kz, ω)

Fig. 7. Frequency spectra of potential energy in the simula-
tion of stratified turbulence. In this case Ev (dash-dotte red
line) has the contribution of vortical modes, Ew (dashed green
line) has the contributions of wave modes, and ETOT (solid
blue line) has the sum of the spatio-temporal spectrum over
all wavenumbers. Note Ev and ETOT coincide at almost all
wavenumbers, indicating a dominance of wave modes. A peak
at frequency ω = N is indicated by the arrow, although in this
case frequencies larger than N can still be associated with wave
motions per virtue of the Doppler shift observed in Fig. 6.

with k⊥ ≈ 0. As a result, while rotating turbulence devel-
ops columnar structures in the vertical direction with the
fastest waves propagating in that direction, stratified tur-
bulence generates pancake-like horizontal structures with
the fastest waves propagating horizontally. A related and
well known feature of stratified turbulence is the gener-
ation of large-scale Vertically Sheared Horizontal Winds
(VSHW) [12]. However, unlike the rotating case where in-
verse cascades have been observed for moderate Rossby
numbers [14,56], generation of VSHW must have a differ-
ent origin as inverse cascades are not possible in strati-
fied flows without the presence of rotation [57,58]. In the
presence of these winds, waves can suffer Doppler shift
[59]. Also, when in a horizontal layer the phase velocity
of a travelling wave matches the velocity of the horizontal
wind in that layer, the wave is destroyed and its energy
and momentum can be transferred to the mean flow. This
phenomenon, known as critical layer absorption [59,60],
can be responsible for the generation of the VSHW in
stratified turbulence as shown in [36].

In Fig. 6 we show the spatio-temporal spectrum of the
potential energy, Eθ(kx = 0, ky, kz = 10), for the simula-
tion of stratified turbulence. As in the previous section, we
use a flat top filter in time to compute the spectrum and
reduce spectral leakage. The dispersion relation of internal
gravity waves, ωS(k), and two Doppler shifted branches,
ωS(k) + Uyky and ωS(k) − Uyky are also shown as a ref-
erence (where Uy = 0.4 is the horizontal r.m.s. velocity
measured from the flow). Unlike the rotating case, energy
is not concentrated in a narrow region around the lin-
ear dispersion relation. Instead, energy is spread within
the two Doppler-shifted branches. This is the result of the
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top to bottom, the amplitude of the forcing is respectively 1 cm,
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Fig. 9. Frequency spectrum E(ω) from the water waves exper-
iment, calculated directly as

∑
k E(k, ω)) (dashed blue line),

and by changing variables in the wavenumber spectrum using
the dispersion relation ω = ωW (k) (solid green line). As waves
provide the only relevant timescale in this system, the main
features from one spectrum can be recovered from the other.

presence of VSHW in the flow. In each horizontal layer the
horizontal velocity takes values between ≈ ±Uy, and the
frequency of the waves is shifted accordingly. Moreover,
the distribution of energy in the fan defined by the two
Doppler shifted dispersion relations is not uniform, as the
region with ω < Uyky has almost negligible energy. This
is the result of critical layer absorption: for ω < Uyky,
there are layers such that the phase velocity can match
the horizontal wind, and waves are then absorbed.

Although there is more complexity and a larger vari-
ety of phenomena involving waves in this flow than in the
rotating case, modes that can be associated with waves
concentrate more energy in a wider range of scales than
in the rotating flow discussed in the previous section. To
illustrate this, Fig. 6 also shows the ratio of the poten-
tial energy in the fan between the two dispersion relations
ωS(k) ± Uyky, to the total potential energy at the same
wavenumber. Interestingly, and except at the largest scales
(smallest wavenumbers), around 70% of the energy corre-
sponds to Doppler shifted waves.

Following the same procedure as in the case of rotat-
ing turbulence, we can calculate frequency spectra from
the spatio-temporal spectrum. Note however that vortical
(or slow) modes in the stratified case are associated with
modes with k⊥ = 0, while wave (or fast) modes now are
associated with modes with k⊥ > 0. The resulting spec-
tra are shown in Fig. 7. Unlike the rotating case shown in
Fig. 5, now most of the energy seems to be in the Ew(ω)
spectrum. Moreover, frequencies ω > 2N now can still be
associated with wave motions per virtue of the Doppler
shift observed in Fig. 6.

3.4 Water waves

Water waves are the archetypical wave turbulent system,
and have been studied by such theories ever since their
inception (see an introduction in [10]). As a result, deter-
mining whether the energy of the system is indeed con-
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centrated in wave modes, and what is the precise spec-
trum of the waves, were always major concerns for ex-
perimentalists (see, e.g., [16,17] and references therein).
New experimental techniques, such as those described in
the introduction, allowed detailed studies of free-surface
deformation with spatial and temporal resolution, thus
allowing direct computation of the wave energy spectrum
without a priori knowledge of the dispersion relation of
the system.

In Fig. 8 we show the spatio-temporal power spec-
trum of the fluctuations of the surface height deforma-
tion h(x, y, t), as obtained from the experiment using the
EMDP technique. This spectrum is proportional to the
spectrum of the potential energy, and under certain condi-
tions, proportional to the spectrum of the so-called wave
action in wave turbulence theories [10]. Three cases are
shown under the three different forcings described above,
i.e., for displacements of the wave makers respectively of
A = 1 cm, 2 cm, and 3 cm.

In all cases shown in Fig. 8 there is a concentration of
energy around modes that satisfy the dispersion relation
of gravity-capillary surface waves, ωW (k), indicated in the
figure by the solid line. There is also a trace of the forcing
for ω = 2π × 2.7 s−1 ≈ 17 s−1, with increasing power as
the amplitude of the forcing is increased. Also, as the forc-
ing increases, new modes that do not satisfy any of these
relations are excited.

Indeed, for larger forcing amplitudes two features can
be identified. On the one hand, the width (in terms of the
wavenumber) of the dispersion relation ωW (k) decreases:
while for forcing amplitude of 1 cm gravity-capillary waves
can be identified up to k ≈ 4 cm−1, for forcing ampli-
tude of 3 cm the dispersion relation extends up to k ≈ 3
cm−1. On the other hand, new wave branches are excited.
These correspond to bound waves [61,62]. Bound waves
are small amplitude waves that travel in front of (i.e., they
have the same phase velocity as) a larger amplitude par-
ent wave. They can be generated by the breaking of the
longer waves, by nonlinear distortion of the parent wave,
or be parasitic capillaries travelling on the front of the
parent wave. As they travel on the front of the long wave,
they are phase-locked, and as they have the same phase
velocity, their dispersion relation is given by [61,62]

ΩN (Nk) = NωW (k),

where N is the order of the bounded waves. The dotted
and dash-dotted lines in Fig. 8 indicate the dispersion re-
lation of bound waves for N = 2 and 3. The shortening of
the width of the dispersion relation ωW (k), together with
the excitation of higher order bound waves as the forcing
amplitude is increased, indicates that with larger ampli-
tudes the energy transfer mechanism shifts from a cascade
to gravity-capillary waves with smaller wavenumbers, to a
transfer of energy towards higher-order bound waves with
smaller frequencies.

For one of the experiments (the case with displace-
ment of the wavemakers of 1 cm), we show in Fig. 9 the
frequency spectrum E(ω) calculated as

∑
k E(k, ω), and

the spectrum computed from the spatial spectrum E(k)

using the dispersion relation to change variables to obtain
E(k(ω))dk/dω. Although the agreement is not as good
as in the case of isotropic and homogeneous turbulence
(Fig. 3), the main features of one spectrum can be recov-
ered from the other. This suggests that the dominant time
scale in the system is given by the period of the waves, un-
like the previous cases where multiple time scales could be
identified at a given wavenumber.

4 Conclusions

We presented four examples of turbulent flows where the
spatio-temporal spectrum can be used to identify key flow
features and reveal aspects of their dynamics. The ex-
amples considered are numerical simulations of isotropic
and homogeneous turbulence, of rotating turbulence, and
of stratified turbulence, and laboratory experiments of
gravity-capillary water wave turbulence. Two of these cases
were reported extensively in [26,36], while the results for
the cases of isotropic and homogeneous turbulence and of
water wave turbulence are new.

In all these cases, the spatio-temporal spectrum allows
quantification of the energy in wave motions, in bound
waves, and in eddies, as well as identification of physi-
cal effects such as sweeping, Doppler shift, and critical
layer absorption. For isotropic and homogeneous turbu-
lence, the dominant Eulerian timescale is sweeping, as
expected from previous studies considering decorrelation
times [50,51,52]. For rotating turbulence, the dominant
timescale at intermediate scales is the period of inertial
waves, although the energy in inertial waves drops to less
than ≈ 10% for scales which are still much larger than the
Zeman scale for which eddies are expected to be as im-
portant as the waves. The case of stratified turbulence is
much more complex, with the spatio-temporal spectrum
showing Doppler shift of internal gravity waves by the hor-
izontal winds, and absorption of waves in critical layers
where the wave speed matches the horizontal wind speed.
Finally, in the laboratory experiments of water wave tur-
bulence, the spectrum shows evidence of the presence of
bound waves, as reported before in [61,62]. A study vary-
ing the forcing indicates that as the forcing amplitude is
increased, the energy transfer mechanism shifts from a
cascade to gravity-capillary waves with smaller wavenum-
bers, to a transfer of energy towards higher-order bound
waves with smaller frequencies.
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