
 

Mycobacterium tuberculosis multidrug resistant strain M induces IL-17+IFNγγγγ¯ 

CD4+ T cell expansion through an IL-23 and TGF-β-dependent mechanism in 

patients with MDR-TB tuberculosis 

Running title: Mechanisms of Th17 cell expansion in tuberculosis  

 

Juan Ignacio Basile1*, Denise Kviatcovsky1*, María Mercedes Romero1, Luciana 

Balboa1, Johana Monteserin2, Viviana Ritacco2, Beatriz Lopez2, Carmen Sabio y 

García1, Ana García3, Marisa Vescovo3, Pablo González Montaner3, Domingo 

Palmero3,  María del Carmen Sasiain1, Silvia de la Barrera1. 

1 Instituto de Medicina Experimental-CONICET-Academia Nacional de Medicina, 

Buenos Aires, Argentina; 2 Instituto Nacional de Enfermedades Infecciosas, ANLIS 

Carlos G. Malbrán, Buenos Aires, Argentina; 3 Instituto de Tisioneumonología, Hospital 

Muñiz, Buenos Aires, Argentina. 

*: both authors contributed equally to this work. 

 

Key words: Th17 cells, cytokines, pattern recognition receptors, Mycobacterium 

tuberculosis, multidrug-resistance 

Correspondence: Silvia de la Barrera, IMEX-CONICET-Academia Nacional de 

Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina.  

Email: (sdelab@hematologia.anm.edu.ar).  

Abbreviations: AFB, acid fast bacilli; APC, antigen presenting cells; BCG, Bacillus 

Calmette-Guerin; DC, dendritic cells; HD, healthy donors; IFNγ, Interferon-gamma; IL, 

Interleukin; LAM: Latin-American-Mediterranean; LAP, latency-associated protein; 

MDR-TB: multidrug-resistant tuberculosis; MR, mannose receptor; PBMC, peripheral 

blood mononuclear cells; PPD, purified protein derivative; TB, tuberculosis; Th, T 

helper; TLR, toll-like receptor; TGF-β, Tumor growth factor-beta. 

This article has been accepted for publication and undergone full peer review but has not been
through the copyediting, typesetting, pagination and proofreading process which may lead to
differences between this version and the Version of Record. Please cite this article as an
‘Accepted Article’, doi: 10.1111/cei.12873

This article is protected by copyright. All rights reserved.



 2

ABSTRACT   

We have previously reported that T cells from patients with multidrug-resistant 

tuberculosis (MDR-TB) express high levels of IL-17 in response to the MDR strain M 

(Haarlem family) of Mycobacterium tuberculosis (M.tuberculosis). Herein, we explore 

the pathways involved in the induction of h17 cells in MDR-TB patients and healthy 

tuberculin reactors (PPD+HD) by the M strain and the laboratory strain H37Rv. Our 

results show that IL-1β and IL-6 are crucial for the H37Rv and M-induced expansion of 

IL-17+IFNγ¯ and IL-17+IFNγ+ in CD4+ T cells from MDR-TB and PPD+HD. IL-23 plays an 

ambiguous role in Th1 and Th17 profiles: alone, IL-23 is responsible for M.tuberculosis-

induced IL-17 and IFNγ expression in CD4+ T cells from PPD+HD whereas, together 

with TGF-β, it promotes IL-17+IFNγ¯ expansion in MDR-TB. In fact, spontaneous and 

M.tuberculosis-induced TGF-β secretion is increased in cells from MDR-TB being the 

M strain the highest inducer. Interestingly, TLR-2 signaling mediates the expansion of 

IL-17+IFNγ¯ cells and the enhancement of latency-associated protein (LAP) expression 

in CD14+ and CD4+ T cells from MDR-TB, which suggests that M strain promotes IL-

17+IFNγ¯ T cells through a strong TLR-2-dependent TGF-β production by antigen-

presenting cells and CD4+ T cells. Finally, CD4+ T cells from MDR-TB patients infected 

with MDR Haarlem strains show higher IL-17+IFNγ¯ and lower IL-17+IFNγ+ levels 

than LAM-infected patients. The present findings deepen our understanding on the role 

of IL-17 in MDR-TB and highlight the influence of the genetic background of the 

infecting M.tuberculosis strain on the ex vivo Th17 response. 
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INTRODUCTION  

Interleukin-17 (IL-17) is a proinflammatory cytokine secreted by hematopoietic 

cells including representatives of the adaptive (e.g. CD4+ and CD8+ αβ T cells) and the 

innate (e.g. NK, NKT and γδT cells) immune responses [1, 2]. IL-17 plays an important 

role in chronic inflammatory disorders as well as in host immune responses against 

extracellular and intracellular pathogens [2-4]. Th17 cells were described to be 

protective by accelerating the recruitment of Th1 cells to the site of infection in 

M.tuberculosis-vaccinated mice [5], contributing to the formation of the granuloma, and 

reducing the bacterial burden in BCG-infected mice [6]. Nevertheless, excessive 

production of IL-17 in response to repeated exposure to mycobacterial antigens has 

been associated with extensive lung pathology [7].  

Human IL-17-secreting T cells can produce not only the hallmark interleukins IL-

17A and IL-17F but also TNF-α, IL-22, IL-21, IL-4 and IL-10, according to the cytokine 

environment [8]. Human Th17 cells produce IFNγ in IL-12-enriched micro-

environments. IL-17/IFNγ double-positive CD4+ T cells, named Th17-Th1 cells, were 

found to be expanded in human inflamed tissues [9], peripheral blood T cells, and T-

cell clones expanded from healthy donors (HD) [10, 11]. On the other hand, in patients 

with chronic bronchial asthma and other allergic disorders, cells derived from memory 

Th17 cells express IL-4 in response to an IL-4 enriched environment [12]. Also, Th17 

cells can produce IL-10 in response to Staphylococcus aureus [13], supporting the 

concept of Th17 heterogeneity and plasticity under different microenvironments. 

Regarding M.tuberculosis–induced Th17 cells, an increase in IL-17+IFNγ+ CD4+ 

memory T cells was observed in response to H37Rv strain in non-BCG vaccinated HD 

[14]. Besides, patients with active pulmonary TB showed to promote a high Th17 

response to cell lysates of H37Rv strain, which was mainly dependent on IFNγ+IL-17+ 

CD4+ T lymphocytes [15].  
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In the early 1990s, two major MDR-TB outbreaks were detected in two 

overpopulated urban areas of Argentina (Buenos Aires and Rosario cities). 

Epidemiological, bacteriological, and genotyping data allowed the identification of the 

respective outbreak strains named M and Ra which belong to the Haarlem (H2) and 

the Latin American-Mediterranean (LAM3) families of M. tuberculosis, respectively. 

Although these strains have been isolated from human immunodeficiency virus (HIV)-

infected patients [16], they soon it disseminated to immunocompetent individuals and 

managed to perpetuate in the community. In a systematic countrywide survey 

performed in 2003-2009, M and Ra strains still accounted for 29% and 11% of all MDR-

TB cases in the period [17] .   

We have previously demonstrated that M strain induced an altered T-helper 

1/T-helper 2 (Th1/Th2) profile in T cells from healthy tuberculin reactors (PPD+HD) and 

from TB patients, being M strain a weaker inducer of IFNγ and CD8-dependent 

cytotoxic activity [18]. In contrast, an expansion of CD4+ and CD8+ IL-17-producing T 

cells was observed in MDR-TB patients in response to M.tuberculosis strains. This 

increase was associated to a differential expansion of IL-17+IFNγ¯ within the CD4+ T 

cell subset and this effect was more evident when M strain was used as antigen [19]. In 

the present work we explore the underlying mechanisms involved in IL-17+IFNγ¯ and IL-

17+IFNγ+ memory T cell expansion taking into account the genotype of the infecting 

strains.  
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METHODS 

 

Ethics Statement: This work was carried out in accordance with the revised version of 

the Declaration of Helsinki (2013) of the World Medical Association, and was reviewed 

and approved by the following Bioethics Committees, Academia Nacional de Medicina 

(Decision Number 23-03-2010), Hospital Muñiz (DN 131-07, Project Number 145) and 

the Teaching and Research Committee of the Buenos Aires City government (DN 1217 

2010). 

 

Patients: Blood samples were obtained from MDR-TB patients hospitalized in the 

Phthisiopneumonology Institute University of Buenos Aires, placed in grounds of F. J. 

Muñiz Hospital, Buenos Aires, Argentina. Patient informed consent was obtained 

according to the guidelines of the ethics committee of the F. J. Muñiz Hospital. All 

patients were diagnosed by the presence of recent clinical respiratory symptoms, 

abnormal chest radiography, a sputum smear test positive for acid-fast bacilli (AFB), 

and the identification of M.tuberculosis in culture. Exclusion criteria included a positive 

test for HIV and the presence of concurrent infectious diseases or noninfectious 

conditions (cancer, diabetes, or steroid therapy). Sputum smear examination and 

mycobacterial culture were performed in agreement with standard procedures. 

Susceptibility to isoniazid, rifampicin, ethambutol, and streptomycin was determined 

conforming to World Health Organization standards. Susceptibility to kanamycin, p-

aminosalicylic acid, and cycloserine was tested following Canetti, Rist, and Grosset 

method, whereas the pyrazinamidase test was used to infer pyrazinamide susceptibility 

[20]. Available MDR M.tuberculosis isolates were genotyped by IS6110 DNA 

fingerprinting and spoligotyping, using standardized protocols [21, 22]. A total of 31 

MDR-TB patients were included (17 men and 14 women; median age [25th to 75th 

percentiles] 32 [23 to 55] years). Percentages of different M.tuberculosis lineages 

Page 39 of 80 Clinical Experimental Immunology

This article is protected by copyright. All rights reserved.



 6

among MDR-TB patients in this study were as follows: LAM, 43%; Haarlem, 50% (80% 

of whom were infected with M strain); T, 4%; and other 3%. All MDR-TB patients 

showed a radiologically advanced pulmonary disease and were under specific 

treatment according to the infecting strain’s drug susceptibility at the time of the study 

(Supplementary Table 1). Twenty one patients were sputum smear positive:  median 

number of AFB/field [25th to 75th percentiles] for patients infected with Haarlem 

strains: 3 (0.4-10), and for those infected with LAM strains: 2.5 [0.3 to 10]. Sixteen BGC 

vaccinated healthy volunteers donors were recruited as controls from laboratory 

personnel of the Academia Nacional de Medicina upon written informed consent as 

approved by the research ethics board of the institution. They were classified according 

to their reactivity to purified protein derivative (PPD) and interferon-γ release assays 

(QuantiFERON-TB Gold In-Tube assay, Qiagen, Valencia, CA, USA) in latently TB 

infected (PPD+HD, PPD+IGRA+, 4 men and 4 women, median age [25th-75th 

percentiles] 30 [27-56] years) and in healthy donors (PPD¯HD, PPD¯IGRA¯, 4 men and 

4 women, 32 [25-55] years. 

 

Peripheral blood mononuclear cell: PBMC from heparinized blood were isolated by 

Ficoll-Triyosom gradient centrifugation and suspended in RPMI 1640 (HyClone; 

Thermo Scientific, Waltham, MA USA) containing 100 U/ml penicillin, 100 µg/ml 

streptomycin, and 10% heat-inactivated fetal calf serum (Gibco® , Thermo Scientific), 

hereafter identified as complete medium.  

 

Antigens: Clinical isolates representative of the MDR outbreak M.tuberculosis M strain 

and the laboratory M.tuberculosis strain H37Rv were grown in Middlebrook 7H9 broth 

(Difco Laboratories, Detroit, MI, USA) at 37°C in 5% CO2. Mycobacteria were 

harvested in the log phase, washed three times, and suspended in pyrogen-free PBS. 
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Bacteria were inactivated by gamma-irradiation, suspended in PBS at a 600 nm optical 

density of 1.0 (≈108 bacteria/ml), and stored at -20°C until use.  

 

PBMC cultures: PBMC (2 x106 cells/ml) were cultured during 48 h in polystyrene 

tubes (Falcon, BD Bioscience, Franklin Lakes, NJ, USA) at 37°C in a humidified 5% 

CO2 atmosphere in complete medium alone or in the presence of gamma-irradiated 

bacilli of M or H37Rv strains at a 2:1 M.tuberculosis to PBMC ratio. For blocking 

experiments, monoclonal antibodies directed against a) cytokines: IL-23p19 (10 µg/ml, 

affinity purified polyclonal antibody; immunogen: E.coli-derived rhIL-23p19, goat IgG, 

R&D Systems, Minneapolis, MN, USA), IL-1β (10 µg/ml, clone AS10, IgG1,k, mouse 

IgG1), and IL-6 (10 µg/ml, clone MQ2-13A5, rat IgG1,κ) (both from BD Bioscience) or 

TGF-β (10 µg/ml, clone 500-M66, Mouse IgG1,κ, Peprotech Inc. Rocky Hill,  NJ, USA), 

b) pattern recognition receptors: TLR-2 (10 µg/ml, clone TL2.1, Mouse IgG2a,κ κ), 

TLR-4 (10 µg/ml, clone HTA, mouse IgG2a,κ) and mannose receptor (10 µg/ml, clone 

15-2, Mouse IgG1, κ) (all three from Biolegend Inc, San Diego, CA, USA), Dectin-1 (10 

µg/ml, clone 259931, mouse IgG2B, R&D Systems) and CD14 (10 µg/ml, clone M5E2, 

Mouse IgG2a, κ, Biolegend) or c) the corresponding isotype-matched antibodies 

(10µg/ml) were added at the onset of the PBMC cultures in order to determine the role 

of each cytokine in M.tuberculosis-induced Th17 immune responses. In some assays, 

PBMC from PPD+HD were cultured for 48 h alone or with M.tuberculosis strains in the 

presence or not of recombinant IL-23 (1 ng/ml, Biolegend),  recombinant TGF-β (0.5-5 

ng/ml, Prepotech, Rocky Hill, NJ, USA) or IL-23 plus TGF-β while PBMC from MDR-TB 

patients were cultured for 48 h with the strains in the presence or not of anti-IL-23p19, 

anti-TGF-β or anti-IL-23 plus anti-TGFβ neutralizing antibodies (10 µg/ml for both 

antibodies). Afterwards, cells were tested for active-caspase-3, IFNγ and IL-17 
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expression by flow cytometry and supernatants were collected and stored at -70ºC for 

subsequent IL-17 and TGF-β detection. 

 

Immunofluorescence analysis: 

Surface expression: Surface CD25 and latency associated protein (LAP) expression 

was determined on 48 h-cultured PBMC by staining cells with FITC or APC conjugated 

anti-CD4 and PE- or PerCP/Cy5- anti-CD25 (all from BD Bioscience) and PerCP/Cy5- 

anti-LAP (TGF-β1) monoclonal antibodies (Biolegend Inc).  

Intracellular cytokine and active-caspase-3 expression: Intracellular IL-17, IL-1β, 

IL-23 and IFNγ expression was determined in PBMC cultures stimulated with 

M.tuberculosis strains after 24h or in 48 h cultured PBMC (for monocytes and 

lymphocyte staining respectively). Briefly, Brefeldin A (5 µg/ml; Sigma Chemical Co., 

St. Louis, MO, USA) was added 4h before finishing the culture to block cytokine 

secretion, and cells were surface stained with the following anti-human antibodies: PE-

Cy5- or FITC anti-CD4 (BD Bioscience) or PerCP/Cy5.5 anti-human CD14 (Biolegend 

Inc); then fixed with 0.5% paraformaldehyde and permeabilized with fluorescence-

activated cell sorter permeabilizing solution 2 (BD Bioscience) before PE- anti-IL-17 

(RD), PE- anti-IL-1β (eBioscience Inc., San Diego, CA, USA), PE- anti-IL-23 p19 (R&D 

Systems), FITC- or APC-anti-IFN-γ (Biolegend Inc.), FITC-anti- active-caspase-3 (BD 

Bioscience) or the corresponding isotype control antibody was added. In other 

experiments, surface stained CD4+CD25+LAP+ cells were tested for IL-17 and Foxp3 

expression by employing a FITC-anti-human Foxp3 staining set (eBioscience Inc.) 

according to the manufacturer’s instructions. Stained cells were analyzed by flow 

cytometry. Eighty thousand events were acquired for each cell preparation, using a 

FACSCan flow cytometer (BD Bioscience) with CellQuest software acquisition. FCS 

Express software (De Novo Software, Los Angeles, CA, USA) was used for analysis. 
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Lymphocyte or monocyte/macrophage gates were set according to forward and side-

scatter parameters, excluding cell debris and apoptotic ones. The percentage of 

positive cells in lymphocytes and macrophages gates was determined and then the 

number of positive cells within 1 x 106 PBMC (n) was calculated for each individual on 

the basis of the percentage and absolute number of CD4+ and CD14+ cells. As 

previously shown [18] , MDR-TB patients showed lower levels of CD4+ cells than 

PPD+HD.  

Results were expressed as a) number of positive cells/1 x 106 PBMC (n) or b) % of 

caspase-3 cells within the IL-17+IFNγ¯, IL-17+IFNγ+ and IL-17¯IFNγ+ CD4+ cells subsets. 

 

Cytokine assays: IL-17 and TGF-β production in 48h-PBMC cultures supernatants 

was assessed using commercial enzyme-linked immunosorbent assay (ELISA) kits 

according to the manufacturer’s instructions: IL-17 (sensitivity 4 pg/ml, range 4–500 

pg/ml), TGF-β (sensitivity 8 pg/ml, range 8-1000 pg/ml) (both from eBioscience Inc.). 

 

Statistical analysis: Data in tables were expressed as medians and 25th to 75th 

percentiles while in graphics were depicted as boxes representing median values (line) 

and 25th to 75th percentiles and error bars indicating maximum and minimum values. 

Data analysis was performed using the following One way Anova tests: a) 

nonparametric Kruskal-Wallis test followed by Dunn's Multiple Comparison Test to 

compare MDR-TB patients and PPD+HD responses; b) non-parametric Friedman test 

followed by Dunn's Multiple Comparison Test to compare responses to different 

treatments within each group. All statistical analyses were two-sided, and the 

significance level adopted for p values was <0.05. The analysis was performed using 

the statistical software SPSS 15.0 for Windows (SPSS Inc., Chicago, IL, USA) and 

Graphpad Prism 5.0 (Graphpad Software Inc., San Diego, CA, USA).  
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RESULTS  

 
 

IL-23, TGF-ββββ, IL-6 and IL-1β participate in M.tuberculosis-induced Th17 response 

in MDR-TB patients 

It has been shown that IL-23, IL-1β and IL-6 are essential for human Th17 

differentiation while the role of TGF-β remains controversial [8]. Thus, we first 

evaluated whether these cytokines could modulate Th17 response by adding specific 

neutralizing antibodies at the onset of PBMC culture. Cells from MDR-TB were 

stimulated with both strains, H37Rv and M, while in PPD+HD and PPD¯HD the 

neutralization assays were performed only in M-stimulated PBMC cultures due to the 

low IL-17 levels induced by H37Rv [19]. As observed in Table 1, M and H37Rv-induced 

IL-17 production by PBMC from MDR-TB and PPD+HD was markedly reduced due to 

IL-1β, IL-6 and IL-23p19 neutralization, while anti-TGF-β reduced IL-17 amounts only in 

MDR-TB. In the same line, relative (Supplementary Figure 1A) and absolute numbers 

of CD4+IL-17+ cells were reduced upon neutralization of IL-1β, IL-6 and IL-23p19 in 

both MDR-TB (Supplemental Figure 1B) and PPD+HD (Supplemental Figure 1C) while 

anti-TGF-β reduced their numbers only in MDR-TB. The same trend was observed in 

PPD¯HD but number of CD4+IL-17+ cells was negligible (data not shown) and thereafter 

cells from PPD¯HD were withdrawn from further analysis. Our results suggest that IL-

1β, IL-23 IL-6 and TGF-β participate in M.tuberculosis-specific Th17 responses in 

MDR-TB patients. 

 

TGF-ββββ promotes expansion of IL-17+IFNγγγγ¯ cells in MDR-TB patients 

We have previously demonstrated that the strong Th17 response observed in 

MDR patients was the consequence of an increased proportion of IL-17+IFNγ¯ CD4+ 

cells [19]. Herein, we evaluated whether IL-1β, IL-6, IL-23p19, and TGF-β modified the 
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proportion of IL-17+IFNγ¯ or IL-17+IFNγ+ cells within the CD4+ cells. As observed in 

Figure 1, neutralization of IL-1β, IL-6 and IL-23p19 reduced strongly the number of IL-

17+IFNγ¯ and IL-17+IFNγ+ cells in H37Rv- and M-stimulated PBMC from MDR-TB. 

Interestingly, the neutralization of TGF-β decreased the number of IL-17+IFNγ¯ cells 

induced by both strains while it only increased the number of IL-17+IFNγ+ induced by M 

strain in cultures from MDR-TB patients. In PPD+HD, neutralization of IL-1β and IL-6 

reduced the numbers of both Th17 cells subsets while anti-IL-23p19 and anti-TGF-β 

had not effect. These results indicate that IL-1β, IL-6 and IL-23 are crucial for the 

expansion of both IL-17+ T cells subsets independently of the strain, whereas TGF-β 

shifts Th17 cells towards an IL-17+IFNγ¯ phenotype in M-stimulated CD4+ T cells from 

MDR-TB patients.  

 

IL-23 and TGF-ββββ promote the expansion of CD4+IL-17+IFNγγγγ¯ cells by inducing 

IFNγγγγ
+ cells death in MDR-TB.   

To confirm the modulatory role of IL-23 and TGF-β on the M.tuberculosis- 

induced expansion of Th17 memory cells observed in MDR-TB, PBMC from 6 PPD+HD 

were cultured for 48h alone or with M strain with or without the addition of IL-23 and/or 

TGF-β and then IL-17 and IFNγ expression were tested within CD4+ T cells. As shown 

in Figure 2A, IL-23 alone enlarged the number of IL-17+ cells subsets in M-stimulated 

cells and TGF-β alone inhibited IL-17 and IFNγ expression while co-addition of IL-23 

and TGF-β enhanced IL-17+ T cells numbers through the expansion of IL-17+IFNγ¯ 

cells.  

Considering that human Th17 clones are less susceptible to TGF-β-induced cell 

death than Th1 and Th2 clones [23], we evaluated whether the M.tuberculosis-induced 

expansion of IL-17+IFNγ¯ cells observed in MDR-TB was due to TGF-β-induced cell 

death of IFNγ+ cells. For this purpose, the expression of active caspase-3 (a-caspase-

Page 45 of 80 Clinical Experimental Immunology

This article is protected by copyright. All rights reserved.



 12

3) which is associated with cell death signaling pathway [24], was evaluated in a) 

PBMC from PPD+HD cultured for 48 h in the presence or not of IL-23 and/or TGF-β 

and b) PBMC from MDR-TB patients cultured with or without anti-TGF-β and/or anti-IL-

23p19. As it is shown in Figure 2B, H37Rv and M strains enhanced the expression of 

a-caspase-3 in IL-17+ cells from PPD+HD and co-addition of IL-23 and TGF-β increased 

the percentages of a-caspase-3+ cells in IL-17+IFNγ+ subsets but markedly reduced 

their percentage in IL-17+IFNγ¯ CD4+ cells (Figure 2B). Interestingly, a low proportion of 

a-caspase-3+ cells was observed within the IL-17+IFNγ¯ subset from MDR-TB patients 

and this proportion increased when IL-23 and TGF-β were simultaneously neutralized 

(Figure 2C). In contrast, IL-17+IFNγ+ cells showed a high percentage of a-caspase-3+ 

cells that diminished by IL-23 and TGF-β neutralization. A similar tendency was 

observed in IL-17¯IFNγ+ cells from MDR-TB patients (data not shown). These results 

suggest that IL-23 and TGF-β could act in concert to promote the expansion of Th17 

cells with an IFNγ¯ phenotype in response to M.tuberculosis strains by inducing cell 

death in IFNγ+ cells from MDR-TB patients. 

 

TGF-β secretion and LAP+ cells are enhanced in CD4+ and CD14+ cells from MDR-

TB. 

It was shown that spontaneous and M.tuberculosis-induced TGF-β production is 

enhanced in PBMC from patients with active TB [25]. Thus, we evaluated the 

production of TGF-β in supernatants of cultured PBMC. Spontaneous TGF-β 

production was markedly increased in MDR-TB when compared to PPD+HD and the 

strains enhanced TGF-β levels only in MDR-TB (Figure 3) being strain M the highest 

inducer. 

Mature TGF-β is associated to a latency-associated protein (LAP), which 

provides a disulfide-linked shell hindering interaction of TGF-β with its cellular receptors 
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and to a latent TGF-β–binding protein, which anchors the complex to the cell surface 

[26]. This latent TGF-β complex has been detected in the cell surface of macrophages 

and T cells that exert their inhibitory activity through secretion of the bound latent 

complex upon activation. So, we determined the numbers of CD14+ and CD4+ cells that 

express latent TGF-β by measuring surface membrane LAP expression in 48 h-

cultured PBMC. As observed in Figure 3, the number of CD14+LAP+ and CD4+LAP+ 

cells increased in no-stimulated PBMC from MDR-TB compared to PPD+HD. Besides, 

both strains enhanced LAP+ cells values being M a higher inducer when comparing 

with H37Rv in MDR-TB. Considering that LAP has been found in activated human 

CD4+Foxp3+ regulatory T cells (Tregs) [27] as well as circulating Foxp3¯CD4+ T cells 

with suppressor activity [28] and taking into account that MDR-TB patients show 

enhanced proportion of circulating CD25highCD4+ (Tregs) [18], we wondered if the 

enhanced LAP expression in CD4+T cells was ascribed to this subset. We found that 

not only Tregs but also conventional activated CD25lowCD4+ T cells showed enhanced 

LAP expression and M.tuberculosis strains enhanced its expression in both subsets 

(Supplementary Figure 2A). Furthermore, we observed that 90-95% of IL-17 

expression was detected in M.tuberculosis-stimulated Foxp3¯LAP¯CD4+ cells subsets 

(data not shown), suggesting that LAP+ cells participate as regulatory cells and not as 

direct Th17 effector cells in MDR-TB. These findings, in combination with the results of 

blocking experiments, suggest that the high amounts of free TGF-β and cells binding 

latent TGF-β could be involved in the expansion of IL-17+IFNγ¯ cells via IFNγ down-

regulation.  

 

Dectin-1 and TLR-2 induce expansion of IL-17+IFNγγγγ¯ CD4+ T cells in MDR-TB 

patients 
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 As the recognition of M.tuberculosis is mediated by a complex network of 

pattern recognition receptors [29], we also wondered if TLR-2, TLR-4, MR and Dectin-1 

participated in Th17 response induced by MDR clinical isolates of M.tuberculosis. As 

shown in Table 2, blockade of TLR-2, TLR-4 and Dectin-1 diminished IL-17 amounts in 

PBMC supernatants from MDR-TB and PPD+HD while no differences were observed 

by blocking MR. We also evaluated if these receptors were involved in the expansion of 

both Th17 subsets in MDR-TB and in PPD+HD. As observed in Figure 4 A and B, 

blockade of Dectin-1 markedly diminished the number of antigen-stimulated CD4+ IL-

17+IFNγ¯ and IL-17+IFNγ+ cells from MDR-TB and PPD+HD, making no differences 

among strains. Blockade of TLR-2 inhibited M.tuberculosis-induced IL-17+IFNγ¯ cells 

numbers while enhanced numbers of M-induced IL-17+IFNγ+ cells only in MDR-TB. 

Besides, anti-TLR-4 reduced the number of M.tuberculosis-induced IL-17+IFNγ+ in 

PPD+HD. These results propose that while Dectin-1 is essential for a whole Th17 

response, TLR-4 sustains IL-17+IFNγ+ cells in PPD+HD and TLR-2 shifts IL-17+ cells 

towards an IFNγ¯ phenotype in MDR-TB.  

 

The expansion of LAP+ cells in MDR-TB patients is dependent on TLR-2 signaling 

Given that interactions between microbial ligands and TLRs in APCs and/or T 

cells will shape the T cell profiles evoked by modulating their expansion and 

functionality [30], we assessed whether Dectin-1, TLR-2 and TLR-4 were involved in 

the expansion of CD4+LAP+ T cells induced by M. tuberculosis strains in MDR-TB. As 

observed in Figure 4C, anti-TLR-2 reduced the number of M. tuberculosis-stimulated 

CD14+ and CD4+ LAP+ cells from MDR-TB, while anti-TLR-4 did not. In line with this, 

anti-TLR-2 decreased the number of Tregs and conventional activated CD4+ T cells in 

antigen-stimulated PBMC from MDR-TB (Supplementary Figure 2B). In PPD+HD, the 

differences were negligible due to low LAP+ cell levels (data not shown). Altogether, 
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these results suggest that TLR-2 would be involved in the induction of LAP expression 

in CD4+ T and CD14+ cells from MDR-TB.  

 

TGF-β secretion and LAP+ cells levels correlate with bacillary load. 

We have previously showed that the strong Th17 response observed in MDR-

TB patients correlates with the presence of acid fast bacilli in sputum smear (AFB) [19]. 

Herein, we evaluated whether TGF-β secretion and the number of LAP+ cells in 

cultured PBMC was associated to presence/absence of AFB in sputum using Ziehl–

Neelsen stained smears and bacillary load (bacilli/field). As it is shown in Figure 5, not 

only LAP+CD4+ cell values but also TGF-β levels correlated with the bacillary load in M. 

tuberculosis-stimulated PBMC of all the AFB+ patients studied 

MDR-TB patients infected with Haarlem strains show high proportion of IL-

17+IFNγγγγ
- CD4+ cells. 

We finally evaluated whether MDR-TB infected with strains belonging to 

Haarlem or LAM families showed differential in vitro expansion of IL-17+IFNγ¯ and IL-

17+IFNγ+ cells. For this purpose, MDR-TB patients were divided in four groups 

according to the infecting strain and the presence of AFB in sputum smears at the time 

of the study. Besides, as some patients were infected with MDR Mtb strains belonging 

to the LAM family, PBMC from all patients were also stimulated with the MDR Ra strain 

which belongs to this family. Haarlem- and LAM-infected AFB+ patients showed higher 

IL-17+ cells numbers than those AFB¯ (Figure 6). However, higher numbers of IL-

17+CD4+ cells were observed in PBMC from Haarlem-infected patients when compared 

to LAM-infected patients in spite of the fact that both groups showed similar sputum 

smear bacillary loads [bacilli/field: Haarlem= 7 (0.6-10); LAM= 7 (0.8-10)]. M-stimulated 

CD4+ T cells from AFB+ patients produced higher numbers of IL-17+IFNγ¯ cells 

compared with cells from AFB¯ patients. Also, IL-17+IFNγ¯ cells numbers were higher in 
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cells from Haarlem-infected patients than in cells from LAM-infected patients. In 

contrast, in AFB+ patients, the numbers of IL-17+IFNγ+ CD4+ T cells were lower than in 

AFB¯ patients, and AFB+ Haarlem-infected patients showed the lowest levels. 

Remarkably, the M strain was the highest IL-17+IFNγ¯ and the lowest IL-17+IFNγ+ cell 

inducer.  
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DISCUSSION  

It is well known that triggering naïve CD4 αβ T cells with MHC/peptide antigens 

in the presence of IL-6 and/or IL-21, IL-1β, and TGF-β directs their differentiation to the 

Th17 lineage while IL-23 tends to strengthen and maintain this lineage commitment [8]. 

As we previously reported that MDR-TB patients show a high proportion of IL-17 

producing cells [19], in the present study we explored the involvement of the above-

mentioned cytokines in Th17 responses of MDR-TB patients and PPD+HD. Our results 

showed that IL-1β and IL-6 are critically involved in the Th17 response induced by 

M.tuberculosis strains by promoting the expansion of IL-17+IFNγ¯ and IL-17+IFNγ+ CD4+ 

T cells in MDR-TB as well as in PPD+HD. We also found that the neutralization of both 

cytokines inhibits the expansion of IL-17¯IFNγ+ cells in PPD+HD (data not shown), 

suggesting that IL-1β and IL-6 are also implicated in the M.tuberculosis-induced IFNγ 

response, what is in agreement with Saunders et al [31].   

Cytokines promoting the differentiation of human naïve T cells into IL-17-

secreting cells are also committed to the regulation of IL-17 production by memory T 

cells [32]. Likewise, human Th17 cells can be generated from effector memory CD4+ T 

cells [32-34] and Treg cells [35]. The role of IL-1β and IL-6 that we found for the overall 

Th17 response in MDR-TB is in agreement with results demonstrating that IL-1β, alone 

or in association with IL-23 and IL-6, increases IL-17 production in CCR6+ memory T 

cells from healthy donors, while IL-1β and IL-12 promote the differentiation of memory 

CCR6+CXCR3+ Th17/Th1 cells specific for pathogenic and commensal microbes [36]. 

Regarding IL-23, it was previously found to have certain overlapping functions with IL-

12 by inducing IFNγ secretion in human CD4+ T cells [37]. However, we found an 

ambiguous role for IL-23 in M.tuberculosis-induced IFNγ expression in CD4+ cells. On 

one hand, IL-23 amplifies IFNγ expression in T cells from PPD+HD and, on the other 

hand, it strongly enhances the IL-17+IFNγ¯ profile in MDR-TB, suggesting a direct role 
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of IL-23 on Th1 shift towards IL-17+IFNγ¯ cells in these patients. This dual behavior was 

confirmed in cells from PPD+HD in which the addition of IL-23 increases IFNγ 

expression in CD4+ T cells and the co-addition of TGF-β lead to a marked reduction of 

IFNγ expression together with a significant expansion of the IL-17+IFNγ¯ population, 

what is in agreement with Santarlasci et al [23]. The involvement of TGF-β in Th17 cell 

differentiation is ambiguous, having positive [38] or negative effects [32, 39, 40] 

according to its concentration along the T cell differentiation/activation processes. As 

herein shown, and in accordance to the literature [41], high amounts of TGF-β are 

present in control and M.tuberculosis-stimulated cells from MDR-TB. In fact, the high 

TGF-β secretion and the enhanced percentage of CD14+ and CD4+ T cells binding 

latent TGF-β might suppress Th1 response and, together with IL-23, increase the 

proportion of IL-17+IFNγ¯ cells in these patients, as supported by our TGF-β 

neutralization assay results. It has been demonstrated that a-CD3/a-CD28 stimulated 

Th17 clones are less prone to TGF-β-induced apoptosis than Th1 cells and it has been 

proposed that TGF-β favors Th17 expansion by directly inhibiting Th1 cells survival 

[23]. Herein, we show that a-caspase 3+ cells levels induced by the strains were lower 

in IL-17+IFNγ¯ cells and higher in IL-17+IFNγ+ and in IL-17¯IFNγ+ cells from MDR-TB 

patients than in PPD+HD. Furthermore, the assays carried out with neutralization of 

TGF-β and IL-23 in MDR-TB cells and their addition to PPD+HD cells suggest that both 

cytokines would sustain the expansion of IL-17+IFNγ+ cells by inducing a subtle cell 

death of IFNγ expressing CD4+ T cells.  

The balance between Th1 and Th17 responses has been associated to the 

expression of C-lectin like and Toll-like receptors on APC within the TB context [14, 33, 

34, 42, 43]. In our hands, the blockade of Dectin-1 decreased the M.tuberculosis-

induced Th17 response in MDR-TB and in PPD+HD by inhibiting the expansion of IL-

17+IFNγ¯ and IL-17+IFNγ+ cells but not of IL-17¯IFNγ+ cells, confirming that IL-17+IFNγ+ 
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cells are derived from the Th17 and not from the Th1 subsets [10, 44]. Besides, TLR-2 

participated in the M.tuberculosis induced expansion of IL-17+IFNγ+ cells and the 

inhibition of IL-17¯IFNγ+ cells in MDR-TB patients. However, we did not find a 

participation of TLR-2 in the production of IL-17 from PPD+HD cells, as has been 

reported in HD without previous exposure to M.tuberculosis or BCG vaccination [14]. 

We consider that our results could be ascribed to an enhanced TLR-2-mediated 

production of TGF-β by APCs [45] or cell-cell contact suppression by CD25+CD4+ T 

cells binding TGF-β/LAP complex which are known to express TLR-2 [46, 47] and up-

regulate TGF-β expression upon TLR-2 signaling [48]. Indeed, TLR-2 blockade 

inhibited the M.tuberculosis-induced LAP expression in CD14+ cells as well as in Tregs 

and conventional activated CD4+ T cells from MDR-TB patients.  

On the other hand, we showed that TLR-4 signaling is involved in 

M.tuberculosis-induced expansion of IL-17+IFNγ+ cells from MDR-TB and from PPD+HD 

but it does not affect the Th1 response, suggesting a differential contribution of TLR-4 

and TLR-2 in the modulation of Th17 subsets and Th1 responses in MDR-TB and in 

PPD+HD, in agreement with Van der Weerdonk [14]. Thus, our results indicate that M 

strain promotes a high Th17 response in MDR-TB by the expansion of IL-17+IFNγ¯ cells 

as a consequence of a strong TLR-2 dependent TGF-β production by APC and Tregs 

and conventional activated CD4+T cells (summarized schematically in Supplementary 

Figure 3).  

Interestingly, we found that free TGF-β and LAP+CD4+ T cells levels correlated 

with bacillary loads in sputum from MDR-TB patients at the time of the study, which is 

in agreement with experimental models showing that TGF-β suppresses Th1 

responses and lung inflammation and enhances lung bacillary load during the chronic 

phase in the murine model of infection [49]. Thus, it is tempting to speculate that the 
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strong TGF-β elicited by the host in an attempt to diminish the severe inflammatory 

process could favor the persistence of high number of bacilli in MDR-TB.   

Finally, we demonstrated that patients that are infected with Haarlem strains 

and have a positive AFB sputum show the highest numbers  of IL-17+IFNγ¯ cells and 

the lowest numbers  of IL-17+IFNγ+ cells, underlining the strong ability of the M strain, 

which belongs to the Haarlem family, to switch the Th17 profile to an IL-17+IFNγ¯ 

phenotype. Thus, our present work extends our previous results [19] and show that the 

genetic background of the infecting M. tuberculosis strain and its bacterial burden can 

modulate in vitro Th17 profiles through an expansion of IL-17+IFNγ¯ cells.  
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Table 1: IL-23, TGF-ββββ, IL-1-ββββ and IL-6 are involved in IL-17 secretion by MDR-TB patients’ PBMC  
 
 
 

   No antibodies a-IL-23p19 a-TGF-β a-IL-1β a-IL6 

IL-17 (pg/ml) MDR-TB 

 

 

 

PPD+HD 

C 

H37Rv 

M 

 

C 

M 

  87 (41-117) 

165 (94-171) 

207 (82-242) 

 

5 (4.0-6.0) 

 17 (10-25) 

64 (60-104) 

90 (48-125)* 

83 (47-120)* 

 

     < 4 

  7 (4-22)* 

 91 (95-106) 

 92 (53-133)* 

  97 (81-116)* 

 

   6 (4-10) 

18 (10-29) 

76 (70-96) 

78 (39-101)* 

76 (27-114)* 

 

     < 4 

  5 (4-15)* 

65 (59-70) 

99 (53-131)* 

73 (29-98)* 

 

     < 4 

  7 (4-18)* 

 
 

Table 1: PBMC from 10 MDR-TB patients and 8 PPD+HD were stimulated for 48 h alone or with the strains 

H37Rv and M, in the presence or not of monoclonal antibodies against IL-23p19, TGF-β, IL-1β and IL-6. Then, 

IL-17 amounts (pg/ml) were determined in PBMC supernatants by ELISA. Results are expressed as median and 

25-75 percentiles; statistical differences: *: p<0.05 for antibody-treated vs. non-treated PBMC (Friedman test 

followed by Dunn’s test). 
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Table 2: Dectin-1, TLR-2 and TLR-4 are involved in high Th17 response in MDR-TB patients. 

   No MAb α-TLR-2 α-TLR-4 a-MR α-Dectin-1 

IL-17 (pg/ml) MDR-TB 

 

 

 

 

PPD+HD 

C 

Rv 

M 

 

C 

M 

94 (66-114) 

171 (144-270) 

254 (177-423) 

 

5 (4.2-6.5) 

20 (10.1-25.7) 

66 (59-109) 

127 (55-171)* 

120 (38-149)* 

 

5 ( 4.8-5.7) 

18 (9-29) 

90 (62-110) 

133 (76-190)* 

141 (108-220)* 

 

4 (4.0-4.5) 

7 (4.5-22.5)* 

103 (94-112) 

159 (105-225) 

214 (159-353) 

 

4.5 (4.1-6.5) 

17 (9.2-23.3) 

87 (71-112) 

101 (54-168)* 

121 (28-149)* 

 

4 (4.1-6.3) 

5 (4.0-15.2)* 

 
Table 2: PBMC from 10 MDR-TB patients and 6 PPD+HD controls were stimulated for 48 h alone or with Mtb 

strains, in the presence or not of monoclonal antibodies against TLR-2, TLR-4, mannose receptor (MR) and 

Dectin-1. Then, IL-17 amounts (pg/ml) were determined in PBMC supernatants by ELISA. Results are expressed 

as median and 25-75 percentiles; statistical differences: *: p<0.05 for antibody-treated vs. non-treated PBMC 

(Friedman test followed by Dunn’s test). 
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Supplementary Table 1:  Additional clinical feature of tuberculosis (TB) patients 
 

 
*=Patients infected with M strain; Chest X-ray results:  UC=unilateral with cavity; BC= 

bilateral with cavity; U= unilateral without cavity; B= bilateral without cavity; Drug 

abbreviations: AMK=amikacine; CS =cycloserine; D= deofloxacine; 

ETH=ethambutol;E=ethionamide; KM= kanamycin; LEV=levofloxacine; LZD= linezolid; 

MOX=amoxicillin;OFL=ofloxacine; PAS=Para-Aminosalicylate Sodium; 

PZA=pyrazinamide; S=streptomycin. 

MDR-TB 
patients 

Chest X-
ray results 

Lineage Treatment 
Days of 

treatment  
Time to acquire 

a negative 
sputum (days)  

1 UC Haarlem* CS/OFL/KM/PAS 7 153 

2 UC LAM CS/OFL/KM/PAS 168 232 

3 UC Haarlem* CS/PAS/E/LZD 6 60 

4 BC LAM CS/OFL/KM/PAS 39 62 

5 BC Haarlem* CS/PAS/KM/OFL 112 245 

6 BC Haarlem* CS/PAS/OFL/LZD 166 399 

7 BC Haarlem CS/OFL/LZD 19 49 

8 BC Haarlem* CS/OFL/KM/PAS 8 35 

9 BC Haarlem CS/OFL/E/AMK/PZA 11 25 

10 UC Haarlem* CS/OFL/KM/PAS 197 142 

11 BC T OFL/PAS/KM/E 20 31 

12 BC T OFL/E/S/PZA 88 63 

13 UC LAM CS/OFL/E/LZD 22 56 

14 BC LAM PAS/E/LZD/D/KM 68 55 

15 BC Haarlem E/PAS/KM 76 69 

16 UC LAM PAS/OFL/LZD/AMK 24 103 

17 BC LAM PAS/OFL/ CS 34 74 

18 BC Haarlem* PAS/OFL/E/KM 134 90 

19 UC LAM PAS/KM/OFL/E/LZD 1 91 

20 BC Haarlem PAS/OFL/E/S/PZA 76 135 

21 BC Haarlem CS/OFL/KM/PAS 22 27 

22 UC LAM PAS/E/OFL/S 70 67 

23 B LAM PAS/ETH/KM/CS/OFL 21 131 

24 BC LAM PAS/OFL/KM/E 87 84 

25 BC Haarlem* PAS/CS/ETH/OFL/KM 60 59 

26 UC LAM CS/OFL/PZA/E/S 35 29 

27 BC LAM CS/ETH/KM 36 30 

28 BC Beijing CS/KM/E/MOX 97 91 

29 BC LAM CS/PAS/PZA/AMK 70 151 

30 U Haarlem* LZD/LEV/CS/ETH/PAS 61 123 

31 B Haarlem* PAS/OFL/S/PZA/E 32 31 
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Legends to Figures: 

Figure 1: IL-23, TGF-β, IL-6 and IL-1β differentially participate in M.tuberculosis-

induced Th17 response. PBMC from 31 MDR-TB and 8 PPD+HD were stimulated for 

48 h alone (Control) or with H37Rv and M strains (2:1 bacteria to PBMC ratio), in the 

absence (--) or presence of antibodies against IL-23p19, TGF-β, IL-1β and IL-6 (a-IL-

23p19, a-TGF-β, a-IL-1β and a-IL-6 respectively). IL-17 and IFNγ expression was 

determined in CD4+ T cells by flow cytometry (FACS) and the number (n) of (A) 

CD4+IL-17+IFNγ¯ and (B) CD4+IL-17+IFNγ+ cells present in 1x106 cultured PBMC was 

calculated for each individual. Results are expressed as median and 25th-75th 

percentiles (boxes) with maximum and minimum values (error bars). Statistical 

differences: *: p<0.05 for treated vs. non-treated PBMC (Friedman test followed by 

Dunn’s test).  

Figure 2: IL-23 and TGF-β promoted the expansion of IL-17+IFNγγγγ¯
 cells and 

modulated IL-17+IFNγγγγ
+ cell death. (A and B). PBMC from 6 PPD+HD were cultured 

for 48 h alone (Control) or with H37Rv and M strains in the presence or absence of IL-

23 (1 ng/ml) and/or TGF-β (5 µg/ml), and then IL-17, IFNγ and active-caspase-3 (a-

caspase-3) expression was tested within CD4+ T cells by FACS. Results are expressed 

as number (n) of CD4+IL-17+ cells, CD4+IL-17+IFNγ¯ and CD4+IL-17+IFNγ+ cells in 1x106 

cultured PBMC (A) and percentage of a-caspase-3+ cells within IL-17+IFNγ¯ and IL-

17+IFNγ+ CD4+ cells (% a-caspase-3) (B). (C) PBMC from 6 MDR-TB patients were 

cultured for 48 h alone (Control) or with the strains H37Rv and M in the presence or 

absence of anti-IL-23p19 (a-IL-23, 10 µg/ml) and/or anti-TGF-β (a-TGF-β, 10 µg/ml) 

monoclonal antibodies. Then % of a-caspase-3+ cells was determined within CD4+IL-

17+IFNγ¯ and CD4+IL-17+IFNγ+ cells by FACS. Box plots indicating medians and 25th to 

75th percentiles with maximum and minimum values are shown. Statistical differences: 

* p<0.05 for treated vs non-treated PBMC (Friedman test followed by Dunn’s test). 
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Figure 3: Enhanced TGF-β secretion and absolute number of LAP+ cells in PBMC 

from MDR-TB patients. PBMC from 10 MDR-TB and 6 PPD+HD were cultured for 48 

h alone (Control, C) or with M.tuberculosis strains and then TGF-β secretion was 

determined in PBMC supernatants by ELISA as well as LAP expression was 

determined in CD14+ and CD4+ cells by FACS. (A). TGF-β secretion. Results are 

expressed as pg/ml and medians and 25th to 75th percentiles are shown. Statistical 

differences: *: p<0.05 for control vs. M.tuberculosis-stimulated PBMC or differences 

among strains (Friedman test followed by Dunn’s test); a: p<0.05 for M or Ra-

stimulated PBMC from MDR-TB vs the corresponding data from PPD+HD (Kruskal-

Wallis statistics followed by Dunn’s test). (B and C). Number (n) of CD14+LAP+ cells 

(B) and of CD4+LAP+ cells (C) present in 1x106 cultured PBMC; medians and 25th to 

75th percentiles with maximum and minimum values are shown. Statistical differences: 

*: p<0.05 for treated vs. non-treated PBMC or differences between strains (Friedman 

test followed by Dunn’s test); a: p<0.05 for MDR-TB patients vs PPD+HD (Kruskal-

Wallis statistics followed by Dunn’s test).  

Figure 4: Dectin-1, TLR-2 and TLR-4 are differentially involved in high Th17 

response and LAP+ cells expansion in MDR-TB patients. (A and B). PBMC from 10 

MDR-TB patients and 6 PPD+HD controls were stimulated for 48 h alone (Control, C) 

or with Mtb strains, in the absence (--) or presence of antibodies against TLR-2, TLR-4, 

and Dectin-1 (a-TLR-2, a-TLR-4 and a-Dectin-1). Then, the IL-17 and IFNγ expression 

was determined within the CD4+ subset by FACS and the number (n) of CD4+IL-

17+IFNγ¯ and of CD4+IL-17+IFNγ+ cells in 1x106 cultured PBMC was calculated. Box 

plots show median and 25th-75th percentiles with maximum and minimum values; 

statistical differences: *: p<0.05 for treated vs. non-treated PBMC (Friedman test 

followed by Dunn’s test). (C). PBMC from 6 MDR-TB patients were stimulated for 48 h 

alone or with Mtb strains, in the absence (--) or presence anti-TLR-2 or anti-TLR-4 
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antibodies. Then LAP and CD25 expression was determined in CD4+ and CD14+ cells 

by FACS. Results are expressed as number (n) of CD4+LAP+ and CD14+LAP+ cells in 

1x106 PBMC (median and 25-75 percentiles with maximum and minimum values). 

Statistical differences: *=p<0.05 for antibody-treated vs. non-treated PBMC (Friedman 

test followed by Dunn’s test). 

Figure 5: Correlation between TGF-β levels, percentage of LAP+CD4+ cells and 

bacillary load. Correlation between TGF-β levels, LAP+CD4+ cells and bacillary load in 

MDR-TB: TGF-β levels (pg/ml) (A) and number (n) of CD4+LAP+ cells (B) were 

compared with the number of bacilli per field detected in sputum from MDR-TB. 

Individual data and Spearman rho coefficients are shown.  

Figure 6: MDR-TB patients infected with the M strain showed high proportion of 

IL-17+IFNγγγγ¯ CD4+ T cells. MDR-TB patients were grouped according to the presence 

or absence of AFB in the sputum (AFB+ and AFB¯) and to the infecting strains 

(Haarlem family: AFB+ n=10, AFB¯ n=5; LAM family: AFB+ n=8, AFB¯ n=5). The 

numbers (n) of CD4+ IL-17+ (A), CD4+ IL-17+IFNγ¯ cells (B) and of CD4+IL-17+IFNγ+ 

cells (C) present in unstimulated or H37Rv, M and Ra-stimulated PBMC cultures were 

calculated for each group (medians and 25th to 75th percentiles). Statistical 

differences: *: p<0.05 for AFB+ vs AFB¯ individuals; a: Haarlem- vs. LAM-infected 

patients (Kruskal-Wallis statistics followed by Dunn’s test). 

Supplementary Figure 1: IL-23, TGF-ββββ, IL-6 and IL-1β are involved in 

M.tuberculosis-induced Th17 response. PBMC from 31 MDR-TB patients (A and B) 

and 8 PPD+ (C) healthy individuals were cultured for 48 h alone (Control) or with 

H37Rv and M strains in the absence (--) or presence of anti-IL-23p19, anti-TGF-β, anti-

IL-1β or anti-IL-6 antibodies. Then the percentage of CD4+ cells expressing intracellular 

IL17 was determined by FACS and number of CD4+IL-17+ cells present in 1x106 

cultured PBMC (n) was calculated for each individual. (A). Dot plots from one MDR-TB 
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patient are shown and are representative of 31 patients studied. The numbers in the 

upper-right quadrant represent the percentage of CD4+IL-17+ cells within live 

lymphocyte gate. (B and C). Results are expressed as medians and 25th to 75th 

percentiles (boxes) with maximum and minimum values (error bars). *: p<0.05 for 

treated versus untreated PBMC (Friedman test followed by Dunn’s test).  

Supplementary Figure 2: High proportion of CD25+ LAP+ CD4+ T cells in MDR-TB 

patients; role of TLR-2 on their expansion.  (A). PBMC from 8 MDR-TB patients and 

6 PPD+HD were cultured for 48 h alone (Control) or with H37Rv, Ra or M strains. Then 

LAP and CD25 expression was determined in CD4+ cells by flow cytometry. CD4+ cells 

were classified in CD4+CD25high (T regulatory, Tregs) and CD4+CD25low (conventional 

activated) according to their CD25 fluorescence intensity. Results are expressed as 

number of CD4+CD25high or CD25low expressing LAP+ cells in 1x106 cultured PBMC (n) 

and are depicted as boxes showing median and 25-75 percentiles with maximum and 

minimum error bars. Statistical differences: *=p<0.05 for control vs. Mtb-stimulated 

cells (Friedman test followed by Dunn’s test); a=p<0.05 for MDR-TB vs. PPD+HD 

(Kruskal-Wallis statistics followed by Dunn’s test). (B). PBMC from 6 MDR-TB patients 

were stimulated for 48 h alone or with M.tuberculosis strains, in the presence or not of 

anti-TLR-2 or anti-TLR-4 monoclonal antibodies. Then the number of CD4+CD25high/low 

LAP+ cells was determined. Box plots show median and 25-75 percentiles with 

maximum and minimum values. Statistical differences: *=p<0.05 for antibody-treated 

vs. non-treated PBMC (Friedman test followed by Dunn’s test). 

Supplementary Figure 3: Schematic model representing the mechanisms used 

by M strain to induce high levels of TGF-β secretion by APCs and CD4+LAP+ T 

cells leading to the IL-17+ IFN-γγγγ¯ cell subset expansion in MDR-TB patients. 

Upper panel: IL-17 secretion: Antigen presenting cells (APCs) from MDR-TB patients 

and PPD+ healthy donors (PPD+HD) recognize Mycobacterium tuberculosis (Mtb) 
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strains (H37Rv and MDR M strain) through Dectin-1, TLR-2 and TLR-4 pattern 

recognition receptors. Consequently, APCs secrete IL-1β, IL-6, IL-23 and TGF-β 

triggering the production of IL-17 by CD4+ T cells (upper grey panel). Lower panels: 

Differential expansion of IL-17+ T cell subsets in MDR-TB and PPD+HD: IL-1β and 

IL-6 secreted by APCs are essential for IL-17+IFNγ+ and IL-17+IFNγ¯ CD4+ T cells 

expansion in MDR-TB and PPD+HD (lower grey panel). Particularly, in PPD+HD, APCs 

recognize Mtb strains through TLR-4 and together with IL-23 promote IL-17+IFNγ+ cells 

expansion (green panel). In the case of MDR-TB patients, APCs recognize M strain via 

TLR-2 secreting large amounts of TGF-β. Additionally, M strain can be further 

recognized by CD4+CD25highFoxp3+ (T regulatory, Treg cells) and CD4+CD25lowFoxp3¯ 

(conventional activated cells) through TLR-2, inducing the upregulation of LAP/TGF-β 

complex (LAP) expression and promoting the expansion of both subsets. TGF-β 

secreted by APCs and CD4+LAP+ T cells acts jointly with IL-23 to support the marked 

expansion of IL-17+IFNγ¯CD4+ T cells (pink panel) which are responsible for the 

enhanced Th17 response observed in MDR-TB patients. 
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