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Abstract. Let (X,F , ⌫) be a �-finite measure space. Associated with k Lamperti
operators on L

p(⌫), T1, . . . , Tk

, n̄ = (n1, . . . , nk

) 2 Nk and ↵̄ = (↵1, . . . ,↵k

) with 0 <

↵

j

 1, we define the ergodic Cesàro-↵̄ averages

R
n̄,↵̄

f =
1

Q
k

j=1 A
↵j
nj

nkX

ik=0

· · ·
n1X

i1=0

kY

j=1

A

↵j�1
nj�ij

T

ik
k

· · ·T i1
1 f(x).

For these averages we prove the almost everywhere convergence on X and the convergence
in the Lp(⌫) norm, when n1, . . . , nk

! 1 independently, for all f 2 L

p(d⌫) with p > 1/↵⇤
where ↵⇤ = min1jk

↵

j

. In the limit case p = 1/↵⇤, we prove that the averages R
n̄,↵̄

f

converge almost everywhere on X for all f in the Orlicz–Lorentz space ⇤(1/↵⇤,'m�1)
with '

m

(t) = t(1 + log+ t)m. To obtain the result in the limit case we need to study
inequalities for the composition of operators T

i

that are of restricted weak type (p
i

, p

i

).
As another application of these inequalities we also study the strong Cesàro-↵̄ continuity
of functions.

1. Introduction. Let (X,F , ⌫) be a �-finite measure space and T a
bounded linear operator on L

p(⌫). The operator T is called a Lamperti
operator on L

p(⌫) if it preserves disjointness of supports. It is known that
Lamperti operators include L

p isometries, p 6= 2, positive L

2 isometries
and invertible linear operators T such that both T and T

�1 are positive
(see e.g. [11], [12] and [13]). It follows from the results in [11] that if T is
a Lamperti operator on L

p(⌫), 1 < p < 1, power bounded, i.e., kTnk
p


K <1 for n = 0, 1, . . . and such that the adjoint T ⇤ of T separates supports,
then the ergodic averages

R

n

f =
1

n+ 1

n

X

k=0

T

k

f

converge almost everywhere and in the L

p(⌫) norm for all f 2 L

p(⌫). Un-
der di↵erent assumptions on T , the same result was obtained in [14] (see
also [16]). In these articles the authors considered an invertible Lamperti
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2 A. L. BERNARDIS ET AL.

operator T on L

p(⌫), 1 < p < 1, such that its linear modulus |T | is Cesàro
bounded, that is,

sup
n�0

�

�

�

�

1

n+ 1

n

X

k=0

|T |k
�

�

�

�

p

< 1.

The linear modulus |T | of a Lamperti operator T on L

p(⌫) is also a Lam-
perti operator and it satisfies |Tf | = |T | |f | (see [11] for more details). For
positive contractions (not necessarily invertible) this result was obtained by
Akcoglu [1]. For contractions in L

1(⌫) and in L

1(⌫) the result is due to
Dunford and Schwartz [7].

The convergence of {R
n

f} is the convergence in the Cesàro-1 sense of
the sequence {Tn

f}. In general, we say that the sequence {Tn

f} converges
in the Cesàro-↵ sense, with 0 < ↵  1, if the limits of the Cesàro-↵ aver-
ages

R

n,↵

f =
1

A

↵

n

n

X

k=0

A

↵�1

n�k

T

k

f

exist, where A

↵

n

= (↵+ 1) · · · (↵+ n)/n! if n 6= 0 and A

↵

0

= 1. Convergence
in the Cesàro-↵ sense with 0 < ↵ < 1 is stronger than convergence in the
Cesàro-1 sense. The following result for the averages R

n,↵

f was obtained
in [4].

Theorem 1.1 ([4]). Let (X,F , ⌫) be a �-finite measure space, 0<↵ 1,
1/↵ < p < 1, and let T be an invertible Lamperti operator on L

p(⌫) such
that

sup
n�0

�

�

�

�

1

n+ 1

n

X

k=0

|T |k
↵

�

�

�

�

p↵

< 1,

where |T |
↵

f = [|T |(f↵)]1/↵ for f � 0. Then

(i) the ergodic Cesàro-↵ maximal operator M

↵

f = sup
n�0

|R
n,↵

f | is
bounded on L

p(⌫),
(ii) the set D = {g + (h� Th) : g, h 2 L

p(⌫), g = Tg and h simple} is
a dense subset of L

p(⌫),
(iii) the averages R

n,↵

f converge almost everywhere and in the L

p(⌫)
norm for all f 2 L

p(⌫).

The above theorem was proved in [15] under the additional assumption
that T and its inverse T

�1 are positive operators. For positive contractions
this result was obtained by Irmisch [9]. If T is not invertible but satisfies
the hypothesis of Kan [11] then T is controlled by a positive Lamperti con-
traction on L

p(⌫) (see [11, Corollary 4.1]) and, from Irmisch’s result, we can
obtain the following result whose proof will be outlined in Section 3.
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Theorem 1.2. Let (X,F , ⌫) be a �-finite measure space, 0 < ↵  1,
1/↵ < p < 1, and let T be a power bounded Lamperti operator on L

p(⌫)
such that T

⇤ separates supports. Then (i)–(iii) of Theorem 1.1 hold.

For the limit case p = 1/↵ and if Tf(x) = f(⌧x), where ⌧ is a measure
preserving transformation, Broise, Déniel and Derriennic [6] observed that it
is possible to obtain a weak type inequality with the Lebesgue space L1/↵(⌫)
replaced by the Lorentz space L(1/↵, 1)(⌫) (see the definition below). In
the setting of invertible Lamperti operators the corresponding result was
established in [3]:

Theorem 1.3 ([3]). Let (X,F , ⌫) be a �-finite measure space, 0< ↵  1,
and let T be an invertible Lamperti operator on L

1/↵(⌫) such that

sup
n�0

�

�

�

�

1

n+ 1

n

X

k=0

|T |k
↵

�

�

�

�

1

< 1 and sup
n2Z

kTnk1 < 1.

Then

(i) the maximal operator M

↵

is of restricted weak type (1/↵, 1/↵), that
is, M

↵

maps the Lorentz space L(1/↵, 1)(⌫) into weak-L1/↵(⌫),
(ii) for all f in L(1/↵, 1)(⌫), the averages R

n,↵

f converge almost every-
where.

Now, given k linear operators T
1

, . . . , T

k

, we define the ergodic averages

R
n̄

f(x) =
1

Q

k

j=1

(n
j

+ 1)

n

k

X

i

k

=0

· · ·
n1
X

i1=0

T

i

k

k

· · ·T i1
1

f(x),

where n̄ = (n
1

, . . . , n

k

). If each T

i

is a contraction of both L

1(⌫) and L

1(⌫)
(such operators are called Dunford–Schwartz operators) then, for all f in
L

p(⌫) with 1 < p < 1, the averages R
n̄

f converge (when n

1

, . . . , n

k

! 1
independently) almost everywhere and in the L

p(⌫) norm (see [7]). The
limit case p = 1 was studied in [8]. In fact, N. Fava [8] proved that if each
T

i

is positive and is a contraction of both L

1(⌫) and L

1(⌫), then the av-
erages R

n̄

f converge almost everywhere, as n
1

, . . . , n

k

! 1 independently,
for every f in the Orlicz space L

'

k�1(⌫) associated to the Young function
'

k

(t) = t(1 + log+ t)k (see the definition of Orlicz space below).
Given ↵̄ = (↵

1

, . . . ,↵

k

) with ↵

1

, . . . ,↵

k

2 (0, 1], we define the ergodic
Cesàro-↵̄ averages by

R
n̄,↵̄

f(x) = R

n

k

,↵

k

� · · · �R
n1,↵1f(x)

=
1

Q

k

j=1

A

↵

j

n

j

n

k

X

i

k

=0

· · ·
n1
X

i1=0

k

Y

j=1

A

↵

j

�1

n

j

�i

j

T

i

k

k

· · ·T i1
1

f(x).
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It is clear that R
n̄

= R
n̄,↵̄

when ↵̄ = (1, . . . , 1). The main purpose of this
paper is to extend the results of [7] and [8] to the averages R

n̄,↵̄

f associated
to Lamperti operators T

i

that satisfy the conditions in Theorems 1.1–1.3.
In order to state them, we introduce some function spaces.

Given a Young function ' : [0,1) ! [0,1), that is, ' is a nondecreasing,
continuous and convex function such that '(0) = 0, '(t) > 0 if t > 0 and
lim

t!1 '(t) = 1, and given p � 1, the Orlicz–Lorentz space ⇤(p,') is
defined by

⇤(p,') :=
n

f 2F :  
p,'

(cf) =
1
\

0

'(cf⇤(t))t1/p�1

dt < 1 for some c > 0
o

,

where f

⇤(t) = inf{s : �
f

(s)  t} is the nonincreasing rearrangement func-
tion of f and �

f

(s) = ⌫({x 2 X : |f(x)| > s}) is its distribution function.
This space ⇤(p,') is a Banach space with the Luxemburg norm defined
by

kfk
p,'

= inf{c > 0 :  
p,'

(f/c)  1}.
The Orlicz space L

' is ⇤(1,'), and if '(t) = t then the space ⇤(p,') is the
Lorentz space L(p, 1).

Now we state our results.

Theorem 1.4. Let (X,F , ⌫) be a �-finite measure space and let ↵̄ =
(↵

1

, . . . ,↵

k

) with 0 < ↵

j

 1 for all j = 1, . . . , k, ↵⇤ = min
1jk

↵

j

and

p > 1/↵⇤. For 1  j  k, let T

j

be a Lamperti operator on L

p(⌫) with one
of the following properties:

(a) T

j

is an invertible operator and

sup
n�0

�

�

�

�

1

n+ 1

n

X

k=0

|T
j

|k
↵

j

�

�

�

�

p↵

j

< 1,

(b) T

j

is power bounded and T

⇤
j

separates supports.

Then:

(i) the ergodic Cesàro-↵̄ maximal operator M
↵̄

f(x) = sup
n̄>0

|R
n̄,↵̄

f(x)|
is bounded on L

p(⌫), where n̄ = (n
1

, . . . , n

k

) > 0 means n

j

> 0 for
all 1  j  k,

(ii) the ergodic Cesàro-↵̄ averages R
n̄,↵̄

f converge almost everywhere
on X when n̄ ! 1 (n

1

, . . . , n

k

! 1 independently) and in the
L

p(⌫) norm for all f 2 L

p(⌫).

Theorem 1.5. Let (X,F , ⌫) be a �-finite measure space and let ↵̄ =
(↵

1

, . . . ,↵

k

) with 0 < ↵

j

 1, j = 1, . . . , k. Let ↵⇤ = min
1jk

↵

j

and
suppose that the minimum ↵⇤ is reached at exactly m numbers ↵

j

. For
1  j  k, let T

j

be an invertible Lamperti operator on L

1/↵

j (⌫) such
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that

sup
n�0

�

�

�

�

1

n+ 1

n

X

k=0

|T
j

|k
↵

j

�

�

�

�

1

< 1 and sup
n2Z

kTn

j

k1 < 1.

Assume also that the operators T

j

all commute with one another. Then:

(i) the operator M
↵̄

satisfies

⌫({x 2 X : M
↵̄

f(x) > t})


⇣

C'

m�1

(1/t)
1
\

0

'

m�1

(f⇤)(s)s↵⇤�1

ds

⌘

1/↵⇤
,

where '
m

(t) = t(1 + log+ t)m,
(ii) the averages R

n̄,↵̄

f converge almost everywhere on X for all f in
the Orlicz–Lorentz space ⇤(1/↵⇤,'m�1

) when n̄ ! 1.

Note that

(1.1) M
↵̄

f(x)  M

↵

k

� · · · �M
↵1f(x),

where the operators M
↵

i

are the ergodic Cesàro-↵
i

maximal operators asso-
ciated with the linear operators T

i

. Under the hypothesis on the operators T
i

given in Theorem 1.5, we find that each maximal operator M
↵

i

is bounded
on L

1(⌫) and is of restricted weak type (p
i

, p

i

) with p

i

= 1/↵
i

. In order
to prove Theorem 1.5 the main tool is the study of the boundedness of
the composition of this type of operators, which will be accomplished in
Section 2. Section 3 is devoted to proving Theorems 1.2, 1.4 and 1.5. Finally,
in Section 4, we study the strong Cesàro-↵̄ continuity as a consequence of
the theorems in Section 2.

Throughout this paper we will denote by C a nonnegative constant that
can be di↵erent at each occurrence.

2. Composition operators. Let (X,F , ⌫) be a �-finite measure space.
In this section we shall deal with sublinear operators T

i

, i = 1, . . . , k, defined
on measurable functions so that all of them are of strong type (1,1) and
each of the operators T

i

is of restricted weak type (p
i

, p

i

) with 1  p

i

< 1.
We say that an operator T is of strong type (1,1) if there exists a constant
C > 0 such that for any measurable function f ,

kTfk1  Ckfk1.

We say that T is of restricted weak type (p, p), 1  p < 1, if there exists a
constant C > 0 such that

kTfk
p,1  Ckfk

p,1

,
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where k · k
p,q

, 1  p, q  1, is the quasi-norm in the Lorentz space L(p, q)
defined for q = 1 by

kfk
p,1 = sup

t>0

t(�
f

(t))1/p = sup
t>0

t

1/p

f

⇤(t)

and for 1  p, q < 1 by

(2.1) kfk
p,q

=

1
\

0

(t1/pf⇤(t))q
dt

t

�

1/q

⇡
1
\

0

(�
f

(s)1/ps)q
ds

s

�

1/q

.

It is well known that a sublinear operator T is of strong type (1,1)
and of restricted weak type (p, p) if and only if

(2.2) �

Tf

(t) 
✓

C

t

1
\

t/C

�

f

(s)1/p ds

◆

p

for all t > 0,

where C is a positive constant independent of f and t (see for example [5]
or [19, p. 91] for p = 1).

Now we state the main result of this section.

Theorem 2.1. Let 1  p

1

 · · ·  p

k

be real numbers such that either
they are all equal or there exists an integer ` with 0  ` < k � 1 such that
1  p

1

 · · ·  p

k�`�1

< p

k�`

= · · · = p

k

. For each i = 1, . . . , k, let T

i

be a
sublinear operator of strong type (1,1) and of restricted weak type (p

i

, p

i

).
Then T = T

1

� · · · � T
k

satisfies the inequality

⌫({x 2 X : |Tf(x)| > t})  C

⇣

'

`

(1/t)
1
\

0

'

`

(f⇤(s))s1/pk�1

ds

⌘

p

k

for all t > 0, where '
`

(t) = t(1 + log+ t)` with log+ u = max{0, log u}.
The above result generalizes the following result obtained in [5], where

all the operators T

i

are of strong type (1,1), and for a given p � 1, of
restricted weak type (p, p).

Theorem 2.2 ([5]). Let T
i

, i = 1, . . . , j, be sublinear operators such that
all of them are of strong type (1,1), and for a given p � 1, of restricted
weak type (p, p). Then T = T

1

� · · · � T
j

satisfies

⌫({x : |Tf(x)| > t})(2.3)


✓

C

(j � 1)! t

1
\

t

[�
f

(s/Cj)]1/p[log(s/t)]j�1

ds

◆

p

for all t > 0, where the nonnegative constant C depends only on the boun-
dedness constants of the operators T

i

.

First of all we study a particular case of Theorem 2.1, when the parame-
ter p

k

is greater than the other, i.e., ` = 0.
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Theorem 2.3. Let 1  p

1

 · · ·  p

k�1

< p

k

be real numbers. For each
i = 1, . . . , k, let T

i

be a sublinear operator of strong type (1,1) and of
restricted weak type (p

i

, p

i

). Then T = T

1

� · · · � T
k

is of strong type (1,1)
and of restricted weak type (p

k

, p

k

).

Proof. It is easy to see that it is su�cient to prove the theorem for only
two operators. So consider two operators T

1

and T

2

that satisfy inequality
(2.2) with p = p

1

and p = p

2

respectively, and assume that p
1

< p

2

. Moreover
suppose that the constant in (2.2) is the same in both cases. Then T = T

1

�T
2

satisfies (2.2) with p = p

2

. In fact, using Minkowski’s integral inequality and
by Theorem 2.2 we get

�

T1�T2f (t) 


C

t

1
\

t/C

✓

C

s

1
\

s/C

�

f

(u)1/p2 du

◆

p2/p1

ds

�

p1

 C

✓

1

t

◆

p1h 1
\

t/C

2

�

f

(u)1/p2
⇣

1
\

t/C

(1/s)p2/p1 ds
⌘

p1/p2

du

i

p2


✓

C̃

t

1
\

t/

˜

C

�

f

(s)1/p2 ds

◆

p2

for some constant C̃.

Proof of Theorem 2.1. We begin the proof by showing that if S
1

is an
operator that satisfies (2.2) with p = p

1

, and S

2

is an operator that satisfies
(2.3) for any j � 2 and p = p

2

with 1  p

1

< p

2

, then S = S

1

� S
2

satisfies
(2.3) with the same parameters j and p

2

. In fact,

�

S1�S2f (t) 
✓

C

t

1
\

t/C

�

S2f (s)
1/p1

ds

◆

p1




C

t

1
\

t/C

✓

1

(j � 1)!s

1
\

s

�

f

(u/Cj)1/p2 [log(u/s)]j�1

du

◆

p2/p1

ds

�

p1

and, by using Minkowski’s integral inequality, we see that �

S1�S2f (t) is
bounded by
✓

C

t

◆

p1


1

(j � 1)!

1
\

t/C

�

f

(u/Cj)1/p2 [log(uC/t)]j�1

⇣

1
\

t/C

s

�p2/p1
ds

⌘

p1/p2

du

�

p2

 C̃

✓

1

(j � 1)!t

1
\

t

�

f

(u/C̃j)1/p2 [log(u/t)]j�1

du

◆

p2

.

Now, let S = T

1

�· · ·�T
k�`�1

and S̃ = T

k�`

�· · ·�T
k

. By interpolation (see
for example [17, Theorem 3.15]) we see that T

k�`�1

is of strong type (p, p),
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and consequently of restricted weak type (p, p), for all p > p

k�`�1

. Let
✏

k�`�1

> 0 be such that p

k�`�1

+ ✏

k�`�1

< p

k�`

. From Theorem 2.3 we
see that S satisfies (2.2) with p = p

k�`�1

+ ✏

k�`�1

. On the other hand,
from Theorem 2.2 the operator S̃ satisfies (2.3) with p = p

k

and j = `+ 1.
Applying the above results with S

1

= S and S

2

= S̃ we get

�

Tf

(t)  C̃

✓

1

`!t

1
\

t

�

f

(u/C̃`+1)1/pk [log(u/t)]` du

◆

p

k

 C̃

✓

1

`!t

1
\

0

�

f

(u/C̃`+1)1/pk�
`

(u/t) du

◆

p

k

 C̃

✓

�

`

(1/t)

t

1
\

0

�

f

(u)1/pk�
`

(u) du

◆

p

k

,

where �
`

(t) = (1 + log+ t)`. Since '
`

(t) = t(1 + log+ t)`, it is easy to see
that �

`

(t)  '

0
`

(t)  (`+1)�
`

(t) for all t > 0. The theorem follows from the
equivalence

1
\

0

s

1/p�1

'

`

(f⇤(s)) ds t
1
\

0

�

`

(s)�
f

(s)1/p ds,

whose proof follows the same ideas as the proof of the equivalence between
the quasi-norms in (2.1).

3. Proof of Theorems 1.2, 1.4 and 1.5. We start by proving The-
orem 1.2. In order to show the density result we shall need to use the fol-
lowing properties of the Cesàro numbers A↵

n

, ↵ > �1 (see [20]):

(C1) A

↵

n

�A

↵

n�1

= (↵/n)A↵

n�1

for all n � 1.
(C2) There exist positive constants C

1

and C

2

depending only on ↵ such
that, for all n � 0,

C

1

(n+ 1)↵  A

↵

n

 C

2

(n+ 1)↵.

Proof of Theorem 1.2. (i) Given an operator T satisfying the hypothesis
of the theorem, from [11, Corollary 4.1] we find that there exists a positive
Lamperti contraction S on L

p(⌫) such that

(3.1) |Tn

f |  KS

n|f | for each f 2 L

p(⌫), n = 0, 1, . . . .

Hence M
↵,T

(f)  KM

↵,S

(|f |). Then, using Irmisch’s result for positive con-
tractions, we deduce that the operator M

↵

= M

↵,T

is bounded on L

p(⌫).
(ii) From [11] we get the norm convergence of the ergodic averages

R

n

f = (n+ 1)�1

P

n

k=0

T

k

f . Then, by [7, Corollary VIII.5.2], the set D =
{g + (h� Th) : g, h 2 L

p

, g = Tg, h simple} is a dense subset of Lp(⌫).
(iii) First, we note that R

n,↵

g = g for all g such that g = Tg. It remains
to prove, for a simple function h, that R

n,↵

(h�Th)(x) converges for almost
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every x 2 X. As in [9] (see also [15] or [4]), using the definition of the
numbers A↵

n

and property (C1), we get

R

n,↵

(h� Th)(x) =
n

X

i=0

A

↵�1

n�i

A

↵

n

(T i

h(x)� T

i+1

h(x))

=
A

↵�1

n

A

↵

n

h(x)� A

↵�1

n

A

↵

n

Th(x) +
n

X

i=1

A

↵�1

n�i

A

↵

n

T

i

h(x)�
n

X

i=1

A

↵�1

n�i

A

↵

n

T

i+1

h(x)

=
A

↵�1

n

A

↵

n

h(x)� 1

A

↵

n

T

n+1

h(x) +
1

A

↵

n

n

X

i=1

(A↵�1

n�i

�A

↵�1

n+1�i

)T i

h(x)

=
↵

↵+ n

h(x)� T

n+1

h(x)

A

↵

n

+
1� ↵

A

↵

n

n

X

i=1

A

↵�1

n�i

n+ 1� i

T

i

h(x)

= A

n

(x) +B

n

(x) + C

n

(x).

Clearly, lim
n!1A

n

(x) = 0 for a.e. x. Let

F

1

(x) =
1
X

n=0

|B
n

(x)|p and F

2

(x) =
1
X

n=0

|C
n

(x)|p.

Using property (C2) of the Cesàro numbers and (3.1), we get

\

X

|F
1

(x)| d⌫ .
1
X

n=0

1

(n+ 1)↵p
�

�

S

n+1|h|
�

�

p

p

. khkp
p

1
X

n=0

1

(n+ 1)↵p
< 1

and
\

X

|F
2

(x)| d⌫ .
1
X

n=0

1

(n+ 1)↵p

�

�

�

�

n

X

i=1

A

↵�1

n�i

n+ 1� i

T

i

h(x)

�

�

�

�

p

p

.
1
X

n=0

1

(n+ 1)↵p

✓

n

X

i=1

A

↵�1

n�i

n+ 1� i

�

�

S

i|h|
�

�

p

◆

p

. khkp
p

1
X

n=0

1

(n+ 1)↵p

⇣

n

X

i=1

(n+ 1� i)↵�2

⌘

p

. khkp
p

✓ 1
X

n=0

1

(n+ 1)↵p

◆

⇣

1
X

k=1

k

↵�2

⌘

p

< 1.

Hence lim
n!1B

n

(x) = lim
n!1C

n

(x) = 0 for a.e. x. Finally, the Banach
principle (see e.g. [2, p. 237] and [12, Th. 7.2, p. 64]) implies almost every-
where convergence on the whole space, and Lebesgue’s dominated conver-
gence theorem implies norm convergence.

Proof of Theorem 1.4. (i) Let p > 1/↵⇤. Since each Lamperti operator T
j

satisfies the hypothesis of Theorem 1.1 or Theorem 1.2 with ↵ = ↵

j

and
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p > 1/↵⇤ � 1/↵
j

, each ergodic maximal operator M
↵

j

is bounded on L

p(⌫).
Thus the boundedness on L

p(⌫) of M
↵̄

follows trivially from (1.1).
(ii) First, we shall assume for each j = 1, . . . , k, either

(a0) T

j

is positive with positive inverse and satisfies hypothesis (a) of
the theorem, or

(b0) T

j

is a positive Lamperti contraction on L

p(⌫).

As usual, we first study the pointwise convergence of the averages R
n̄,↵̄

in
a dense subset of Lp(⌫). As in [15, proof of Theorem 3.1] or by Irmisch’s
result we know that the sets

D

j

= {g + (h� T

j

h) : g, h 2 L

p

, g = T

j

g, h simple}
are dense subsets of Lp(⌫) for all j = 1, . . . , k. As in [7] we shall prove the
convergence of the averages R

n̄,↵̄

f for all f 2 D

1

, using induction on the
number of operators.

If k = 1, the result was proved in [15] if the operator satisfies (a0) or
in [9] if it satisfies (b0). Now suppose that the result holds for k � 1
operators T

2

, . . . , T

k

, where each T

j

satisfies (a0) or (b0), i.e., for any f 2 D

1

,
the limit R

n

k

,↵

k

� · · · � R

n2,↵2f(x) exists for almost every x 2 X when
n

k

, . . . , n

2

! 1. For simplicity set ñ = (n
2

, . . . , n

k

), ↵̃ = (↵
2

, . . . ,↵

k

) and
R

ñ,↵̃

= R

n

k

,↵

k

� · · · �R
n2,↵2 . Let g 2 L

p(⌫) be such that T
1

g = g. Then

R
n̄,↵̄

g(x) = R

n

k

,↵

k

� · · · �R
n2,↵2g(x) = R

ñ,↵̃

g(x).

By the inductive hypothesis R
n̄,↵̄

g(x) converges for almost every x 2 X as
n̄ ! 1. It remains to prove, for a simple function h, that R

n̄,↵̄

(h� T

1

h)(x)
converges for almost every x 2 X. It is su�cient to study the convergence of
R

n̄,↵̄

(�
A

� T

1

�

A

)(x) with A a measurable subset of X with 0 < ⌫(A) < 1.
From [15, Proposition 3.2] or from Irmisch’s result, we know that

lim
n1!1

R

n1,↵1(�A

� T

1

�

A

)(x) = 0 a.e.

Notice that the operators R
ñ,↵̃

are positive and sup
ñ>0

|R
ñ,↵̃

f | 2 L

p(⌫) for
f 2 L

p(⌫) with p > 1/↵⇤, because

sup
ñ>0

|R
ñ,↵̃

(f)|  M

↵

k

� · · · �M
↵2(f).

Now, applying the inductive hypothesis and using a general reduction prin-
ciple of Sucheston (see [18, Proposition 1.1]) we get

R
n̄,↵̄

(�
A

� T

1

�

A

)(x) = R
ñ,↵̃

(R
n1,↵1(�A

� T

1

�

A

))(x) ! 0

as n̄ ! 1. Then the Banach principle implies almost everywhere conver-
gence on the whole space L

p(⌫).
Now, let T

j

, j = 1, . . . , k, be as in the hypothesis of the theorem. By
using Theorem 1.1(ii) or 1.2(ii) and repeating the induction argument, we
only need to show that R

n̄,↵̄

(�
A

�T

1

�

A

)(x) converges for a.e. x. Notice that
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the operator R
ñ,↵̃

can be dominated by the corresponding one associated
to positive operators T

+

2

, . . . , T

+

k

, where T

+

j

can be the linear modulus of
T

j

or the associated positive contraction S

j

(it is the linear modulus if T
j

satisfies (a) and a positive contraction if T
j

satisfies (b)); we denote this
operator by R+

ñ,↵̃

. The operators T

+

j

, j = 2, . . . , k satisfy hypothesis (a0)
or (b0). Then, from the previous results we infer that R+

ñ,↵̃

f converges a.e.
for every f 2 L

p(⌫). Now, since

|R
n̄,↵̄

(�
A

� T

1

�

A

)|  R+

ñ,↵̃

|R
n1,↵1(�A

� T

1

�

A

)|

and lim
n1!1 |R

n1,↵1(�A

� T

1

�

A

)(x)| = 0 for a.e. x, we obtain the desired
result by applying Sucheston’s principle again. Finally, the Banach principle
implies almost everywhere convergence on the whole space, and Lebesgue’s
dominated convergence theorem implies norm convergence.

Proof of Theorem 1.5. (i) As mentioned in the Introduction, the main
tool to prove this theorem is Theorem 2.1. In fact, from the assumptions on
T

j

we see that each operator M
↵

j

is of restricted weak type (1/↵
j

, 1/↵
j

) and
bounded in L

1(⌫). Then, by Theorem 2.1 and inequality (1.1), we obtain
the boundedness of M

↵̄

.

(ii) In the proof of Theorem 1.3 (see [3, p. 235]) the authors showed that
if a Lamperti operator satisfies the hypothesis of Theorem 1.1 then it also
satisfies the hypothesis of Theorem 1.3. Applying this fact we deduce that
by Theorem 1.4 the averages R

n̄,↵̄

f converge for all f 2 L

p with p > 1/↵⇤.
Let D = L

p(⌫) \ ⇤(1/↵⇤,'m�1

) with p > 1/↵⇤. The set D is a dense
subset of ⇤(1/↵⇤,'m�1

) since the set of simple functions is. Thus we get
the convergence of R

n̄,↵̄

f for almost every x 2 X and all f 2 D, and (ii)
follows. In fact, let A

t

(f) = {x : lim sup
n̄!1 |R

n̄,↵̄

f(x)� f(x)| > t} and let
g be a simple function. Then

|A
t

(f)|  |A
t/2

(f � g)|  2|{x : M
↵̄

(f � g)(x) > t/4}|

 2['
m�1

(4/t) 
1/↵⇤,'

m�1
(f � g)]1/↵⇤

.

The desired result follows since given f 2 ⇤(1/↵⇤,'m�1

), for any ✏, t > 0,
we can choose a simple function g such that the last term above is less
than ✏.

4. Application to strong Cesàro-↵ continuity. For a function f :
Rn ! R we say that f is Cesàro-↵ continuous at x, for ↵ > 0, if the Cesàro-↵
averages

P

↵

✏

f(x) =
c(n,↵)

|Q(x, ✏)|1+(↵�1)/n

\

Q(x,✏)

f(y)d(y, @Q(x, ✏))↵�1

dy
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converge to f(x) as ✏ ! 0, where Q(x, ✏) =
Q

n

i=1

[x
i

� ✏, x

i

+ ✏]n, @Q(x, ✏) is
the border of Q(x, ✏), d(y, @Q(x, ✏)) = min

1in

{x
i

+✏�y

i

, y

i

�(x
i

�✏)} is the
distance in the infinity norm from y to the border ofQ(x, ✏), and the constant
c(n,↵) can be written in terms of the � function as c(n,↵) = 2

↵�1

n�(↵,n)

, where

�(m,n) =
T
1

0

(1� t)m�1

t

n�1

dt, m,n � 0. If ↵ = 1,

(4.1) P

1

✏

f(x) =
1

|Q(x, ✏)|

\

Q(x,✏)

f(y) dy,

and Lebesgue’s di↵erentiation theorem establishes that if f 2 L

1

loc

(Rn) then
f is Cesàro-1 continuous at almost every x.

If in (4.1) we replace the cubes Q(x, ✏) by rectangles with sides parallel
to the axes, R(x, ✏̄) = [x

1

� ✏

1

, x

1

+ ✏

1

]⇥ · · ·⇥ [x
n

� ✏

n

, x

n

+ ✏

n

], the theorem
of Jensen, Marcinkiewicz and Zygmund shows that if f belongs to the Orlicz
space L

'(Rn) with '(t) = t(1 + log+ t)n�1, then the averages

P1

✏̄

f(x) =
1

|R(x, ✏̄)|

\

R(x,✏̄)

f(y) dy

converge to f at x for almost every x as ✏̄ ! 0, that is, ✏
1

! 0, . . . , ✏
n

! 0
independently. In this case we say that f is strongly Cesàro-1 continuous
at x. In general, for ↵̄ = (↵

1

, . . . ,↵

n

), we say that f is strongly Cesàro-↵̄
continuous at x if the averages

P ↵̄

✏̄

f(x) =
c(n, ↵̄)

Q

n

i=1

|I(x
i

, ✏

i

)|↵i

\

R(x,✏̄)

f(y)
n

Y

i=1

d(y
i

, @I(x
i

, ✏

i

))↵i

�1

dy

converge to f at almost every x as ✏̄ ! 0, where I(x
i

, ✏

i

) = [x
i

� ✏

i

, x

i

+ ✏

i

]
and c(n, ↵̄) = 2|↵̄|�n

Q

n

j=1

↵

j

with |↵̄| =
P

n

j=1

↵

j

.

We want to apply the results of Section 2 to the study of the convergence
of the averages P ↵̄

✏̄

f . We shall work with slightly more general averages. For
L 2 N, we consider the space Rn factored into L blocks, Rn = Rn1⇥· · ·⇥Rn

L .
If G

1

:= {j 2 N : 1  j  n

1

} and G

i

:= {j 2 N : n
1

+ · · · + n

i�1

+ 1 
j  n

2

+ · · ·+ n

i

} for i = 2, . . . , L, then we denote by x

i the set of variables
(x

j

: j 2 G

i

) 2 Rn

i , i = 1, . . . , L. Given ↵̄ = (↵
1

, . . . ,↵

L

) with 0 < ↵

i

 1
and ✏̄ = (✏

1

, . . . , ✏

L

) with ✏
i

> 0, we define the averages

P ↵̄

✏̄

f(x) =
c(n̄, ↵̄)

Q

L

i=1

|Q
i

|1+(↵

i

�1)/n

i

\

Q1

· · ·
\

Q

L

f(y)
L

Y

i=1

d(yi, @Q
i

)↵i

�1

dy

L · · · dy1,

where Q

i

= Q(xi, ✏
i

) are cubes in Rn

i and c(n̄, ↵̄) =
Q

L

i=1

c(n
i

,↵

i

) =
Q

L

i=1

2

↵

i

�1

n

i

�(↵

i

,n

i

)

. The purpose of this section is to prove the following result.
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Theorem 4.1. Given ↵̄ = (↵
1

, . . . ,↵

L

), let ↵⇤ = min
1iL

↵

i

and as-
sume that there are exactly m numbers ↵

i

, with 1  m  L, such that
↵⇤ = ↵

i

. Then

lim
✏̄!0

P ↵̄

✏̄

f(x) = f(x)

for almost every x 2 Rn, for all f 2 L

p(Rn) with p > 1/↵⇤ and for all
f 2 ⇤(1/↵⇤,'m�1

) where '
k

(t) = t(1 + log+ t)k.

Proof. Given x 2 Rn, we denote x̃

i

= (x1, . . . , xi�1

, x

i+1

, . . . , x

L). For
f : Rn ! R, let f

x̃

i

: Rn

i ! R be given by f

x̃

i

(xi) = f(x1, . . . , xi, . . . , xL).
For 0 < �  1 and � > 0, we define the averages

P

i,�

�

f(x) = P

�

�

(f
x̃

i

)(xi)

=
c(n

i

, �)

|Q(xi, �)|1+(��1)/n

i

\

Q(x

i

,�)

|f
x̃

i

(yi)|d(yi, @Q(xi, �))��1

dy

i

.

Associated with these averages we define the maximal operators

M

i

�

f(x) = M

�

(f
x̃

i

)(xi) = sup
�>0

P

i,�

�

|f |(x),

where M

�

f(x) = sup
�>0

P

�

�

|f |(x).
From the results in [10], the operators M i

�

are bounded on L

p(Rn) for all
p > 1/� and are of restricted weak type (1/�, 1/�). In fact, by Minkowski’s
integral inequality and the restricted weak type of M

�

we get

|{x 2 Rn : M i

�

f(x) > t}| =
\

Rn�n

i

\

Rn

i

�{yi:M
�

f

x̃

i

(y

i

)>t}(x
i) dxi dx̃

i


\

Rn�n

i

✓

C

t

1
\

0

|{xi : |f
x̃

i

(xi)| > s}|� ds
◆

1/�

dx̃

i


✓

C

t

1
\

0

⇣ \

Rn�n

i

|{xi : |f(x)| > s}| dx̃
i

⌘

�

ds

◆

1/�

=

✓

C

t

1
\

0

|{x 2 Rn : |f(x)| > s}|� ds
◆

1/�

.

Notice that M
↵̄

, the maximal operator associated to the averages P ↵̄

✏̄

f , sat-
isfies the pointwise inequality

(4.2) M
↵̄

f(x) = sup
✏̄>0

P ↵̄

✏̄

|f |(x)  M

1

↵1
� · · · �ML

↵

L

f(x),

where ✏̄ > 0 means ✏
i

> 0 for all i = 1, . . . , L. Then it is clear that the
operator M

↵̄

is bounded on L

p(Rn) for all p > 1/↵⇤. On the other hand,
since it is possible to change the order of the operators M

i

↵

i

in (4.2), from
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the above results for each operators M i

↵

i

and Theorem 2.1 we get

|{x : M
↵̄

f(x) > t}|  C

⇣

'

m�1

(1/t)
1
\

0

s

↵⇤�1

'

m�1

(f⇤(s)) ds
⌘

1/↵⇤

for all t > 0.
Finally, following the same arguments as in the proofs of Theorems 1.4

and 1.5, using for example the set of continuous functions with compact sup-
port as a dense subset of Lp(Rn), we obtain the convergence of the averages
P ↵̄

✏̄

f in the desired spaces.
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