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computation is encoded in the numerical program DYRes, which allows the user to apply

arbitrary kinematical cuts on the final-state leptons and to compute the corresponding

distributions in the form of bin histograms. We present a comparison of our results with

some of the available LHC data. The inclusion of the leptonic decay in the resummed cal-

culation requires a theoretical discussion on the qT recoil due to the transverse momentum

of the produced vector boson. We present a qT recoil procedure that is directly applica-

ble to qT resummed calculations for generic production processes of high-mass systems in

hadron collisions.
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1 Introduction

The production of high-mass lepton pairs through the Drell-Yan (DY) mechanism [1] is a

benchmark hard-scattering process at hadron colliders. It provides important tests of the

Standard Model (SM) with both precise measurements of its fundamental parameters and,

at the same time, stringent constraints on new physics.

It is thus a major task to achieve accurate theoretical predictions for the DY pro-

duction cross section and related kinematical distributions. This requires, in particular,

the evaluation of QCD radiative corrections, which can be perturbatively computed as

power series expansion in the strong coupling αS . The total cross section [2, 3] and the

rapidity distribution [4] of the vector boson are known up to the next-to-next-to-leading

order (NNLO) in perturbative QCD. Two independent fully exclusive NNLO calculations,

which include the leptonic decay of the vector boson, have been performed [5–9]. Elec-

troweak (EW) radiative corrections are also available for both W [10–14] and Z/γ∗ [15–18]

production. Mixed QCD-EW corrections have been considered in refs. [19–22].

A particularly relevant observable is the transverse-momentum (qT ) distribution of

the vector boson. To obtain a precise measurement of the W mass it is important to have

accurate theoretical calculations of the W and Z bosons qT spectra. In the large-qT region

(qT ∼ mV ), where the transverse momentum is of the order of the vector boson mass

mV , QCD corrections are known up to O(α2
S) [23–25], and these results were extended in

refs. [26, 27] with the inclusion of the dependence on the leptonic decay variables. Very

recently the fully exclusive O(α3
S) computation of vector boson production in association

with a jet has been performed in ref. [28] (in the case of W production) and ref. [29] (in

the case of Z/γ∗ production).

The bulk of the vector boson cross section is produced in the small-qT region (qT ≪
mV ), where the reliability of the fixed-order expansion is spoiled by the presence of large
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logarithmic corrections, αn
S (m2

V /q
2
T ) ln

m(m2
V /q

2
T ) (with 0 ≤ m ≤ 2n − 1), of soft and

collinear origin. To obtain reliable predictions, these logarithmically-enhanced terms have

to be evaluated and systematically resummed to all orders in perturbation theory [30–44].

In recent years, the resummation of small-qT logarithms has been reformulated [45–57] by

using Soft Collinear Effective Theory (SCET) methods and transverse-momentum depen-

dent (TMD) factorization.

The resummed and fixed-order calculations, which are valid at small and large values

of qT , respectively,can be consistently matched at intermediate values of qT to achieve a

uniform theoretical accuracy for the entire range of transverse momenta.

In this paper we compute the vector boson transverse-momentum distribution [58, 59]

by using the resummation formalism proposed in refs. [40–42], which can be applied to a

generic process in which a high-mass system of non strongly-interacting particles is pro-

duced in hadronic collisions [41, 42, 60–74]. Other phenomenological studies of the DY qT
distribution, which combine resummed and fixed-order perturbative results at different lev-

els of theoretical accuracy, can be found in refs. [75–93]. Within the studies in refs. [75–93],

the kinematical dependence on the momenta of the final-state leptons is considered only

in the RESBOS calculation [77, 78, 92] and in the calculations of refs. [79] and [91].

Hadron collider experiments can directly measure only the decay products of vector

bosons in finite kinematical regions. Therefore, it is important to include the vector boson

leptonic decay in the theoretical calculations, by retaining the kinematics of the final-

state leptons. In this way it is possible to obtain predictions for the transverse-momentum

distribution of the measured leptons. This is specially relevant in the case of W production

where, because of the final-state neutrino, the transverse momentum of the vector boson

can only be reconstructed through a measure of the hadronic recoil. Moreover, in both cases

of W and Z production, the inclusion of the leptonic decay allows one to apply kinematical

selection cuts, thus providing a more realistic simulation of the actual experimental analysis.

In ref. [58, 59] we have presented a resummed computation of the transverse-momentum

spectrum for Z/γ∗ production at Tevatron energies. We have combined resummation at

the next-to-next-to-leading logarithmic (NNLL) accuracy in the small-qT region with the

fixed-order results at O(α2
S) in the large-qT region. This leads to a calculation with uniform

theoretical accuracy from small to intermediate values of qT . In particular, the integral

over the range 0 ≤ qT ≤ qTmax (qTmax is a generic upper limit in the small-qT region) of the

qT distribution includes the complete perturbative terms up to NNLO. Moreover, at large

values of qT the calculation implements a unitarity constraint that guarantees to exactly

reproduce the NNLO value of the total cross section after integration over qT . In this paper

we extend the NNLL+NNLO calculation of ref. [59] toW boson production, and we include

the leptonic decay of the vector boson with the corresponding spin correlations. The spin of

the vector boson dynamically correlates the decaying lepton momenta with the transverse

momentum acquired by the vector boson through its production mechanism. Therefore, the

inclusion of the full dependence on the lepton decay variables in the resummed calculation

requires a theoretical discussion on the treatment of the qT recoil due to the transverse

momentum of the vector boson. We treat the qT recoil by introducing a general procedure

that is directly applicable to qT resummed calculations for generic production processes of

– 2 –
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high-mass systems in hadron collisions. The calculation presented in this paper parallels

the one performed in ref. [62] for the case of SM Higgs boson production, with the non-

trivial additional complication of dealing with the spin correlations that are absent in

the Higgs boson case. Our vector boson computation is implemented in the numerical

code DYRes, which allows the user to apply arbitrary kinematical cuts on the final-state

leptons and to compute the corresponding relevant distributions in form of bin histograms.

The code DYRes is publicly available and it can be downloaded from the URL address

http://pcteserver.mi.infn.it/∼ferrera/dyres.html.

The paper is organized as follows. In section 2 we briefly review the resummation

formalism of refs. [40–42], and we discuss the main features of qT resummation for the DY

process with full dependence on final-state lepton variables. In section 3 we present our

quantitative results for vector boson production at LHC energies. Section 3.1 is devoted

to the qT spectrum of the vector boson after integration over the final-state leptons. We

present results at different orders of logarithmic accuracy, we study the corresponding

dependence on scale variations, and we briefly comment on uncertainties due to parton

densities and on non-perturbative effects. In section 3.2 we compare our numerical results

for Z/γ∗ and W production with some of the available LHC data, and we also study the

impact of transverse-momentum resummation on lepton kinematical variables. In section 4

we summarize our results. The appendix presents a detailed discussion of qT recoil and of

its implementation.

2 Transverse-momentum resummation

In this section we briefly recall the main features of the transverse-momentum resummation

formalism that we use in this paper. A more detailed discussion of the resummation formal-

ism can be found in refs. [40–42, 44]. In ref. [59] we have considered NNLL resummation

for the qT distribution of the vector boson after integration over the kinematical variables

of the decaying leptons and the rapidity of the vector boson. In this paper we extend the

results of ref. [59] to include the entire kinematical dependence on the final-state leptons.

The presentation in this section parallels that of section 2 in ref. [59] and, in particular,

we highlight the main differences that arise in the treatment of the rapidity of the vector

boson and, especially, of the lepton kinematics.

We consider the inclusive hard-scattering process

h1(P1) + h2(P2) → V (q) +X → l3(p3) + l4(p4) +X, (2.1)

where the collision of the two hadrons h1 and h2 with momenta Pµ
1 and Pµ

2 produces the

vector boson V (V = W+,W−, Z and/or γ∗) with total momentum qµ, which subsequently

decays in the lepton pair l3l4, and X denotes the accompanying final-state radiation. We

consider high values of the invariant mass M of the lepton pair (in general, M differs

from the on-shell mass mV of the vector boson V ), and we treat the colliding hadrons

and the leptons in the massless approximation (P 2
1 = P 2

2 = p23 = p24 = 0) throughout the

paper. In a reference frame where the colliding hadrons are back-to-back, the momentum
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qµ is fully specified by the invariant mass M (M2 = q2), the two-dimensional transverse-

momentum vector qT (with magnitude qT =
√
q 2
T and azimuthal angle φqT ) and the

rapidity y (y = 1
2 ln

q·P2

q·P1
) of the vector boson. Analogously the momentum pµj of the lepton

lj (j = 3, 4) is specified by the lepton rapidity yj and transverse momentum pT j .

The kinematics of the lepton pair is completely specified by six independent variables

(e.g., the three-momenta of the two leptons). For our purposes, it is convenient to use the

vector boson momentum qµ to select four independent variables. Therefore, the final-state

lepton kinematics is fully determined by the vector boson momentum qµ = pµ3 + pµ4 and

by two additional and independent variables that specify the angular distribution of the

leptons with respect to the vector boson momentum qµ. We generically denote these two

additional kinematical variables as Ω = {ΩA,ΩB}. These two independent variables can be

chosen in different ways. For instance, we can use longitudinally boost invariant variables

such as the rapidity difference y3 − y and the azimuthal angle φ3 (or the azimuthal angle

difference φ3 − φqT ) of the lepton l3 and the vector boson in the hadronic back-to-back

reference frame. Alternatively, we can use the polar and azimuthal angles {θ′, φ′} of one

lepton in a properly specified rest frame of the vector boson (such as, for instance, the

Collins-Soper rest frame [94]). Independently of the actual specification of the variables Ω,

the most general fully-differential hadronic cross section is expressed in terms of the sixfold

differential distribution
dσh1h2→l3l4

d2qT dM2 dy dΩ
(qT ,M, y, s,Ω) , (2.2)

where s = (P1 + P2)
2 = 2P1 · P2 is the square of the hadronic centre-of-mass energy.

Obviously, the differential distribution also depends on the EW parameters (including

the mass mV of the vector boson V ): unless otherwise specified, this dependence is not

explicitly denoted throughout the paper.

The differential hadronic cross section can be written as

dσh1h2→l3l4

d2qT dM2 dy dΩ
(qT ,M, y, s,Ω) =

∑

a1,a2

∫ 1

0
dx1

∫ 1

0
dx2 fa1/h1

(x1, µ
2
F ) fa2/h2

(x2, µ
2
F )

× dσ̂a1a2→l3l4

d2qT dM2 dŷ dΩ
(qT ,M, ŷ, ŝ,Ω;αS(µ

2
R), µ

2
R, µ

2
F ) ,

(2.3)

where fa/h(x, µ
2
F ) (a = qf , q̄f , g) are the parton densities of the colliding hadron h at

the factorization scale µF , dσ̂a1a2→l3l4 are the differential partonic cross sections, ŝ =

x1x2s is the square of the partonic centre-of-mass energy, ŷ = y − ln
√
x1/x2 is the vector

boson rapidity with respect to the colliding partons, and µR is the renormalization scale.

Note that the partonic cross sections do not have any explicit dependence on hadronic

kinematical variables, since the leptonic variables Ω are specified with respect to qµ. The

partonic cross section dσ̂a1a2→l3l4 is computable in QCD perturbation theory as a power

series expansion in the QCD coupling αS .

In the region where qT ∼ M , the perturbative expansion of the partonic cross section

starts at O(αS). In this region the value of the auxiliary scales µF and µR can be chosen to

– 4 –
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be of the order of M , and the QCD perturbative series is controlled by a small expansion

parameter αS(M
2). Therefore, fixed-order calculations of the partonic cross section are

theoretically justified. The QCD radiative corrections are known analytically up to O(α2
S)

after integration over the lepton angular variables [24, 25] and with the inclusion of the

full dependence on these angular variables [26, 27]. The numerical results at O(α2
S) can be

obtained also from the fully-exclusive calculations of refs. [5–9]. Results at O(α3
S) can be

derived from the recent numerical computations of W + jet production [28] and Z/γ∗ + jet

production [29].

In the small qT region (qT ≪M), the perturbative computation of the partonic cross

section starts at O(α0
S) through the leading-order (LO) EW process qf q̄f ′ → V of quark-

antiquark annihilation. In this region, the QCD radiative corrections are known up to

NNLO (i.e., O(α2
S)) in analytic form [98] by neglecting corrections of O(qT /M) (these

corrections can directly be extracted from refs. [24–27]). The complete (i.e., by includ-

ing corrections of O(qT /M)) NNLO result can be obtained from the numerical computa-

tions of refs. [5–8]. However, in the small qT region the convergence of the fixed-order

perturbative expansion is spoiled by the presence of powers of large logarithmic terms,

αn
S (M2/q2T ) ln

m(M2/q2T ) (with 0 ≤ m ≤ 2n− 1). In particular, these terms become singu-

lar in the limit qT → 0. To obtain reliable predictions these terms have to be resummed

to all orders.

Within our formalism, the resummation is performed at the level of the partonic cross

section, which is decomposed as follows:
[
dσ̂a1a2→l3l4

]
=

[
dσ̂

(res.)
a1a2→l3l4

]
+

[
dσ̂

(fin.)
a1a2→l3l4

]
. (2.4)

Here we have introduced a shorthand notation: the symbol
[
dσ̂a1a2→l3l4

]
denotes the mul-

tidifferential partonic cross section that appears as the last factor in the right-hand side of

eq. (2.3). The first term, dσ̂(res.), on the right-hand side of eq. (2.4) is the resummed com-

ponent. It contains all the logarithmically-enhanced contributions (at small qT ) that have

to be resummed to all orders in αS . The second term, the finite component dσ̂(fin.), is free

of such contributions and thus it can be evaluated at fixed order in perturbation theory.

Note that part of the non-singular (i.e., not logarithmically-enhanced) contributions can

also be included in dσ̂(res.), and we comment later about this point.

The resummation of the logarithmic contributions has to be carried out in the impact

parameter (b) space [30–36, 75] to fulfil the important constraint of transverse-momentum

conservation for inclusive multiparton radiation. The impact parameter b is the conju-

gate variable to qT through a Fourier transformation. The small-qT region (qT ≪ M)

corresponds to the large-b region (bM ≫ 1) and the logarithmic terms ln(M2/q2T ) become

large logarithmic contributions ln(M2b2) in b space. The resummed component of the cross

section is then obtained by performing the inverse Fourier transformation (or the Bessel

transformation in eq. (2.6)) from b space to qT space. The resummed component of the

partonic cross section in eq. (2.4) can be expressed as

[
dσ̂

(res.)
a1a2→l3l4

]
=

∑

b1,b2=qf ,q̄f ′

dσ̂
(0)
b1b2→l3l4

dΩ

1

ŝ
Ŵa1a2,b1b2→V (q

2
T ,M, ŷ, ŝ;αS(µ

2
R), µ

2
R, µ

2
F ) , (2.5)
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where

Ŵa1a2,b1b2→V (q
2
T ,M, ŷ, ŝ;αS , µ

2
R, µ

2
F )

=

∫
∞

0

db

2π
b J0(bqT ) Wa1a2,b1b2→V (b,M, ŷ, ŝ;αS , µ

2
R, µ

2
F ) , (2.6)

and J0(x) is the 0th-order Bessel function. The factor dσ̂
(0)
b1b2→l3l4

in the right-hand side

of eq. (2.5) is the Born level differential cross section for the partonic subprocess qf q̄f ′ →
V → l3l4 of quark-antiquark annihilation, where the quark flavours f and f ′ can be either

different (if V = W±) or equal (if V = Z, γ∗). This factor is of purely EW origin, and it

completely encodes the dependence on the lepton kinematical variables Ω. We postpone

more detailed comments on dσ̂(0) (see eq. (2.12) and the discussion therein). The QCD

radiative corrections and their associated dependence on ln(M2b2) are embodied in the

resummed factor Wa1a2,b1b2→V , which depends on the produced vector boson V but it is

independent of the decay leptons (in particular, it does not depend on Ω). The integrand

W in eq. (2.6) depends on b2 = b2 and the inverse Fourier transformation is recast in

terms of the Bessel transformation through the integration over the azimuthal angle of b.

Note that the resummation factor Ŵa1a2,b1b2→V depends on q2T and it does not contain any

dependence on the azimuthal angle φqT of qT . This azimuthal independence is a feature of

transverse-momentum resummation [36] for the production processes of colourless systems

(such as vector bosons) through quark-antiquark annihilation. In contrast, logarithmically-

enhanced azimuthal correlations enter transverse-momentum resummation for processes

initiated by gluon-gluon fusion [43] (such as Higgs boson production) and for production

of systems that carry colour charges (such as heavy quarks) [95] through either quark-

antiquark annihilation or gluon-gluon fusion.

The all-order resummation structure of Wa1a2,b1b2→V in eq. (2.6) can be organized in

exponential form [41, 42]. The exponentiated structure is directly evident by considering

the ‘double’ (N1, N2) Mellin moments W(N1,N2)
V (b,M) of the function WV (b,M, ŷ, ŝ) with

respect to the variables z1 = e+ŷM/
√
ŝ and z2 = e−ŷM/

√
ŝ at fixed M . We have1

W(N1,N2)
V (b,M ;αS(µ

2
R), µ

2
R, µ

2
F ) = H(N1,N2)

V

(
M ;αS(µ

2
R),M/µR,M/µF ,M/Q

)

× exp{G(N1,N2)(αS(µ
2
R), L̃;M/µR,M/Q)}, (2.7)

where the dependence on b (and on the large logarithm ln(M2b2)) is denoted by defining

and introducing the logarithmic expansion parameter L̃ ≡ ln(Q2b2/b20+1) with b0 = 2e−γE

(γE = 0.5772 . . . is the Euler number). The scale Q ∼ M , named resummation scale [60],

which appears in the right-hand side of eq. (2.7), parametrizes the arbitrariness in the

resummation procedure. Although W(N1,N2)
V does not depend on Q when evaluated to all

perturbative orders, its explicit dependence on Q occurs when it is computed by truncation

of the resummed expression at some level of logarithmic accuracy (see eq. (2.8)). Variations

1For the sake of simplicity, in this presentation we omit the explicit dependence on the parton indices

{a1a2, b1b2}. This simplified notation applies to the case of a sole parton species or, more precisely, to

flavour non-singlet partonic channels (see refs. [41, 42] for the general case).

– 6 –
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of Q around M can thus be used to estimate the size of yet uncalculated higher-order

logarithmic contributions.

The contribution exp{G(N1,N2)} in the right-hand side of eq. (2.7) includes the Sudakov

form factor and collinear-evolution terms. This contribution (which does not depend on

the factorization scale µF ) is universal (i.e. process independent), namely, it is independent

on the produced vector boson V and, more generally, it occurs in transverse-momentum

resummation for all the processes that are initiated by quark-antiquark annihilation at the

LO level. The generalized form factor exp{G(N1,N2)} contains all the terms that order-by-

order in αS are logarithmically divergent as b → ∞ (or, equivalently, as qT → 0). The

all-order expression of the form factor can be systematically expanded in terms of functions

g(k)(αSL̃) of the resummation parameter αS(µ
2
R)L̃ (each function g(k)(αSL̃) resums terms

αn
SL̃

n and it is defined such that g(k)(0) = 0). The resummed logarithmic expansion of

G(N1,N2) in powers of αS(µ
2
R) reads

G(N1,N2)(αS(µ
2
R), L̃;M/µR,M/Q)

= L̃ g(1)(αS(µ
2
R)L̃) + g(2) (N1,N2)(αS(µ

2
R)L̃;M/µR,M/Q)

+
αS(µ

2
R)

π
g(3) (N1,N2)(αS(µ

2
R)L̃;M/µR,M/Q) + . . . , (2.8)

where the term L̃ g(1) collects the leading logarithmic (LL) contributions, the function

g(2) includes the next-to-leading logarithmic (NLL) contributions [37–39], g(3) controls the

NNLL terms [49, 96] and so forth. The function H(N1,N2)
V depends on the specific process

of vector boson production and it is due to hard-virtual and collinear contributions. This

function does not depend on the impact parameter b (it includes all the perturbative

contributions to W(N1,N2)
V that behave as constants in the limit b → ∞) and, therefore, it

can be expanded in powers of αS = αS(µ
2
R) as

H(N1,N2)
V (M ;αS) = 1 +

αS

π
H(1) (N1,N2)

V +
(αS

π

)2
H(2) (N1,N2)

V + . . . . (2.9)

The next-to-leading order (NLO) term H(1) (N1,N2)
V is known since a long time [97], and the

NNLO term H(2) (N1,N2)
V has been obtained more recently by two independent calculations

in refs. [98] and [99]. The explicit form of the functions G(N1,N2) and H(1) (N1,N2)
V and,

in particular, their dependence on the Mellin moment indices (N1, N2) can be found in

ref. [41] and in appendix A of ref. [42].

Incidentally, we recall that the generalized form factor exp{G} is known up to NNLL

accuracy also for processes initiated by the gluon fusion mechanism [43, 49, 100–102], and

that the O(α2
S) collinear coefficients (which contribute to the NNLO term in eq. (2.9)) are

also known for all possible partonic channels [44, 98, 99, 103, 104]. Owing to the universality

structure of transverse-momentum resummation, these results and those for the qq̄ annihi-

lation channel (which contribute to vector boson production) can be directly implemented

in resummed calculations for production processes of generic high-mass systems.

The finite component dσ̂(fin.) in eq. (2.4) has to be evaluated starting from the usual

fixed-order perturbative truncation of the partonic cross section and subtracting the ex-

– 7 –
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pansion of the resummed part at the same perturbative order. We have

[
dσ̂

(fin.)
a1a2→l3l4

]
f.o.

=
[
dσ̂a1a2→l3l4

]
f.o.

−
[
dσ̂

(res.)
a1a2→l3l4

]
f.o.

, (2.10)

where the subscript f.o. denotes the perturbative truncation at the order f.o. (NLO, NNLO

and so forth). The customary fixed-order component [dσ̂a1a2 ]f.o. (and consequently also the

finite component) definitely contains azimuthal correlations with respect to qT , although

these are not logarithmically-enhanced in the small-qT region.

To obtain NLL+NLO accuracy we have to include the functions g(1) and g(2)(N1,N2)

in the generalized form factor G(N1,N2) of eq. (2.8), the function H(1)(N1,N2)
V in the

hard/collinear factor H(N1,N2)
V of eq. (2.9) and the finite component of eq. (2.10) up to

O(αS). To reach NNLL+NNLO accuracy we need to include also the functions g(3)(N1,N2),

H(2)(N1,N2)
V and the finite component up to O(α2

S).
2 This matching procedure between

resummed and finite contributions guarantees to achieve uniform theoretical accuracy over

the entire range of transverse momenta. In particular, we remark that the inclusion of

H(2)(N1,N2)
V in the resummed component at the NNLL+NNLO level is essential to achieve

NNLO accuracy in the small-qT region (considering a generic upper limit value qTmax, the

integral over the range 0 ≤ qT ≤ qTmax of the qT distribution at the NNLL+NNLO level

includes the complete perturbative terms up to NNLO). An analogous remark applies to

the inclusion of H(1)(N1,N2)
V at the NLL+NLO level.

We have so far illustrated the resummation formalism for the most general sixfold

differential partonic cross section
[
dσ̂a1a2→l3l4

]
(and for the corresponding hadronic cross

section in eq. (2.3)). Starting from
[
dσ̂a1a2→l3l4

]
and performing integrations over some

kinematical variables, we can obtain resummed results for more inclusive qT -dependent

distributions. For instance, integrating over the lepton kinematical variables Ω, we obtain

the qT cross section dσ/(d2qT dM2 dy) at fixed invariant mass and rapidity of the lepton

pair. The corresponding resummed component of the partonic cross section, as obtained

from eq. (2.5), is

dσ̂
(res.)
a1a2→l3l4

d2qT dM2 dŷ
(qT ,M, ŷ, ŝ;αS , µ

2
R, µ

2
F )

=
∑

b1,b2=qf ,q̄f ′

σ̂
(0)
b1b2→l3l4

(M2)
1

ŝ
Ŵa1a2,b1b2→V (q

2
T ,M, ŷ, ŝ;αS , µ

2
R, µ

2
F ), (2.11)

where σ̂
(0)
qf q̄f ′→l3l4

(M2) is the Born level (EW) total cross section for the partonic subprocess

qf q̄f ′ → V → l3l4. By performing an additional integration over the rapidity y of the vector

2This classification of the resummed+matched expansion exactly coincides with that of refs. [41, 59].

We simply note that we are using labels that differ from those used in refs. [41, 59]. The various terms of

the expansion are denoted here (analogously to ref. [62]) with the labels NLL+NLO and NNLL+NNLO,

whereas they were denoted in refs. [41, 59] with the corresponding labels NLL+LO and NNLL+NLO. The

fixed-order labels NLO and NNLO used here directly refer to the perturbative accuracy in the small-qT
region (which corresponds to the perturbative accuracy of the total cross section), whereas the labels LO

and NLO used in refs. [41, 59] were directly referring to the perturbative accuracy in the large-qT region.
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boson (lepton pair), we obtain dσ/(d2qT dM2) and the corresponding resummed compo-

nent of the partonic cross section simply involves the integration over ŷ of the resummed

factor Ŵ (q2T ,M, ŷ, ŝ) in eqs. (2.5) and (2.11) (or, equivalently, the factor W(b,M, ŷ, ŝ) in

eq. (2.6)). After integration over ŷ, the ensuing resummed factor depends on M and ŝ,

and it can be conveniently expressed in exponentiated form [41] by considering ‘single’ N

Mellin moments with respect to the variable z = M2/ŝ at fixed M . The resummed expres-

sion for these ‘single’ N moments is exactly obtained by simply setting N1 = N2 = N in

eqs. (2.7)–(2.9). Our resummed calculation of dσ/(d2qT dM2) was discussed in ref. [58, 59],

and it is implemented in the numerical code DYqT. In refs. [58, 59] we presented detailed

quantitative results for vector boson production at Tevatron energies. Results from DYqT

at LHC energies are presented in the following section 3.1.

Within our formalism the resummation of the large terms ln(M2/q2T ) at small values

of qT is achieved by first performing the Fourier transformation of the qT cross section

(or, more precisely, of its singular behaviour in the small-qT region) from qT space to b

space (incidentally, the renormalization scale µR and the others auxiliary scales Q and µF

are kept fixed and, especially, independent of qT in the integration over qT of the Fourier

transformation). In b space, the large logarithmic variable (whose dependence has to be

resummed) is L̃, at large values of b. Note that in the context of the resummation approach,

the parameter αS(µ
2
R)L̃ is formally considered to be of order unity. Therefore, the ratio of

two successive terms in the expansion (2.8) is formally of O(αS(µ
2
R)) (with no L̃ enhance-

ment). In this respect the resummed logarithmic expansion in eq. (2.8) is as systematic as

any customary fixed-order expansion in powers of αS(µ
2
R). Analogously to any perturbative

expansions, the perturbative terms g(k) (N1,N2)(αS(µ
2
R)L̃;M/µR,M/Q) in eq. (2.8) have an

explicit logarithmic dependence on ln(M/µR) or ln(M/Q) (see, e.g., eqs. (22) and (23) in

ref. [41]). Therefore, to avoid additional large logarithmic enhancements that would spoil

the formal behaviour of the expansion in eq. (2.8), the renormalization scale µR has to be

set at a value of the order of M ∼ Q. A completely analogous reasoning applies to the

µF dependence of H(N1,N2)
V

(
M ;αS(µ

2
R),M/µR,M/µF ,M/Q

)
in the expansion of eq. (2.9)

and, therefore, we should set µF ∼ M . In other words, once the enhanced perturbative

dependence on b2M2 (i.e., on the two different scales M and 1/b) is explicitly resummed

(albeit at a definite logarithmic accuracy), we are effectively dealing with a single-scale

observable at the hard scale M and we can set µR ∼ µF ∼ M in both the resummed and

finite components of the qT cross section in eq. (2.4).

We remark that setting µ = O(M) (here µ generically denotes the auxiliary scales

µR, µF , Q) does not mean that the qT cross section is physically controlled by parton

radiation with intensity that is proportional to αS(M
2). The resummed form factor

exp{G(N1,N2)} in eq. (2.7) (and the ensuing logarithmic expansion in eq. (2.8)) is pro-

duced by multiparton radiation with intensity that is proportional to αS(k
2) and k2 is a

dynamical scale that varies in the range M2 > k2 > 1/b2 (see, for instance, eq. (19) in

ref. [41]), where 1/b2 can be physically identified with q2T at small values of qT . Setting

µ ∼ M in eqs. (2.7) and (2.8) corresponds, roughly speaking, to consider the scale range

µ2 > k2 > 1/b2 (it does not correspond to set k2 ∼ µ2 ∼ M2).

We recall [41] a feature of our resummation formalism. The small-qT singular contribu-

tions that are resummed in eqs. (2.5) (or eq. (2.11)) are controlled by the large logarithmic
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parameter ln(M2/q2T ), which corresponds to L = ln(Q2b2/b20) (with Q ∼ M) in b space

at b → ∞. In our resummation formula (2.7), we actually use the logarithmic parameter

L̃ = ln(Q2b2/b20+1) [60]. The motivations to use the logarithmic parameter L̃ are detailed

in ref. [41] (see, in particular, the appendix B and the comments that accompany eqs. (16)-

(18) and eqs. (74)-(75) in ref. [41]), and here we simply limit ourselves to recalling some

aspects. In the relevant resummation region bQ ≫ 1, we have L̃ = L +O(1/(Q2b2)) and,

therefore, L̃ and L are fully equivalent to arbitrary logarithmic accuracy (in other words,

the replacement L̃ ↔ L simply modifies the partition of small-qT non-singular contributions

between the two components in the right-hand side of eq. (2.4)). However, L and L̃ have

a very different behaviour as b → 0 (and, thus, they differently affect the qT cross section

in the large-qT region3). When bQ ≪ 1, we have L ≫ 1 and, therefore, the replacement

L̃ → L in eq. (2.7) would produce the resummation of large and unjustified perturbative

contributions in the large-qT region (strictly speaking, the replacement L̃ → L leads to

a qT cross section that is even not integrable over qT when qT → ∞: see, in particular,

eqs. (131) and (132) of the arXiv version of ref. [41] and related accompanying comments).

In contrast, when bQ ≪ 1 we have L̃ → 0 and G(N1,N2) → 0. Therefore, the use of L̃

reduces the impact of unjustified large contributions that can be introduced in the small-b

region through the resummation procedure. Moreover, the behaviour of the form factor

exp{G(N1,N2)} at b = 0 is related to the integral over qT of the qT -dependent cross section

and, since we have exp{G(N1,N2)} = 1 at b = 0, our resummation formalism fulfils a per-

turbative unitarity constraint [41]: after inclusion of the finite component as in eq. (2.10),

the integration over qT of our resummed qT cross sections recovers the fixed-order predic-

tions for the total cross sections. Specifically, the integral over qT of dσ/(d2qT dM2dy)

and dσ/(d2qT dM2) at the NNLL+NNLO (NLL+NLO) accuracy completely and exactly

(i.e., with no additional higher-order contributions) agrees with the rapidity distribution

dσ/(dM2dy) and the total cross section dσ/dM2 at NNLO (NLO) accuracy, respectively.

In summary, the expressions (2.7) and (2.8) in terms of the logarithmic parameter L̃ cor-

rectly resum the large parametric dependence on ln(bQ) at large values of bQ and they

introduce parametrically-small perturbative contributions at intermediate or small values

of bQ (the coefficients of the perturbative corrections are proportional to powers of L̃ with

L̃ ∼ O(1) if bQ ∼ O(1) or L̃ ≪ 1 if bQ ≪ 1). After having combined the resummed calcu-

lation at NkLL accuracy with the complete NkLO calculation, as in eqs. (2.4) and (2.10),

these parametrically-small corrections produce residual terms that start to contribute at

the Nk+1LO level. Therefore, the use of L̃ has the purpose of reducing the impact of

unjustified and large higher-order (i.e., beyond the NkLO level) contributions that can be

possibly introduced at intermediate and large values of qT through the resummation of

the logarithmic perturbative behaviour at small values of qT . In particular, no residual

higher-order contributions are introduced in the case of the total (integrated over qT ) cross

section (which is the most basic quantity that is not affected by logarithmically-enhanced

perturbative corrections).

3The contribution of the integral in eq. (2.6) from the integration region where b∼<O(1/M) ∼ O(1/Q)

always gives (provided W(b,M) is integrable over such region) a non-singular contribution to the qT cross

section in the small-qT region.
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We add some relevant comments about the dependence of the resummed cross section

on the kinematical variables Ω that specify the angular distribution of the leptons with

respect to the vector boson. By direct inspection of eqs. (2.5) and (2.11) we see that they

involve exactly the same resummation factor Ŵ . The only difference between the right-

hand side of these equations arises form the Born level factors dσ̂(0)/dΩ and σ̂(0), which

are related as follows through the integration over Ω:

dσ̂
(0)
qf q̄f ′→l3l4

dΩ
= σ̂

(0)
qf q̄f ′→l3l4

(M2) Fqf q̄f ′→l3l4(qT/M ;M2,Ω) , (2.12)

with the normalization condition∫
dΩ Fqf q̄f ′→l3l4(qT/M ;Ω) = 1 . (2.13)

Although both factors depend on EW parameters (EW couplings, mass and width of the

vector boson), they have a different dependence on the relevant kinematical variables. The

vector boson distribution dσ(res.)/(d2qT dM2 dy) (and, analogously, dσ(res.)/(d2qT dM2))

involves the Born level total cross section σ̂(0)(M2), which depends on M2, whereas the

less inclusive leptonic distribution dσ(res.)/(d2qT dM2 dy dΩ) involves the Born level differ-

ential cross section dσ̂(0)/dΩ that additionally depends on Ω and also on the transverse

momentum qT of the lepton pair (see the function F in the right-hand side of eq. (2.12)).

To our knowledge the qT dependence of dσ̂(0)/dΩ has not received much attention in

the previous literature on transverse-momentum resummation and, therefore, we discuss

this issue with some details in appendix A. Physically, this qT dependence is a necessary

consequence of transverse-momentum conservation and it arises as a qT -recoil effect in

transverse-momentum resummation. At the LO in perturbation theory the lepton angular

distribution is determined by the Born level production and decay process of the vector bo-

son, which carries a vanishing transverse momentum. Through the resummation procedure

at fixed lepton momenta, higher-order contributions due to soft and collinear multiparton

radiation dynamically produce a finite value of the transverse momentum qT of the lepton

pair, and this finite value of qT has to be distributed between the two lepton momenta by

affecting the lepton angular distribution. This qT -recoil effect on the Born level angular

distribution is a non-singular contribution to the qT cross section at small values of qT and,

therefore, it is not directly and unambiguously computable through transverse-momentum

resummation. In other words, the Born level function F in eq. (2.12) has the form

Fqf q̄f ′→l3l4(qT/M ;M2,Ω) = Fqf q̄f ′→l3l4(0;M
2,Ω) +O(qT/M) , (2.14)

where F (0;M2,Ω) is uniquely determined, whereas the small-qT corrections of O(qT/M)

has to be properly specified. In any physical computations of lepton observables (i.e., in

any computations that avoid possible unphysical behaviour due to violation of momen-

tum conservation for the decay process q = p3(l3) + p4(l4)) through transverse-momentum

resummation, a consistent qT -recoil prescription has to be actually (either explicitly or

implicitly) implemented.4 Note that, after having combined the resummed and finite com-

4The dynamical treatment of the qT recoil is embedded in the formulation of transverse-momentum (kT )

factorization [105–109] of hard-scattering processes at high energy (at small x).
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ponents as in eqs. (2.4) and (2.10), the O(qT/M) recoil effects lead to contributions that

start at O(α3
S) (i.e., N3LO) in the case of our resummed calculation at NNLL+NNLO

accuracy (correspondingly, these contributions start at O(α2
S) in the case of NLL+NLO

accuracy). Obviously there are infinite ways of implementing the qT -recoil effect, and in

appendix A we explicitly describe a very general and consistent procedure.5 Note that

the qT -recoil effect completely cancels after integration over the leptonic variables Ω (see

eq. (2.13)).

Our resummed calculation of the sixfold differential distribution in eq. (2.2) is imple-

mented in the numerical code DYRes, which allows the user to apply arbitrary kinematical

cuts on the momenta of the final-state leptons and to compute the corresponding rele-

vant distributions in form of bin histograms. We add some comments on the numerical

implementation of our calculation. In eqs. (2.7)–(2.9) we have illustrated the structure

of the resummed component in the double (N1, N2) Mellin space. Through the inverse

Mellin transformation, this structure can equivalently be expressed in terms of convolu-

tions with respect to longitudinal momentum fractions x1 and x2 (see eq. (2.3)). In the

DYRes code, the Mellin inversion is carried out numerically. The results for the NNLO

term H(2)
V in eq. (2.9) are presented in ref. [98] in analytic form directly in (x1, x2) space.

These results have to be transformed in Mellin space. Then, the Mellin inversion requires

the numerical evaluation of some basic N -moment functions that appear in the expression

of H(2)(N1,N2)
V : this evaluation has to be performed for complex values of N , and we use

the numerical results of ref. [110–113]. This implementation of the resummed component

is completely analogous to that of the DYqT code [58, 59] and of other previous computa-

tions [42]. Nonetheless, the efficient generation of ‘vector boson events’ according to the

multidifferential distribution of eq. (2.4) and the inclusion of the leptonic decay are tech-

nically non trivial, and this requires substantial improvements in the computational speed

of the numerical code that evaluates the resummed component of the cross section. The

fixed-order (NLO and NNLO) cross section in eq. (2.10) and then the finite component

of the cross section in eq. (2.4) are evaluated through an appropriate modification of the

DYNNLO code [8]: DYNNLO is particularly suitable to this purpose, since it is based on the qT
subtraction formalism [114], which uses the transverse-momentum resummation formalism

to construct the subtraction counterterms.

Using the resummation expansion parameter L̃ in eq. (2.7) and the matching procedure

(which implements the perturbative unitarity constraint on the total cross section) with

the complete fixed-order calculation, our resummation formalism [41] formally achieves a

uniform theoretical accuracy in the region of small and intermediate values of qT , and it

avoids the introduction of large unjustified higher-order contributions in the large-qT re-

5The qT -recoil issue is not a specific issue of leptonic decay in vector boson production. The issue is

completely general (see appendix A), and it arises in any qT resummed calculation for the production of a

set of particles with measured momenta at fixed total transverse momentum qT (e.g., diphoton, diboson,

or heavy-quark pair production). A noticeable exception (as discussed in appendix A) is the production

of a SM Higgs boson and its subsequent decay. In this case, due to the spin-0 nature of the Higgs boson,

the qT dependence of the corresponding Born level function F (qT/M ;M2,Ω) can be entirely determined

by kinematics [62], without the necessity of specifying qT -recoil effects of dynamical origin.
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gion. In the large-qT region, the results of the resummed calculation are consistent with

the customary fixed-order results and, typically [41, 59], show larger theoretical uncertain-

ties (e.g., larger dependence with respect to auxiliary-scale variations) with respect to the

corresponding fixed-order results. This feature is not unexpected, since the theoretical

knowledge (and the ensuing resummation) of large logarithmic contributions at small qT
cannot improve the theoretical predictions at large values of qT . In the large-qT region,

where the resummed calculation shows ‘unjustified’ large uncertainties and ensuing loss

of predictivity with respect to the fixed-order calculation, the reliability of the resummed

calculation is superseded by that of the fixed-order calculation. In this large-qT region, we

can simply use the theoretical results of the fixed-order calculation. In the computation

of quantities that directly and explicitly depend on qT (e.g., the transverse-momentum

spectrum of the vector boson), it is relatively straightforward to identify and select ‘a pos-

teriori’ the large-qT region where the resummed calculation is superseded by the fixed-order

calculation. In the present work, however, we are also interested in studying kinematical

distributions of the vector boson decay products: our goal is thus to generate the full

kinematics of the vector boson and its (leptonic) decay, to apply the required acceptance

cuts, and to compute the relevant distributions of the lepton kinematical variables. In

this framework, the actual results can become sensitive to the large-qT region in which

the resummed calculation cannot improve the accuracy of the fixed-order calculation. To

reduce this sensitivity, in the DYRes implementation of the resummed calculation we thus

introduce a smooth switching procedure at large value of qT by replacing the resummed

cross section in eq. (2.4) as follows:
[
dσ̂a1a2→l3l4

]
→ w(qT )

([
dσ̂

(res.)
a1a2→l3l4

]
+

[
dσ̂

(fin.)
a1a2→l3l4

])
+ (1− w(qT ))

[
dσ̂a1a2→l3l4

]
f.o.

,

(2.15)

where the function w(qT ) is defined as

w(qT ) =

{
1 qT ≤ qsw.

T

f(qT ) qT > qsw.
T

(2.16)

and the function f(qT ) is chosen as

f(qT ) = exp

{
− (qsw.

T − qT )
2

2∆q2T

}
. (2.17)

We have quantitatively checked that the value of the parameter qsw.
T can be ‘suitably’

chosen in the large-qT region, and that both parameters qsw.
T and ∆qT can be consistently

chosen so as not to spoil our unitarity constraint (in section 3.1 we show that the integral

over qT of our NLL+NLO and NNLL+NNLO resummed results still reproduces well the

NLO and NNLO total cross sections). We note that we do not introduce any switching

procedure in the DYqT calculation (though, its introduction is feasible) since, as previously

mentioned, the identification of the large-qT region is straightforward in the computation

of dσ/(d2qT dM2).

We recall [41] that the resummed form factor exp{G(αS , L̃)} of eq. (2.7) is singular

at very large values of b. The singularity occurs in the region b∼> 1/ΛQCD, where ΛQCD
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is the momentum scale of the Landau pole of the perturbative running coupling αS(µ
2).

This singularity is the ‘perturbative’ signal of the onset of non-perturbative (NP) phenom-

ena at very large values of b (which practically affect the region of very small transverse

momenta). In this region NP effects cannot any longer be regarded as small quantitative

corrections and they have to be taken into account in QCD calculations. A simple and

customary procedure to include NP effects is as follows. The singular behaviour of the

perturbative form factor exp{G(αS , L̃)} is removed by using a regularization procedure6

and the resummed expression in eq. (2.7) is then multiplied by a NP form factor and it is

inserted as integrand of the b space integral in eq. (2.6). The regularization procedure that

was used in the DYqT calculation [59] is the ‘minimal prescription’ of ref. [84, 115], which

basically amounts to avoid the singularity of exp{G(αS , L̃)} by deforming the integration

contour of eq. (2.6) in the complex b plane. In the DYRes calculation of the present work,

we use a different regularization procedure by freezing the b dependence of exp{G(αS , L̃)}
before reaching its singular point. The freezing procedure follows the ‘b∗ prescription’ of

refs. [35, 36] and it is obtained by performing the replacement

b2 → b2∗ = b2 b2lim/(b
2 + b2lim) (2.18)

in the b dependence of G(αS , L̃). The value of the parameter blim has to be large (blimM ∼
blimQ ≫ 1) but smaller than the value of b at which the singularity of exp{G(αS , L̃)}
takes place (note that the replacement in eq. (2.18) has a negligible effect at small and

intermediate values of b since b2∗ = b2(1+O(b2Q2/b2limQ
2)) ≃ b2 if bQ ∼< 1). The use of the

b∗ freezing procedure improves the (numerical) performances of the DYRes code. Additional

comments on NP effects are presented in section 3.1.

3 Numerical results at the LHC

In this section we consider the processes pp → Z/γ∗ → l+l− and pp → W± → lνl at LHC

energies. We present our resummed results at NNLL+NNLO and NLL+NLO accuracy,

and we compare them with some of the available LHC data. We compute the hadronic

cross sections at NNLL+NNLO (NLL+NLO) accuracy by using the NNPDF3.0 NNLO

(NLO) [116] parton densities functions (PDFs), with αS(m
2
Z) = 0.118 and with αS(µ

2
R)

evaluated at 3-loop (2-loop) order. As in customary fixed-order calculations at high invari-

ant mass (M = O(mZ)), we consider Nf = 5 flavours of light quarks and we treat them in

the massless approximation.

As for the EW couplings, we use the so called Gµ scheme, where the input pa-

rameters are GF , mZ , mW . In particular, we use the PDG 2014 [117] values GF =

1.1663787 × 10−5GeV−2, mZ = 91.1876GeV, ΓZ = 2.4952GeV, mW = 80.385GeV and

ΓW = 2.085GeV and in the case of W± production, we use the (unitarity constrained)

CKM matrix elements Vud = 0.97427, Vus = 0.22536, Vub = 0.00355, Vcd = 0.22522,

6We recall that the resummed form factor exp{G(αS , L̃)} produces a strong suppression (G(αS , L̃) ∝

−αSL̃
2) in the large-b region where αSL̃

2
∼>O(1). Therefore, the choice of different regularization procedures

mildly affects [30–33, 35, 36] the results since its effects are relevant only in the region b ∼ O(1/ΛQCD)

where the b integral is strongly damped by the form factor.
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Vcs = 0.97343, Vcb = 0.0414. Our calculation implements the leptonic decays Z/γ∗ → l+l−

and W → lνl (we include the effects of the Z/γ∗ interference and of the finite width of

the W and Z bosons) with the corresponding spin correlations and the full dependence

on the kinematical variables of final state leptons. This allows us to take into account the

typical kinematical cuts on final state leptons that are considered in the experimental anal-

ysis. As discussed in section 2, the resummed calculation at fixed lepton momenta requires

a qT -recoil procedure. We implement a procedure that is described in appendix A, and

that is practically equivalent to compute the Born level distribution dσ̂(0)/dΩ of eqs. (2.5)

and (2.12) in the Collins-Soper rest frame [94] (this is exactly the same procedure as used in

other resummed calculations [74, 77–79]). As explained in section 2, the DYRes resummed

calculation uses a smooth switching procedure (see eq. (2.15)) in the large-qT region. In our

numerical implementation the parameters in eq. (2.17) are chosen to be ∆qT = M/(2
√
2)

and qsw.
T = 3M/4.

3.1 Inclusive results at fixed qT

We start the presentation of our results by discussing some general features of the qT
spectrum that can be addressed at the inclusive level, i.e. after integration over the lepton

angular variables Ω and over the rapidity y of the lepton pair. Unless otherwise specified,

the numerical results of this subsection are obtained by using the code DYqT [58, 59].

The code DYqT is publicly available and it can be downloaded from the URL address

http://pcteserver.mi.infn.it/∼ferrera/dyqt.html.

We first consider the dependence on the auxiliary scales µF , µR and Q. These scales

have to be set at values of the order of the invariant mass M of the produced system,

with no definite preference for specific values. Then, scale variations around the chosen

central value can be used to estimate the size of yet uncalculated higher-order terms and

the ensuing perturbative uncertainties. In the NNLL+NNLO studies of refs. [41, 61, 62]

on Higgs boson production, and in our previous work on vector boson production [59] the

central reference values of the scales were chosen as µF = µR = 2Q = mF , where mF is the

mass of the produced boson (the Higgs boson mass in the case of Higgs boson production,

and the vector boson mass in the case of vector boson production). In the case of Higgs

boson production, this choice gives consistent NLL+NLO and NNLL+NNLO results with

a reduced scale dependence at NNLL+NNLO level and, in particular, with a nice overlap of

the NLL+NLO and NNLL+NNLO uncertainty bands (see, e.g., figure 2 of ref. [61]). In the

case of vector boson production, our previous studies were focused on Tevatron energies,

and a similar pattern was observed [59]. When moving to vector boson production at LHC

energies, we notice that the factorization-scale dependence exhibits a (slightly) different

behaviour.

In figure 1 we present results for the qT spectrum of on-shell Z bosons produced at the

LHC (
√
s = 8TeV) and the corresponding dependence on factorization-scale variations.

In the left panel the central scale is µF = µR = 2Q = mZ , while in the right panel the

central scale is µF = µR = Q = mZ/2. In both panels, we present the NLL+NLO and

NNLL+NNLO results at the central scale and corresponding bands that are obtained by

varying (up and down) the factorization scale by a factor of 2 around its corresponding
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(a) (b)

Figure 1. The qT spectrum of Z bosons at the LHC (
√
s = 8TeV). The bands of the NLL+NLO

(red dashed) and NNLL+NNLO (blue solid) results are obtained by performing µF variations

around the central values µF = mZ (left panel) and µF = mZ/2 (right panel). The lower panel

presents the ratio of the NLL+NLO and NNLL+NNLO results with respect to the NNLL+NNLO

result at the central value of µF . The result of the convolution of the NLL+NLO partonic cross

section with NNLO PDFs at the central value of µF is also reported (black dotted) in the lower panel.

central value. The lower panel in figures 1(a) and 1(b) presents the ratio of the various

results with respect to the NNLL+NNLO result at the corresponding central scale. If µF =

µR = 2Q = mZ is the central scale choice (left panel), we see that the factorization-scale

bands at NLL+NLO and NNLL+NNLO accuracy never overlap, except for the tiny region

around qT ∼ 7GeV where they cross each other. The lack of overlap is particularly evident

in the peak region, where the bulk of the events is placed: here the central NLL+NLO and

NNLL+NNLO results differ by about 30%. We also notice that throughout the region of

small and intermediate values of qT (qT ∼< 30GeV) the size of the NLL+NLO band is rather

small and it is always (with the exception of a small region around qT ∼ 8GeV) smaller

than the size of the NNLL+NNLO band, and this suggests that an accidental cancellation

of the µF dependence may occur at the NLL+NLO level with this choice of central scale.

In the right panel we observe a µF -dependence behaviour that is qualitatively similar but

quantitatively different from that in the left panel. If µF = µR = Q = mZ/2 is the

central scale choice (right panel), the NLL+NLO and NNLL+NNLO bands are closer and

they overlap at small transverse momenta. The overlap occurs in a limited region of qT
that, nevertheless, includes the peak region. The shape of the spectra appears closer when

going from NLL+NLO to NNLL+NNLO accuracy, and the NLL+NLO band is wider than

the NNLL+NNLO one in the small and intermediate region of qT . Note that the central

values of µR are µR = mZ and µR = mZ/2 in the left and right plot, respectively, but

we have checked that this difference has little effect: the observed different behaviour is

mainly due to the different central value of µF . In summary, the µF dependence observed
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Figure 2. NLL+NLO (red dashed) and NNLL+NNLO (blue solid) results for the qT spectrum of

Z bosons at the LHC with energies
√
s =8TeV (left panel) and

√
s =14TeV (right panel). The

NLL+NLO and NNLL+NNLO results with the central value µF = µR = Q = mZ/2 of the scales

are enclosed by corresponding bands. The bands are obtained by performing {µF , µR, Q} variations

(as described in the text) around the central value mZ/2. The lower panel presents the ratio of the

scale-dependent NLL+NLO and NNLL+NNLO results with respect to the NNLL+NNLO result at

the central value of the scales.

in the left panel of figure 1 suggests that the corresponding scale variation bands (and

especially the NLL+NLO band) are likely to underestimate the perturbative uncertainties

of the calculation. Based on these observations, in the rest of the paper, we will adopt

µF = µR = Q = mZ/2 as reference values of the central scales.

The differences between the NLL+NLO and NNLL+NNLO results have a twofold

origin. Part of the differences is due to the next-order radiative corrections in the partonic

cross sections, and the remaining part is due to the increased order of the PDFs. To

quantify the impact of these two different contributions, we have considered the result that

is obtained by convoluting the NLL+NLO partonic cross sections with the NNLO PDFs.

This result, at the central scales that are considered in figures 1(a) and 1(b), is reported

(see the black dotted line) in the corresponding lower panel, and we can see that it is

quite close to the NLL+NLO result with NLO PDFs. In other words, a large part of the

quantitative differences between the NLL+NLO and NNLL+NNLO results is due to the

corresponding differences at the level of the partonic cross sections.

The NLL+NLO and NNLL+NNLO results for the qT spectrum of on-shell Z boson

produced at the LHC with different collision energies are presented in figure 2. We consider

two centre-of-mass energies:
√
s =8TeV (figure 2 left) and

√
s =14TeV (figure 2 right). At

each logarithmic accuracy we present the result at the central value µF = µR = Q = mZ/2

of the scales and a corresponding band. The bands provide an estimate of the perturbative

uncertainties of the calculations due to missing higher-order contributions. The bands are

obtained through independent variations of µF , µR and Q by following the procedure of
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ref. [59]: we independently vary µF , µR and Q in the range mZ/4 ≤ {µF , µR, Q} ≤ mZ

with the constraints 0.5 ≤ µF /µR ≤ 2 and 0.5 ≤ Q/µR ≤ 2. We remind the reader that

the constraint on µF /µR is introduced to avoid large logarithmic contributions (ln(µF /µR)

terms from the evolution of the parton densities) in the perturbative expansion of the

hard/collinear factor HV of eq. (2.7). Analogously, the constraint on Q/µR avoids large

logarithmic terms (ln(Q/µR)) in the resummed expansion of the form factor exp{G} of

eq. (2.7). The lower panels in figure 2 present the ratio of the scale-dependent NLL+NLO

and NNLL+NNLO results with respect to the NNLL+NNLO result at the central value

µF = µR = Q = mZ/2 of the scales.

The region of small and intermediate values of qT is shown in the main panels of

figure 2. At fixed centre-of-mass energy the NNLL+NNLO qT spectrum is harder than

the spectrum at NLL+NLO accuracy. At fixed value of qT the cross section sizeably in-

creases by increasing the centre-of-mass energy from 8TeV to 14TeV. The shape of the

NNLL+NNLO qT spectrum is slightly harder at the higher energy. The NLL+NLO scale-

variation band is wider than the NNLL+NNLO band. The NLL+NLO and NNLL+NNLO

bands overlap at small transverse momenta and remain very close by increasing qT (the

differences with respect to the plot on the right-hand side of figure 1 are due to the ad-

ditional dependence on µR and Q). The NNLL+NNLO (NLL+NLO) scale dependence is

about ±10% (±20%) at the peak, it decreases to about ±2% (±7%) at qT ≃ 10GeV and

increases to about ±6% (±10%) at qT ∼ 25GeV. Since the NNLL+NNLO and NLL+NLO

bands do not exactly touch each other in the region where qT ∼> 8GeV, one may argue that

the ‘true’ perturbative uncertainty of the NNLL+NNLO result in this region is slightly

larger than the size of the NNLL+NNLO scale dependence band (for instance, one may

use [58] the difference between the NNLL+NNLO central scale result and the upper line of

the NLL+NLO band in figure 2 to estimate the uncertainty of the NNLL+NNLO result).

The inset plots show the cross section in the large-qT region. The resummation results

obtained with DYqT and reported in the inset plots are presented for completeness and

mainly for illustrative purposes. At large values of qT (qT ∼>mZ) the resummed result looses

predictivity, and its perturbative uncertainty becomes large. In this region of transverse

momenta we see that the uncertainty band increases in going from the NLL+NLO to

the NNLL+NNLO level. However, as already mentioned in section 2, at high qT the

resummation cannot improve the predictivity of fixed-order calculations and the DYqT result

in figure 2 cannot be regarded as reference theoretical result. The resummed result has

to be replaced by the standard fixed-order prediction. The NNLO (NLO) result (which is

not shown in figure 2) lies inside the NNLL+NNLO (NLL+NLO) band and the former has

a smaller scale dependence than the latter. We also note that, at high qT , the preferred

reference central scales µR and µF of the fixed-order prediction should be of the order of√
m2

Z + q2T (rather than of the order of mZ).

We also recall that, increasing qT throughout the high-qT region, fixed-order QCD

calculations are affected by additional and potentially-large logarithmic terms. These are

collinear (fragmentation) contributions [118, 119], which become more relevant by increas-

ing the ratio qT /M , and soft (threshold) contributions [120–123], which become more

relevant by increasing the ratio qT /
√
s (or qT /

√
ŝ).
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We have so far discussed only uncertainties from missing higher-order contributions.

Before moving to consider the case in which cuts on the final-state leptons are applied,

we briefly discuss two additional sources of QCD uncertainties on the qT spectrum: the

uncertainty from PDFs and that from NP effects. We consider these effects in turn.

Modern sets of PDFs include an estimate of the errors (mainly experimental errors) in

their determination from global data fits, and this estimate can then be used to compute the

ensuing PDF uncertainty on the QCD calculation of hadron collider observables. In figure 3

we consider Z boson production at NNLL+NNLO accuracy. In figure 3 (a) we report the

NNLL+NNLO results of figure 2 (a) (
√
s =14TeV) and the effect of the PDF uncertainty at

68% CL on the NNLL+NNLO calculation at the central scale value µF = µR = Q = mZ/2.

In figure 3 (b) the scale-dependence and PDF-uncertainty bands are normalized to the

central NNLL+NNLO prediction, and we present results at both energies
√
s =8TeV

(lower panel) and
√
s =14TeV (upper panel). We see that the PDF uncertainty is smaller

than the scale uncertainty. Moreover, the PDF uncertainty is approximately independent

on the transverse momentum, and it has a value of about ±3% at both energies
√
s = 8TeV

and
√
s = 14TeV.

NP effects are known to increasingly affect the transverse-momentum spectrum as qT
decreases towards qT → 0. A detailed study of these effects is beyond the scope of the

present work. We limit ourselves to roughly estimate the possible impact of such effects, and

we use a very simple model in which the perturbative form factor exp{G(αS , L̃) in eq. (2.7)

is multiplied by a NP form factor SNP (b) = exp{−gNP b
2}, which produces a Gaussian

smearing of the qT distribution at small-qT values. We vary the value of the parameter

gNP in a quite wide (‘conservative’) range, 0 ≤ gNP ≤ 1.2GeV2, and in figure 3(a) (black

band) we show the ensuing quantitative effects on the qT spectrum. In figure 3(b) the

NP effects are normalized with respect to the perturbative NNLL+NNLO result at central

value of the scales.

Comparing the lower panels of figure 2 with figure 3, we can first make an overall

qualitative comment. Perturbative corrections make the qT spectrum harder in going from

NLL+NLO to NNLL+NNLO accuracy, and this occurs at both small and intermediate

values of qT . NP effects increase the hardness of the qT spectrum at small values of qT
and they are negligible at intermediate values of qT . Therefore, we note a non trivial

interplay of perturbative and NP effects. In particular, at small values of qT higher-order

perturbative contributions can be mimicked by NP effects.

At the quantitative level, in figure 3 we see that the NNLL+NNLO result supplemented

with NP effects is very close to the perturbative result except in the very low qT region

(qT ∼< 3GeV), i.e. below the peak of the qT distribution. In the region 3 GeV∼<qT ∼< 10GeV,

the size of the NP band is similar to that of the PDF uncertainty band. At larger values of

qT , the NP effects vanish (the size of the NP band is smaller than about 2% starting from

qT ∼ 15GeV).

We note that our simple model treats the regularization of the perturbative form

factor (through the ‘minimal prescription’, see section 2) and the NP form factor in an

uncorrelated way, and this produces a conservative estimate of NP uncertainties. In other

words, the model underestimates the potential of the resummed calculation at very small

values of qT . For instance, the NP model can be improved by correlating the interplay
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(a) (b)

Figure 3. (a) The qT spectrum at NNLL+NNLO accuracy for Z boson production at the LHC

with
√
s =14TeV. Comparison of scale dependence (blue solid) and PDF (red crossed solid) un-

certainties. The possible impact of NP effects is also shown (black crossed dashed). (b) The same

results are normalized to the central NNLL+NNLO prediction at
√
s = 14TeV (upper panel), and

corresponding results are shown at
√
s = 8TeV (lower panel).

between the perturbative form factor (and, e.g., its scale variation dependence) and the

NP form factor (and the value of gNP ), and further constraints on the NP model can be

possibly obtained by inputs from comparisons with experimental data.

In summary, from our brief discussion on the possible impact of NP effects for vector

boson production at the LHC, we conclude that our conservative estimate leads to quan-

titative effects that are small and well within the scale variation dependence, still in the

very low qT region. A quantitatively similar conclusion applies to the effect of PDF uncer-

tainties. Based on these observations (and for practical purposes), in the presentation of

our results of section 3.2 we limit ourselves to considering only the perturbative calculation

and the corresponding scale variation uncertainties.

We conclude this subsection by presenting a comparison between the DYqT results and

the results of the ‘multidifferential’ program DYRes. When no cuts are applied on the final-

state leptons, the qT spectrum of the on-shell vector boson obtained with DYRes has to be

in agreement with the one obtained with the numerical program DYqT. We have numerically

checked that this is indeed the case. For illustrative purposes, we show the results of a

comparison in figure 4. Here we consider the qT spectrum for on-shell Z boson production

at the LHC with
√
s = 7TeV. The DYqT (solid line) and DYRes (histogram) results at

central value of the scales are compared at both NLL+NLO (red) and NNLL+NNLO

(blue) accuracy. At small and intermediate values of qT (main plot in figure 4), the DYqT

and DYRes results agree (within the statistical uncertainties of the DYRes code7) at both

level of logarithmic accuracy. The quantitative degree of agreement is more clearly visible

in the lower panel, which presents the result of the calculation of the binned ratio between

7Here and in the following the errors reported in the tables and on the histograms refer to a numerical

estimate of the accuracy of the Monte Carlo integration in the DYNNLO and DYRes codes.
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√
s = 7TeV). Comparison of the

DYRes (histograms) and DYqT (solid lines) resummed results at NLL+NLO (red) and NNLL+NNLO

(blue) accuracy. The corresponding fixed-order calculations (dashed lines) at O(αS) (red) and

O(α2
S
) (blue) are also shown. The ratio between the DYRes and DYqT results is shown in the

lower panel.

the DYRes and DYqT results at both NLL+NLO and NNLL+NNLO accuracy. The ratio

is everywhere consistent with unity within the numerical accuracy of its computation (the

numerical errors in the computation of the binned ratio are below about 1% at small values

of qT , and they are still below about 2% in the region 30 GeV∼<qT ∼< 50 GeV where the

value of the cross section sizeably decreases).

We recall (see section 2) that, at the inclusive level, the DYqT and DYRes calculations

involve differences in the numerical implementation and two additional differences related

to the treatment of the very low qT and high-qT regions. At very low values of qT , the

difference is due to the regularization procedure of the perturbative form factor for very

large values of the impact parameter b: the DYqT calculation uses the ‘minimal prescription’,

while the DYRes calculation uses the b∗ freezing procedure. In our actual calculation with
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Cross section [pb] NLO NLL+NLO NNLO NNLL+NNLO

pp → Z → l+l− 904.3± 0.2 904.6± 0.4 949.1± 0.7 947.3± 0.9

pp → W (±) → l(±)ν 9819± 2 9813± 4 10337± 6 10328± 9

Table 1. Total cross sections at the LHC (
√
s = 7TeV): fixed-order results and corresponding

resummation results of the DYRes numerical program.

DYRes the value of blim in eq. (2.18) is set to blim = bmax, where bmax is the maximum

value of b that can be reached before encountering the singularity of the perturbative form

factor (setting blim = bmax we do not introduce any additional regularization parameter,

analogously to the case of the ‘minimal prescription’). The value of bmax depends on the

renormalization and resummation scales µR and Q and, in the case of Z and W production

around the central value of the scales, the typical value is bmaxQ ∼ 1.2·103µR/mZ . We have

checked that the ‘minimal prescription’ and the choice blim = bmax give basically the same

numerical results, also at very small values of qT (qT ∼ 1GeV). This numerical agreement

is also visible (lower panel in figure 4) from the ratio between the DYRes and DYqT results

at low values of qT .

At large values of qT , the DYRes calculation implements the smooth switching procedure

of eqs. (2.15)–(2.17). The large-qT region is shown in the inset plot of figure 4, and here

the differences between the DYqT and DYRes calculations are due to the smooth switching

procedure. In the high-qT region the DYRes result at NNLL+NNLO (NLL+NLO) accuracy

basically agrees with the customary fixed-order result at O(α2
S) (O(αS)). The differences

between the DYRes and DYqT results (consistently) decrease in going from NLL+NLO to

NNLL+NNLO accuracy, and they are small at the NNLL+NNLO level. At both level of

logarithmic accuracy, the DYRes and DYqT results agree within their corresponding scale

variation uncertainties (which are not shown in the inset plot), and the DYRes result has a

reduced scale dependence (it matches the scale dependence of the corresponding fixed-order

result). The introduction of the smooth switching procedure in the DYRes calculation has

practically a negligible quantitative effect on the unitarity constraint that is fulfilled by the

DYqT calculation. In table 1 we report the total cross sections for both Z and W production

at
√
s = 7TeV, and we compare the resummed DYRes results with the corresponding fixed-

order results obtained with the DYNNLO code. We see that the NLL+NLO (NNLL+NNLO)

total cross section agrees with the NLO (NNLO) result to better than 1% accuracy.

In the main plot of figure 4, we also present a complementary information on the

results of the fixed-order calculations (dashed lines) at O(αS) (red dashed) and O(α2
S)

(blue dashed). At intermediate values of qT the differences between the resummed results

at two subsequent orders are smaller than the differences between the corresponding fixed-

order results at two subsequent orders. The differences between the resummed results and

the corresponding fixed-order results sizeably increase by decreasing qT . At small values

of qT , the result at O(αS) increases towards large positive values (they are outside the

vertical size of the plot) and, in a first very small bin (not shown in the plot) around

qT = 0, the O(αS) result would be very large and negative. The result at O(α2
S) has a very
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high unphysical peak (it is outside the vertical size of the plot) around qT ∼ 4GeV, then

it decreases towards very large negative values and, in a first very small bin (not shown in

the plot) around qT = 0, the O(α2
S) result would be very large and positive.

3.2 Vector boson production at the LHC

In this section we consider (qT related) physical observables that depend on the individual

lepton momenta and on the kinematics of the lepton pair. The dependence can be indi-

rect, through the application of acceptance cuts, and direct, through the definition of the

observable. Therefore, the resummed calculation presented in this section are performed

by using the numerical program DYRes.

We start our presentation by considering the measurements of the qT spectrum of

dilepton pairs at the LHC with
√
s = 7TeV, as reported by the CMS [124] and ATLAS [125]

Collaborations with an integrated luminosity of 36 pb−1 and 4.7 fb−1, respectively. The cuts

that define the fiducial region in which the measurements are performed (our corresponding

resummed calculation of the Z/γ∗ spectrum is carried out in the same region) are as follows.

In the case of the CMS analysis the invariant mass mll of the lepton pair is required to be in

the range 60GeV < mll < 120GeV, and the leptons must be in the central rapidity region,

with pseudorapidity |ηl| < 2.1, and they have a transverse momentum plT > 20GeV. In

the case of the ATLAS analysis the fiducial region is defined by: 66GeV < mll < 116GeV,

|ηl| < 2.4 and plT > 20GeV.

The results of our resummed calculation are shown in figure 5 (a) and (b). The blue-

solid (red-dashed) histogram is the NNLL+NNLO (NLL+NLO) prediction for the qT spec-

trum, which is normalized to the cross section in the fiducial region, and the points are the

data with the corresponding experimental errors. The inset plot shows the high-qT region.

To facilitate the comparison between the data and the perturbative calculation we consider

their ratio with respect to a reference theoretical result. We choose the NNLL+NNLO re-

sult at central values of the scales (µF = µR = Q = mZ/2) as reference result. The

lower panel shows the data and the scale dependent NNLL+NNLO prediction normalized

to this reference theoretical prediction. The scale dependence band of the perturbative

calculation is computed by varying µF , µR and Q as previously discussed in section 3.1:

we vary µF , µR and Q in the range mZ/4 ≤ {µF , µR, Q} ≤ mZ , with the constraints

0.5 ≤ {µF /µR, Q/µR} ≤ 2. We see that our perturbative calculation is consistent with the

data within the uncertainties. The scale variation bands at NLL+NLO and NNLL+NNLO

accuracy overlap. Moreover, in going from NLL+NLO to NNLL+NNLO accuracy the per-

turbative uncertainty is reduced and the agreement between experimental data and theory

prediction is improved. The perturbative uncertainty at NNLL+NNLO accuracy is about

±10% at the peak, it decreases to about ±4% at qT ∼ 10GeV, and it increases again to

about ±10% at qT = 40GeV. The comparison between our theoretical prediction and the

CMS and ATLAS data is qualitatively similar, the main difference being that, due to the

larger data sample, the experimental errors in the ATLAS analysis are significantly smaller.

We add a comment on the large-qT region (see inset plots of figure 5), where the cross

section is dominated by the fixed-order contribution. For very large qT , i.e. qT ≫ mZ ,

the physical hard scale of the process is of the order of qT and not of the order of mZ ,
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(a) (b)

Figure 5. Vector boson production at the LHC with lepton selection cuts. The NLL+NLO (red)

and NNLL+NNLO (blue) normalized qT spectra for Z/γ∗ production are compared with the CMS

data of ref. [124] (left panel) and the ATLAS data of ref. [125] (right panel). The scale variation

bands are obtained as described in the text. The inset plot shows the ratio of the data and of the

scale dependent NNLL+NNLO result with respect to the NNLL+NNLO result at central values of

the scales.

and a sensible scale choice is µF ∼ µR ∼ qT . Therefore, it is not unexpected that our

NNLL+NNLO calculations, which use µF ∼ µR ∼ mZ/2, slightly overshoot the CMS and

ATLAS data in the last few high-qT bins. The size of the QCD corrections evaluated with

µF ∼ µR ∼ qT would be smaller. Moreover, in the extreme region qT ≫ mZ a resummation

of enhanced large-qT perturbative terms is in principle required [118, 119].

In figure 6 we consider the qT spectrum of W± bosons. We present a comparison of our

resummed results with the pp → W → lν data collected by the ATLAS Collaboration [126]

with an integrated luminosity of 31 pb−1 at
√
s = 7TeV. The fiducial region is defined as

follows: the charged lepton has transverse momentum plT > 20GeV and pseudorapidity

|ηl| < 2.4, the missing transverse energy is pνT > 25GeV, and transverse mass mT =√
2plT pνT (1− cos(φl − φν)) is constrained in the region mT > 40GeV. We recall that,

because of the presence of the neutrino in the final state, the qT of the W has to be

reconstructed through the transverse energy of the hadronic recoil, which has a poorer

experimental resolution than that of the lepton momentum. In the small qT region, the

bin sizes of the experimental data are rather large, with only four bins in the region

with qT < 55GeV. For this reason in figure 6 we focus on the large qT region 55GeV

< qT < 300GeV, while the small qT region is shown in the inset plot. The lower panel of

figure 6, which covers the entire qT region of the data, presents the ratio of both data and

theoretical results with respect to the reference theoretical result. This ratio and the scale

variation bands are computed exactly in the same manner as in the case of figure 5. Looking
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Figure 6. Vector boson production at the LHC with lepton selection cuts. The NLL+NLO (red)

and NNLL+NNLO (blue) normalized qT spectra for W± production are compared with the ATLAS

data of ref. [126]. The ratio in the lower panel and the scale variation bands are obtained as in

figure 5.

at the ratio plot in the lower panel, we see that our NNLL+NNLO calculation describes the

W production data within the perturbative uncertainties. The NNLL+NNLO perturbative

uncertainty is about ±8% at the peak, it decreases to about ±4% at qT ∼ 15GeV, and it

increases again to about ±15% at qT = 50GeV.

In section 3.1 and in the first part of this section, we have examined vector boson

qT distributions (without and with the application of acceptance cuts) and we have com-

puted and studied the effects that are produced by the all-order resummation of large

logarithmically-enhanced terms at small values of qT . Our related calculations are per-

formed at complete NNLL+NNLO (and NLL+NLO) accuracy. In the following part of

this section, we consider other observables that are related to the qT distributions but in

which fixed values of qT are not directly measured. These observables are inclusive over

qT within certain qT ranges. Since the bulk of the vector boson cross section is produced
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at small values of qT , if the observable (indirectly) probes the detailed shape of the pro-

duction cross section in the small-qT region, the observable itself can be very sensitive to

high-order radiative corrections and to the qT resummation effects that we can explicitly

compute. This reasoning illustrates and justifies the physical (and quantitative) relevance

of qT resummation for other qT -related observables. In the second part of this section we

study the quantitative impact of qT resummation on some observables.

At the formal level, our study of other observables implies that we are resumming

high-order logarithmic corrections (in case they are present) that appear in the computa-

tion of those observables. Strictly speaking, this resummation has to be performed on an

observable-dependent basis (see, e.g., ref. [129]). Therefore, our observable-independent

treatment (based on transverse-momentum resummation) cannot guarantee that we for-

mally achieve exact NNLL+NNLO accuracy for all these observables. Nonetheless we are

able to correctly take into account all the leading-logarithmic contributions, all the com-

plete (with and without logarithmic enhancement) perturbative terms up to the NNLO

level,8 and a substantial part of subleading logarithmic terms beyond the NNLO accuracy.

This statement about resummation is a consequence of the following discussion. The

observable-dependent logarithmic terms (in case they are present) are due to multiple radi-

ation of soft and collinear partons in the inclusive final-state: these logarithmic corrections

are computed by approximating the QCD scattering amplitudes in the soft and collinear

limits and, then, by integrating the final-state QCD radiation over the corresponding

phase space with appropriate (observable-dependent) kinematical approximations. In our

transverse-momentum resummation procedure we correctly take into account the NNLL

dynamics (the behaviour of the QCD scattering amplitudes in the soft and collinear lim-

its) of soft and collinear radiation, and we treat the phase space of the final-state QCD

radiation with consistent kinematical approximations that are specific of the qT spectrum.

However, the observable-dependent kinematical approximations can only differ beyond the

leading-logarithmic level (to leading-logarithmic level, a strong-ordering approximation in

the energy/angle of the emitted partons is sufficient), and these differences do not spoil the

leading-logarithmic accuracy of our resummed calculation. In this respect, it is important

to remark the role of the qT recoil (see section 2 and appendix A) on the kinematics of

the produced (observed) lepton pair. We treat the qT recoil in a kinematically consistent

way (though it necessarily involves non logarithmic approximations that are uniformly of

O(qT /M) throughout the small-qT region), and such a treatment is necessary to correctly

correlate the dynamical qT resummation effect with the ensuing qT dependence of the

measured (computed) observable.

In summary, the application of our qT resummed calculations to the computation of

other observables is physically (and, thus, quantitatively) and formally (as we have just

discussed) justified. A detailed specification of the subleading-logarithmic accuracy of the

qT resummed calculation at the formal (analytical) level requires (and deserves) observable-

dependent investigations, which can be performed in future studies.

8For observables that are inclusive over the region that includes qT = 0, the NNLO accuracy is achieved

through our detailed matching procedure (see section 2) with the fixed-order calculation.
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Figure 7. The NLL+NLO (red) and NNLL+NNLO (blue) normalized φ∗ distribution for Z/γ∗

production at the LHC is compared with the ATLAS data of ref. [127]. The NLL+NLO and

NNLL+NNLO central results are computed at the scales µR = µF = Q = mZ/2. The ratio in the

lower panel and the scale variation bands are obtained as in figure 5.

Among other observables, we first consider the measurement9 of the φ∗ distribution

from pp → Z/γ∗ → l+l− data at
√
s = 7TeV as reported by the ATLAS Collabo-

ration [127] with an integrated luminosity of 4.6 fb−1. The φ∗ observable is defined as

φ∗ = tan(π/2 −∆φ/2) sin(θ∗), where ∆φ is the azimuthal angle between the leptons and

the angle θ∗ is defined by cos θ∗ = tanh((ηl
+ −ηl

−

)/2) where ηl
+
(ηl

−

) is the rapidity of the

positively (negatively) charged lepton. The cuts that define the fiducial region are those

of the ATLAS analysis of the qT spectrum: 66GeV < mll < 116GeV, plT > 20GeV and

|ηl| < 2.4.

9An analogous measurement of the φ∗ distribution at the LHC was reported by the LHCb Collabora-

tion [128] with an integrated luminosity of 0.94 fb−1. In the small-φ∗ region, the bin sizes of the LHCb

measurement are rather large (with respect to those of the ATLAS measurement [127]), with only two

(four) bins in the region φ∗ < 0.1 (φ∗ < 0.2).
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The φ∗ variable at small values of φ∗ is correlated to qT and, therefore, it is strongly

sensitive to qT resummation effects. A detailed discussion on the relation between φ∗

and qT is presented in ref. [129], where the resummation of the lnφ∗ terms is carried out

in analytic form up to NNLL+O(α2
S) accuracy,10 and it turns out to be strictly related

and very similar to qT resummation. Ensuing phenomenological studies are presented in

refs. [91, 92, 130].

In figure 7 we report the ATLAS data of the φ∗ distribution (normalized to the mea-

sured cross section in the fiducial region) and the comparison with the results of our

resummed calculation. The NLL+NLO and NNLL+NNLO central results are computed

at the scales µR = µF = Q = mZ/2. The scale variation bands at NLL+NLO (red) and

NNLL+NNLO (blue) accuracy and the reference NNLL+NNLO result for the ratio in the

lower panel of figure 7 are computed as in figures 5 and 6. We observe that the scale

variation bands at the two subsequent orders overlap, and that the NNLL+NNLO pertur-

bative uncertainty is substantially smaller than the NLL+NLO one. The NNLL+NNLO

result is consistent with the data within the uncertainties in both the small-φ∗ and large-φ∗

regions (the large-φ∗ region is shown in the inset plot). The NNLL+NNLO perturbative

uncertainty is about ±10% for φ∗ < 0.01, it decreases to about ±5% at φ∗ ∼ 0.05, and it

increases again to about ±10% at φ∗ ∼ 0.2.

We add a comment on the results that we have shown in figures 5–7. We recall that all

the results presented in this section are obtained in a purely perturbative framework. In

section 3.1 we have discussed the possible impact of the inclusion of a NP form factor, and

we have seen (figure 3) that NP effects should lead to a deformation of the perturbative

result that is well within the scale variation uncertainties of the NNLL+NNLO calculation.

In figures 5–7 we observe that all the resummed perturbative predictions are consistent

with the data within our estimation of perturbative uncertainties. Owing to the agreement

between the theoretical NNLL+NNLO predictions and the experimental data in the very

small qT /φ
∗ region, we cannot draw any precise quantitative conclusion about the definite

size of NP effects in the Z/γ∗, W± and φ∗ distributions that we have considered. We can

only conclude that NP effects have to be small in order not to spoil the agreement between

the data and the corresponding NNLL+NNLO results in figures 5–7.

We conclude this section by considering other observables. We study the impact of

qT resummation on the kinematical distributions that are relevant for the measurement of

the W mass. We consider pp → W− → l−ν̄l with
√
s = 7TeV and we apply the following

selection cuts: the charged lepton has transverse momentum plT > 30GeV and rapidity

|ηl| < 2.4, the missing transverse momentum is pνT > 30GeV, and the transverse mass mT

has mT > 60GeV. We also apply a cut, pWT < 30GeV, on the transverse momentum pWT of

the W boson (lepton pair). The results of our calculation of the mT distribution and of the

lepton momentum distributions are presented in figure 8 and 9, respectively. The reference

scale choice of the calculation is µF = µR = Q = mW /2. In both figures we present the

results of the fixed-order calculation at LO (cyan dotted), NLO (green solid) and NNLO

10The analytical treatment of ref. [129] does not reach complete NNLO accuracy at small values of φ∗

since the analogue of the vector boson coefficient H
(2)
V in eq. (2.9) is not included in the calculation. An

approximated form of H
(2)
V is included in the calculation of ref. [92].
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production at the LHC. Comparison of results of the fixed-order calculation at LO (cyan dotted),

NLO (green solid) and NNLO (black dot-dashed) with the resummed calculation at NLL+NLO

(red dashed) and NNLL+NNLO (blue solid) accuracy. The lower panel shows the ratio between

the various results (excluding the LO result) and the NNLL+NNLO result.

(black dot-dashed) accuracy and we compare them with the results of the qT resummed

calculation at NLL+NLO (red dashed) and NNLL+NNLO (blue solid) accuracy. The lower

panels show the ratio between the various results and the NNLL+NNLO result (the ratio

LO/(NNLL+NNLO) is not reported in the lower panels).

The mT distribution in the range mT < 90GeV is presented in figure 8. We can

consider two regions: the large-mT region, around mT ∼ mW (we recall that we use

mW = 80.385GeV), and the small-mT region. In the large-mT region, mT ∼> 70GeV, we

see that the perturbative prediction is extremely stable against radiative corrections, and

the stability is present both in going from NLO to NNLO accuracy and with inclusion of

resummation. This is a consequence of the well known fact that the transverse mass is

weakly sensitive to the transverse momentum of the W boson. Formally, the mT distribu-
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(a) (b)

Figure 9. Effect of qT resummation for pp → W− → l−ν̄l production at the LHC: (a) lepton pT
distribution and (b) missing pT distribution. The fixed-order and resummed results are denoted as

in figure 8.

tion has no logarithmic corrections of the type ln(|mT −mW |/mW ), and our qT resummed

calculation does not spoil the stability of the fixed-order expansion. On the contrary, in

the small-mT region, we observe that the fixed-order predictions become unreliable. The

LO distribution is large at mT = 60GeV, and both the NLO and NNLO distributions

become negative at mT ∼ 60GeV. This (mis-)behaviour is due to the fact that the con-

straints plT > 30GeV and pνT > 30GeV produce an unphysical boundary (and a stepwise

behaviour) of the mT distribution at mT = mT step = 60GeV in the LO calculation. The

boundary is due to the LO kinematics p l
T + p ν

T = qT = 0, and it disappears at higher

orders since qT 6= 0. The LO boundary induces (integrable) logarithmic singularities of the

type ln(1−mT step/mT )
2 at NLO and beyond [131]. These logarithmic terms are resummed

to all order by qT resummation, and the singularities are absent in the resummed predic-

tion [131], which is well behaved at the LO boundary mT = mT step. We also note that the

differences between the NLL+NLO and NNLL+NNLO results are small at mT ∼ 60GeV.

In figures 9 (a) and (b) we present the plT and pνT distributions, respectively. In the

limit in which the W boson is produced on shell, these distributions have an LO kinemat-

ical boundary at mW /2. The finite width of the W boson (partially) smears this effect:

at LO both the plT and pνT distributions are strongly peaked at mW /2 (Jacobian peak)

and quickly drop for pT ∼>mW /2. The almost stepwise behaviour of the LO distribution

produces large radiative corrections at NLO and beyond (in the limit in which the W boson

is produced on shell, these large corrections would be integrable logarithmic singularities

at each perturbative order [131]). The NLO and NNLO distributions indeed display an

unphysical peak at pT ∼ 42GeV, which is an artifact of such large corrections (singular-

ities in the on-shell limit). The resummed predictions at NLL+NLO and NNLL+NNLO
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accuracy are free of such instabilities and display a smooth shoulder behaviour around the

LO boundary for on-shell production. The perturbative instabilities of the fixed-order cal-

culation at small values of pT (plT ∼ 30GeV and pνT ∼ 30GeV) are analogous to those that

we have previously discussed in the case of the mT distribution in the region mT ∼ 60GeV

(see figure 8). In the case of the pT distributions, it is the constraint mT > 60GeV that

produces the LO boundaries at plT = pνT = 30GeV, an LO stepwise behaviour and en-

suing instabilities at each subsequent perturbative order. The resummed calculation is

perturbatively stable in the small-pT region, and the differences between the NLL+NLO

and NNLL+NNLO results are small throughout the entire region with pT ∼< 45GeV. In the

large-pT region (pT ∼> 45GeV) both the plT and pνT distributions display radiative correc-

tions that are relatively large. This is not unexpected since in this region of transverse

momenta the NLO calculation is essentially the first perturbative order at which both the

plT and the pνT distributions are non vanishing (in the on-shell limit, the O(αS) and O(α2
S)

result would be an LO and an NLO prediction, respectively).

4 Summary

In this paper we have considered the transverse-momentum (qT ) distribution of DY high-

mass lepton pairs produced, via Z/γ∗ and W bosons decay, in hadronic collisions. We

have presented a perturbative QCD study based on transverse-momentum resummation

up to NNLL accuracy. We have combined small-qT resummation with the known O(α2
S)

fixed-order result at small, intermediate and large values of qT .

We have followed the resummation formalism developed in refs. [40–42] to implement

transverse-momentum resummation and the matching with the result at O(α2
S). In partic-

ular, our calculation includes the complete NNLO contributions at small values of qT (i.e.,

in any regions that include qT = 0) and it exactly reproduces the complete NNLO total

cross section after integration over qT . This leads to theoretical predictions with a control-

lable and uniform perturbative accuracy over the region from small up to large values of qT .

At large values of qT , the predictivity of small-qT resummation is superseded by that of the

customary fixed-order expansion, and our resummed calculation can be smoothly joined

onto the O(α2
S) calculation. The resummed calculation can be systematically expanded

at various orders of logarithmic accuracy (e.g., NLL+NLO and NNLL+NNLO accuracy),

and its theoretical uncertainties due to uncalculated higher-order QCD corrections can be

studied by comparing the results at two subsequent orders and by performing systematic

studies on factorization, renormalization and resummation scale dependence. We have

performed such a study for the case of vector boson production at LHC energies, and we

have briefly illustrated the uncertainties due to parton densities and the possible impact

of non-perturbative effects.

In the present paper we have extended the resummed calculation presented in ref. [59]

for Z/γ∗ production by considering alsoW± production and by including the leptonic decay

of the vector boson with the corresponding spin correlations, the finite-width effects and

the full dependence on the final-state leptonic variables. We have compared our resummed

results for Z/γ∗ and W production with some of the available data of the ATLAS and CMS
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experiments at the LHC, applying the same kinematical cuts on final state leptons that

are considered in the experimental analyses. We find that the data are well described by

our predictions within the perturbative uncertainties. We have also considered the impact

of transverse-momentum resummation on observables, which are different from the vector

boson qT , that depend on the lepton kinematical variables. In particular, we have studied

the φ∗ distribution in Z/γ∗ production and the leptonic transverse-momentum, the missing

transverse-momentum and the transverse-mass distributions in W production.

Our calculation is implemented in the parton-level Monte Carlo numerical code DYRes

which allows the user to apply arbitrary kinematical cuts on the vector boson and the

final-state leptons, and to compute the corresponding relevant distributions in the form

of bin histograms. These features make our program a useful tool for DY studies at the

Tevatron and the LHC. A version of the DYRes code is publicly available.

The production and decay mechanisms of the vector boson are dynamically correlated

by the non vanishing spin of the vector boson. The inclusion of the lepton decay (with the

spin correlations and the full dependence on the kinematical variables of the two leptons)

in the resummed calculation requires a general theoretical discussion on the qT recoil due to

the transverse momentum of the vector boson. This discussion is not limited to the specific

case of vector boson production. We have presented a general and explicit procedure to

treat the qT recoil. The procedure is directly applicable to qT resummed calculations for

production processes of generic high-mass systems in hadron collisions.
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A Lepton angular distribution and qT recoil in transverse-momentum

resummation

This appendix is devoted to the qT -recoil issue that we have introduced and illustrated

in section 2 (see eqs. (2.12)–(2.14) and accompanying comments). To our knowledge the

issue has not received much attention in the previous literature on transverse-momentum

resummation. We present a detailed discussion of the issue and a general, explicit and

consistent procedure to implement the qT recoil in transverse-momentum resummation.

Our procedure explicitly exhibits the degree of freedom involved in the implementation

of the qT recoil and, moreover, it gives an explicit formal parametrization of the ensuing

ambiguities. The procedure is straightforwardly applicable to implement the qT recoil (and,

possibly, estimate related uncertainties) in calculations based on transverse-momentum

resummation.

The qT -recoil issue is not specific of the lepton angular distribution for vector boson

decay, but it regards transverse-momentum resummation for generic production processes.
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For simplicity of presentation, in the following we consider in detail vector boson production

and the DY process. Then we discuss the generalization to generic processes.

We begin our discussion by considering the computation of the DY multidifferential

cross section in eq. (2.3) at the LO in perturbative QCD. At this order the hadronic cross

section (and the corresponding partonic cross section) is directly and exactly (i.e., with no

small-qT approximation) proportional to the Born level angular distribution dσ̂(0)/dΩ in

eq. (2.5). We have

dσh1h2→l3l4

d2qT dM2 dy dΩ
(qT ,M, y, s,Ω) ∝

[
dσ̂

(0)
a1a2→l3l4

dΩ

]

LO

δ(2)(qT ) . (A.1)

For the purpose of our general discussion of qT recoil, we write the lepton angular

distribution in the following form:

dΩ
dσ̂

(0)
a1a2→l3l4

dΩ
(k1, k2; p3, p4) ∝ 1

M2

∫
d4p3 d

4p4 δ+(p
2
3) δ+(p

2
4) δ

(4)(q − p3 − p4)

×|M (0)
a1a2→l3l4

(k1, k2; p3, p4)|2 . (A.2)

Note that, following the general notation of eq. (2.3), we have not specified the actual

definition of the angular variables Ω, and we have written the left-hand side of eq. (A.2)

in a Lorentz invariant form. The relation (A.2) is written in the form of a proportionality

relation: the additional proportionality factors that are not explicitly denoted in the right-

hand side are not relevant for our following discussion (in particular, they are independent

of the lepton momenta {p3, p4} and, thus, of Ω). The factor |M (0)
a1a2→l3l4

|2 is the square of

the Born level scattering amplitude M
(0)
a1a2→l3l4

for the partonic process

a1(k1) + a2(k2) → ℓ3(p3) + ℓ4(p4) , (A.3)

where ki (i = 1, 2) is the momentum of the colliding parton ai from the initial-state hadron

hi(Pi) (see eq. (2.1)), with the kinematics

k1 + k2 = q , k2i = 0 (i = 1, 2) . (A.4)

In our specific case of vector boson production, the Born level partonic process is the qq̄

annihilation process qf q̄f ′ → V → l3l4 (i.e., {a1, a2} = {qf , q̄f ′}). All the other factors in

the right-hand side of the relation (A.2) are related to the kinematical phase space of the

final-state leptons and, in particular, they enforce the kinematical constraint q = p3 + p4.

The LO calculation of the cross section kinematically relates the parton and hadron

momenta ki and Pi. In particular, at the LO we have qT = 0 and, specifically, the LO

value ki (LO) of the parton momentum is11

kµ1 (LO) = x1P
µ
1 , kµ1 (LO) = x2P

µ
2 , (A.5)

11The kinematical variables xi in eqs. (A.5) and (A.6) and the kinematical variable z1 in eq. (A.8) should

not be confused with the integration variables xi and z1 used in section 2 (we use the same symbols for

both set of variables).
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with

x1 =
M e+y

√
s

, x2 =
M e−y

√
s

, (A.6)

where (see section 2) M and y are the invariant mass and the rapidity of the lepton pair

and
√
s is the hadronic centre-of-mass energy. Inserting the LO expression (A.5) of the

parton momenta ki in eq. (A.2), the LO lepton angular distribution
[
dσ̂

(0)
a1a2→l3l4

/dΩ
]
LO

in eq. (A.1) is uniquely specified.

Higher-order perturbative contributions produce logarithmically-enhanced (‘singular’)

terms at small qT that can be resummed to all orders, leading to the resummation factor

Ŵ in eq. (2.5). These logarithmic terms are due to multiple radiation of soft and collinear

partons, and this soft and collinear radiation is factorized [44] with respect to the Born level

amplitude M
(0)
a1a2→l3l4

of eq. (A.2). As a consequence, after qT resummation the angular

distribution of the decaying leptons is still given by the Born level function dσ̂(0)/dΩ

in eq. (A.2), and this function thus appears as a multiplicative factor in front of the

resummation factor Ŵ of the resummed component of the vector boson qT cross section

(see eq. (2.5)). Strictly speaking [44], in the limit qT ≪ M that is relevant for resummation,

the angular distribution can be expressed in terms of the LO distribution
[
dσ̂(0)/dΩ

]
LO

in eq. (A.1), namely the expression (A.2) with the LO kinematics of eqs. (A.5) and (A.6),

which in particular has qT = 0. Indeed, after soft/collinear factorization and resummation,

any residual dynamical effect on the process in eq. (A.3) (and on M (0) and dσ̂(0)/dΩ) is

due to hard-parton radiation. Hard radiation produces O(qT /M) corrections that lead to

non-singular contributions if qT ≪ M : these corrections can be formally approximated

by their limiting behaviour as qT → 0 and, thus, neglected in the computation of the

resummed component (see eqs. (2.5) and (2.11)) and included in the finite component (see

eq. (2.4)).

Neglecting these O(qT /M) corrections is a perfectly suitable procedure for the re-

summed calculation of the vector boson qT cross section (see eq. (2.11)). However, per-

forming the resummation at fixed lepton momenta, the momentum of the vector boson

must be fully specified by the lepton momenta and, in particular, qT = pT 3 + pT 4 is

not vanishing. The resummation factor Ŵ (see eq. (2.5)) produces a smearing of the LO

distribution δ(2)(qT ) of eq. (A.1) and finite values of qT : to avoid unphysical results (e.g.,

events with qT 6= 0 and pT 3+pT 4 = 0) the factor dσ̂(0)/dΩ in eq. (2.5) cannot be the LO

angular distribution
[
dσ̂(0)/dΩ

]
LO

(which has pT 3+pT 4 = 0) in eq. (A.1). In other words,

the non-vanishing value of qT has to be distributed between the two lepton momenta and

this leads to the qT -recoil issue that we have illustrated in section 2 (see eqs. (2.12)–(2.14)

and accompanying comments). The resummed calculation requires the specification of a

qT -recoil prescription that has to be consistent (and physically sensible), although this can

be done in many (infinitely many) different ways.

Actual resummed calculations performed in the literature do not mention the qT -

recoil issue. The calculations of refs. [77–79] directly refer to the use of the Collins-Soper

(CS) rest frame [94]. The procedure to compute the factor dσ̂(0)/dΩ in eq. (2.5) is as

follows. The lepton angular variables Ω are specified to be the polar and azimuthal angles

{θ′CS , φ
′

CS} of one of the leptons in the CS rest frame. The LO distribution
[
dσ̂(0)/dΩ

]
LO
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in eq. (A.1) is then expressed in terms of {θ′CS , φ
′

CS} (since the LO distribution has qT = 0,

in this case {θ′CS , φ
′

CS} exactly coincide with the lepton scattering angles in the centre-

of-mass frame of the LO colliding parton momenta in eq. (A.5)) and this leads to an

unambiguously defined angular function Fqf q̄f ′→l3l4(θ
′

CS , φ
′

CS) (this function is actually

independent of φ′

CS) that is used to define (see eq. (2.12)) the angular distribution dσ̂(0)/dΩ

of the resummed component of the cross section (see eq. (2.5)). This is a perfectly defined

and consistent procedure, but it hides the actual implementation of O(qT /M) corrections

through an implicit prescription for the qT recoil: the definition of the CS rest frame

is qT dependent and a qT dependence is introduced by identifying/equating the angles

{θ′CS , φ
′

CS} of the LO and resummed calculations (additional comment on this are presented

in a paragraph after eq. (A.14)).

Here we explicitly present a consistent qT -recoil procedure and an entire class of qT -

recoil prescriptions. Our viewpoint is as follows: the non-vanishing value of qT of dynamical

origin that is produced by resummation leads to a qT -recoil that can be ‘kinematically

absorbed’12 by the momenta k1 and k2 of the colliding partons of the underlying hard-

scattering process (see eq. (A.3)). As specified below, there are infinitely-many ways of

implementing this kinematical recoil on the colliding partons in a consistent manner (i.e.,

without modifying the logarithmically-enhanced perturbative terms at small qT ): they

differ by corrections that are of O(qT /M) order-by-order in the perturbative expansion

(after having matched the resummed calculation with the complete NkLO calculation, as

in eqs. (2.4) and (2.10), these corrections start to contribute at the Nk+1LO level).

According to our procedure, the lepton angular distribution dσ̂(0)/dΩ to be used in

the resummed calculation (see eq. (2.5)) is exactly given by the expression in eq. (A.2).

The phase space factor in the right-hand side of eq. (A.2) is directly given in terms of the

physical (measured) lepton momenta p3 and p4 (with p3 + p4 = q). The momentum k1
(then, k2 = q− k1) to be used to compute the Born level scattering amplitude in eq. (A.2)

is given by the following parametrization:

kµ1 = z1
M2

2q · P1
Pµ
1 + kµ1T +

k 2
1T

z1

q · P1

M2P1 · P2
Pµ
2 , (kµ1Tk1Tµ = −k 2

1T ) , (A.7)

where

z1 =
M2 + 2qT · k1T +

√
(M2 + 2qT · k1T )2 − 4M2

T k 2
1T

2M2
, (M2

T ≡ M2 + q2T ) , (A.8)

and kµ1T is a two-dimensional vector that is transverse to both Pµ
1 and Pµ

2 (i.e., k1T lies in

the qT plane) and that fulfils the following constraints:

k1T → 0 if qT → 0 , (A.9)

M2 + 2qT · k1T > 2MT |k1T | . (A.10)

12The qT recoil issue does not arise in the context of transverse-momentum (kT ) factorization [105–108]

for high-energy (small-x) hard-scattering processes. In this formulation the qT recoil is dynamically (and

uniquely) embedded in the factorization formula. The parton densities of the colliding hadrons are kT
dependent and the hard-scattering colliding partons have ensuing non-vanishing transverse momenta k iT

that enter as integration variables in the factorization formula.
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We note that, following the definition in eqs. (A.7) and (A.8), kµ1 and kµ2 are well

defined ‘physical’ parton momenta: they fulfil the kinematics in eq. (A.4) and they have

positive definite energies, k01 > 0 and k02 > 0 (the constraint in eq. (A.10) guarantees that

the four-momentum kµ1 has positive definite energy and, then, k02 > 0 follows from q0 > 0).

Therefore the scattering amplitude M
(0)
a1a2→l3l4

(k1, k2; p3, p4) in eq. (A.2) is well defined

and unambiguously computable. Moreover, due to eq. (A.9), the parton momentum k1
in eq. (A.7) coincides with its LO expression (A.5) if qT = 0. We also note that kµ1 is

invariant under longitudinal boosts of the hadronic centre-of-mass frame, provided kµ1T is

boost invariant.

At fixed values of qµ, Pµ
1 and Pµ

2 , eqs. (A.7)–(A.10) give the most general expression of

k1 that respects the Born level kinematics in eqs. (A.3) and (A.4) and the LO kinematics in

eqs. (A.5) and (A.6). This expression is parametrized by the arbitrary (though constrained)

transverse-momentum vector k1T . By choosing different values of k1T , we can obtain an

entire class of consistent qT -recoil prescriptions. For example, two ‘obvious’ possible choices

are as follows:

A) set k1T = qT/2 (and thus k2T = qT/2):

from eq. (A.8) we obtain

z1 =
MT +M

MT

q · P1 q · P2

M2 P1 · P2
, (A.11)

and we have

kµ1 =
MT +M

2MT

q · P2

P1 · P2
Pµ
1 +

1

2
qµT +

MT −M

2MT

q · P1

P1 · P2
Pµ
2 , (A.12)

kµ2 =
MT −M

2MT

q · P2

P1 · P2
Pµ
1 +

1

2
qµT +

MT +M

2MT

q · P1

P1 · P2
Pµ
2 , (A.13)

B) set k1T = 0 (and thus k2T = qT ):

from eq. (A.8) we obtain z1 = 1 and we have

kµ1 =
M2

2q · P1
Pµ
1 , kµ2 = qµ − M2

2q · P1
Pµ
1 . (A.14)

We also note that, after integration over the lepton angular variablesΩ, we consistently

obtain the Born level total cross section σ̂
(0)
a1a2→l3l4

(M2) of the resummation formula (2.11).

Indeed, after the Ω integration of eq. (A.2), the result does no longer depend on the

lepton momenta and, since it is a Lorentz invariant quantity, the result can only depends

on the invariant (k1 + k2)
2 = 2k1 · k2 = q2 = M2, which is independent of k1T . In

other words, the dependence on the arbitrary parameter k1T completely cancels in lepton-

inclusive observables.

Using our qT -recoil procedure, we can compute the corresponding lepton angular func-

tion Fqf q̄f ′→l3l4 of eq. (2.12). This function is the product of two factors. One factor is

a purely kinematical origin (it derives from the phase space factor in the right-hand side

of eq. (A.2)), and it depends on the specification of the angular variables Ω. The other
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factor, denoted as F (D) in the following (for simplicity we omit the subscript qf q̄f ′ → l3l4),

has a dynamical origin and it depends on the Born level factor |M (0)(k1, k2; p3, p4)|2 in the

right-hand side of eq. (A.2). Since |M (0)(k1, k2; p3, p4)|2 is a Lorentz invariant scalar quan-

tity and the momenta {k1, k2; p3, p4} are constrained by momentum conservation, F (D) can

only depend on the dimensionless variable 4k1 · p3/(2k1 · k2) = 4k1 · p3/M2. Considering

the centre-of-mass frame of k1 and k2, we have 4k1 · p3/M2 = 1− cos θ′13, where θ′13 is the

scattering angle between k1 and p3. In other words, F (D) = F (D)(θ′13) and θ′13 is the lepton

scattering angle in a particular rest frame of the vector boson momentum qµ (the centre-

of-mass frame of k1 and k2). Our qT -recoil procedure can thus be reinterpreted in terms

of generation of lepton-pair events. Considering a definite (with respect to the hadronic

collision frame) rest frame of the vector boson momentum, the lepton-pair event and the in-

dividual lepton momenta are generated in that frame according to the corresponding Born

level angular distribution; then the lepton pair distribution is boosted to the hadronic col-

lision frame through the corresponding Lorentz transformation. Since there is an infinite

numbers of vector boson rest frames, this event-generation procedure has an infinite degree

of arbitrariness. Applying a three-dimensional rotation to a vector boson rest frame, we

obtain another vector boson rest frame and, thus, the infinite numbers of vector boson rest

frames depends on the two scalar parameters of the three-dimensional rotation. Accord-

ingly, our qT -recoil procedure depends on the arbitrary two-dimensional vector k1T , namely

on two parameters (the magnitude |k1T | and the azimuthal angle of k1T ). In other words,

the relation between the LO momenta kµi (LO) in eq. (A.5) and the qT -recoiled momenta

ki obtained through eqs. (A.7)–(A.10) can be reinterpreted as a Lorentz transformation of

the colliding parton momenta from the hadronic collision frame to a specified vector boson

rest frame. This interpretation directly relates our qT -recoil procedure with the specific CS

frame procedure (as already mentioned and described in the initial part of this appendix)

that is directly used in other resummed calculations [77–79]. It can be explicitly checked

that the CS frame procedure used to specify the lepton angular distribution dσ̂(0)/dΩ in

the resummed calculation of refs. [77–79] corresponds to the choice k1T = k2T = qT/2 (see

eqs. (A.12) and (A.13)) within our class of qT -recoil prescriptions.

Owing to our explicit parametrization and implementation of the qT -recoil procedure,

the quantitative effects of various qT -recoil prescriptions can be directly investigated in

applications of the numerical program DYRes (and of other resummed calculations). Obvi-

ously (as discussed in section 2), different qT -recoil prescriptions have no effects on quan-

tities that are fully inclusive over the leptonic variables Ω. In general, our expectations

are as follows. We expect that the quantitative differences produced by various qT -recoil

prescriptions are small for lepton non-inclusive observables that are mostly sensitive to

either the small-qT region (in this region the qT -recoil effects are non-singular and thus

subdominant with respect to the singular logarithmic contributions) or the high-qT region

(in this region the qT -recoil effects are suppressed by the smooth switching procedure of

eqs. (2.15)–(2.17)), while relatively larger differences can appear in case of sensitivity to the

region of intermediate values of qT . Moreover, these quantitative differences are expected

to decrease in going from NLL+NLO to NNLL+NNLO accuracy, since the non-vanishing

qT -recoil effects start to formally contribute at the Nk+1LO level in the NkLL+NkLO cal-
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culation. In section 3.2 we have presented our quantitative results obtained with the DYRes

code. As stated at the beginning of section 3, these results are obtained (analogously to

those in refs. [77–79]) by computing the Born level angular distribution dσ̂(0)/dΩ in the

CS rest frame, i.e. by setting k1T = k2T = qT/2 in the actual implementation of our

qT -recoil procedure (this corresponds to use the prescription A in eqs. (A.11)–(A.13)).

Setting k1T 6= qT/2, we have also considered other variants of the qT -recoil prescriptions

and we have examined the quantitative differences that are produced on the observables

that are examined in section 3.2 (i.e., the observables in figures 5–9). We have found that

various qT -recoil prescriptions produce differences that are in agreement with our general

expectations and, in particular, at NNLL+NNLO accuracy these differences lead to small

quantitative effects: typically, the effects are much smaller than the scale-variation uncer-

tainties (estimated as in section 3.2). For instance, comparing the qT -recoil prescriptions A

(see eqs. (A.11)–(A.13)) and B (see eq. (A.14)), we obtain quantitative differences that are

at most at the percent level (e.g., in the case of the φ∗ distribution of figure 7 in the region

0.3∼<φ∗∼< 1, and in the case of the lepton-pT and missing-pT distributions of figure 9 in

the region 45 GeV∼<pT ∼< 50 GeV): these differences are definitely smaller than the scale

uncertainty (at both the NLL+NLO and NNLL+NNLO levels) and, especially, they are of

the same size as (and, hence, hardly distinguishable from) the pure numerical errors of the

DYRes calculation in the NNLL+NNLO mode.

The qT -recoil issue that we have discussed in this appendix is not specific of vector bo-

son production and the ensuing leptonic decay. The issue affects qT resummed calculations

for any process of the type h1 + h2 → F(p3, p4, p5, . . . ) +X (we use the same notation as

in eq. (2.1)) where the final-state high-mass system F has total transverse momentum qT
and the momenta p3, p4, p5, . . . of its ‘decay products’ are directly measured. Owing to the

universality (process-independent) structure of transverse-momentum resummation [44],

the qT -recoil procedure that we have introduced in this appendix is directly applicable

to all these processes. The only key difference with respect to vector boson production

is that the Born level scattering amplitude M (0)(k1, k2; p3, p4) in eq. (A.2) is replaced by

a properly computable (all-loop) hard-virtual amplitude M̃(k1, k2; p3, p4, p5, . . . ;αS(M
2))

(see section 4 in ref. [44]), which embodies QCD virtual radiative corrections (M̃ is com-

putable as power series in αS(M
2)). Strictly speaking [44], the qT resummed cross section

at small values of qT is proportional to the angular dependent distribution of the mo-

menta {p3, p4, p5, . . . } as computed from M̃ at qT = 0 (i.e., with the LO momenta kµi (LO)

of eq. (A.5)). The ensuing qT -recoil issue can be directly solved by our qT -recoil proce-

dure. Indeed, the hard-virtual amplitude M̃(k1, k2; p3, p4, p5, . . . ;αS(M
2)) has the same

kinematical properties as its Born level counterpart M̃ (0) = M (0): therefore, the qT recoil

can be directly implemented by simply evaluating M̃(k1, k2; p3, p4, p5, . . . ;αS(M
2)) with

the qT -recoiled momenta ki of eqs. (A.7)–(A.10).

We add some final comments on spin correlations and on the specific process of

SM Higgs boson production and its decay in colourless particles (e.g., H → γγ,H →
WW → ℓνℓν,H → ZZ → 4ℓ) [62]. The qT resummed Higgs boson cross section at

fixed momenta of the decay products is proportional to the angular distribution as ob-

tained (analogously to eq. (A.2)) by the corresponding Born level scattering amplitude
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M
(0)
g1g2→l3l4l5...

(k1, k2; p3, p4, p5, . . . ) for the gluon fusion process gg → H → l3l4l5 . . . . Ow-

ing to the spin-0 nature of the SM Higgs boson, M (0) factorizes in two independent fac-

tors, M
(0)
g1g2→H(k1, k2; q) and M

(0)
H→l3l4l5...

(q; p3, p4, p5, . . . ), for the production (g1g2 → H)

and decay (H → l3l4l5 . . . ) subprocesses of the Higgs boson. We thus have |M (0)|2 =

|M (0)
g1g2→H(k1, k2; q)|2 |M (0)

H→l3l4l5...
(q; p3, p4, p5, . . . )|2. Note that M

(0)
H→l3l4l5...

only depends

on observable momenta, while |M (0)
g1g2→H(k1, k2; q)|2 only depends on (k1 + k2)

2 = q2 be-

cause of Lorentz invariance. As a consequence, our qT -recoil procedure (and its dependence

on the definition of k1 and k2) has no effect on the angular distribution of the Higgs bo-

son decay products. The angular distribution of the resummed calculation can be directly

obtained [62] by supplementing the Born level total cross section σ̂
(0)
gg→H(M2) with the

(kinematical and dynamical) Higgs boson decay factor. This specific example also clearly

illustrates that the qT -recoil issue that we have introduced in section 2 and discussed in

this appendix is directly related and due to the vector boson spin and the spin correlations

between the production and decay subprocesses of the vector boson. This kind of relation

between qT recoil and spin correlations is valid for generic production processes.
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[55] M.G. Echevarŕıa, A. Idilbi and I. Scimemi, Soft and collinear factorization and transverse

momentum dependent parton distribution functions, Phys. Lett. B 726 (2013) 795

[arXiv:1211.1947] [INSPIRE].

[56] T. Becher, M. Neubert and D. Wilhelm, Higgs-boson production at small transverse

momentum, JHEP 05 (2013) 110 [arXiv:1212.2621] [INSPIRE].

[57] M.G. Echevarria, T. Kasemets, P.J. Mulders and C. Pisano, QCD evolution of (un)polarized

gluon TMDPDFs and the Higgs qT -distribution, JHEP 07 (2015) 158 [arXiv:1502.05354]

[INSPIRE].

[58] G. Bozzi, S. Catani, G. Ferrera, D. de Florian and M. Grazzini, Transverse-momentum

resummation: a perturbative study of Z production at the Tevatron,

Nucl. Phys. B 815 (2009) 174 [arXiv:0812.2862] [INSPIRE].

[59] G. Bozzi, S. Catani, G. Ferrera, D. de Florian and M. Grazzini, Production of Drell-Yan

lepton pairs in hadron collisions: transverse-momentum resummation at

next-to-next-to-leading logarithmic accuracy, Phys. Lett. B 696 (2011) 207

[arXiv:1007.2351] [INSPIRE].

[60] G. Bozzi, S. Catani, D. de Florian and M. Grazzini, The qT spectrum of the Higgs boson at

the LHC in QCD perturbation theory, Phys. Lett. B 564 (2003) 65 [hep-ph/0302104]

[INSPIRE].

[61] D. de Florian, G. Ferrera, M. Grazzini and D. Tommasini, Transverse-momentum

resummation: Higgs boson production at the Tevatron and the LHC, JHEP 11 (2011) 064

[arXiv:1109.2109] [INSPIRE].

[62] D. de Florian, G. Ferrera, M. Grazzini and D. Tommasini, Higgs boson production at the

LHC: transverse momentum resummation effects in the H → 2γ, H → WW → lνlν and

H → ZZ → 4l decay modes, JHEP 06 (2012) 132 [arXiv:1203.6321] [INSPIRE].

– 42 –

http://dx.doi.org/10.1103/PhysRevD.81.093007
http://arxiv.org/abs/0911.4135
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.4135
http://dx.doi.org/10.1103/PhysRevD.83.053007
http://arxiv.org/abs/1007.3773
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3773
http://dx.doi.org/10.1140/epjc/s10052-011-1665-7
http://arxiv.org/abs/1007.4005
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.4005
http://dx.doi.org/10.1007/JHEP07(2012)002
http://arxiv.org/abs/1111.4996
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.4996
http://dx.doi.org/10.1007/JHEP05(2012)084
http://arxiv.org/abs/1202.0814
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.0814
http://arxiv.org/abs/1503.00005
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.00005
http://dx.doi.org/10.1103/PhysRevD.87.034018
http://arxiv.org/abs/1210.2100
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.2100
http://dx.doi.org/10.1016/j.physletb.2013.09.003
http://arxiv.org/abs/1211.1947
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.1947
http://dx.doi.org/10.1007/JHEP05(2013)110
http://arxiv.org/abs/1212.2621
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.2621
http://dx.doi.org/10.1007/JHEP07(2015)158
http://arxiv.org/abs/1502.05354
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.05354
http://dx.doi.org/10.1016/j.nuclphysb.2009.02.014
http://arxiv.org/abs/0812.2862
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.2862
http://dx.doi.org/10.1016/j.physletb.2010.12.024
http://arxiv.org/abs/1007.2351
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.2351
http://dx.doi.org/10.1016/S0370-2693(03)00656-7
http://arxiv.org/abs/hep-ph/0302104
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0302104
http://dx.doi.org/10.1007/JHEP11(2011)064
http://arxiv.org/abs/1109.2109
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.2109
http://dx.doi.org/10.1007/JHEP06(2012)132
http://arxiv.org/abs/1203.6321
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.6321


J
H
E
P
1
2
(
2
0
1
5
)
0
4
7

[63] R.V. Harlander, A. Tripathi and M. Wiesemann, Higgs production in bottom quark

annihilation: transverse momentum distribution at NNLO + NNLL,

Phys. Rev. D 90 (2014) 015017 [arXiv:1403.7196] [INSPIRE].

[64] R.V. Harlander, H. Mantler and M. Wiesemann, Transverse momentum resummation for

Higgs production via gluon fusion in the MSSM, JHEP 11 (2014) 116 [arXiv:1409.0531]

[INSPIRE].

[65] H. Kawamura, J. Kodaira, H. Shimizu and K. Tanaka, The dilepton Q(T ) spectrum in

transversely polarized Drell-Yan process in QCD, Prog. Theor. Phys. 115 (2006) 667

[hep-ph/0512137] [INSPIRE].

[66] H. Kawamura, J. Kodaira and K. Tanaka, Soft gluon corrections to double transverse-spin

asymmetries for small-Q(T ) dilepton production at RHIC and J-PARC,

Nucl. Phys. B 777 (2007) 203 [hep-ph/0703079] [INSPIRE].

[67] H. Kawamura, J. Kodaira and K. Tanaka, Transversely polarized Drell-Yan process and soft

gluon resummation in QCD, Prog. Theor. Phys. 118 (2007) 581 [arXiv:0709.1752]

[INSPIRE].

[68] H. Kawamura, J. Kodaira and K. Tanaka, Double-spin asymmetries for small-Q(T )

Drell-Yan pair production in transversely polarized pp̄ collisions,

Phys. Lett. B 662 (2008) 139 [arXiv:0801.0026] [INSPIRE].

[69] G. Bozzi, B. Fuks and M. Klasen, Transverse-momentum resummation for slepton-pair

production at the CERN LHC, Phys. Rev. D 74 (2006) 015001 [hep-ph/0603074]

[INSPIRE].

[70] M. Grazzini, Soft-gluon effects in WW production at hadron colliders, JHEP 01 (2006) 095

[hep-ph/0510337] [INSPIRE].

[71] P. Meade, H. Ramani and M. Zeng, Transverse momentum resummation effects in W+W−

measurements, Phys. Rev. D 90 (2014) 114006 [arXiv:1407.4481] [INSPIRE].

[72] R. Frederix and M. Grazzini, Higher-order QCD effects in the h → ZZ search channel at

the LHC, Phys. Lett. B 662 (2008) 353 [arXiv:0801.2229] [INSPIRE].

[73] M. Grazzini, S. Kallweit, D. Rathlev and M. Wiesemann, Transverse-momentum

resummation for vector-boson pair production at NNLL+NNLO, JHEP 08 (2015) 154

[arXiv:1507.02565] [INSPIRE].

[74] L. Cieri, F. Coradeschi and D. de Florian, Diphoton production at hadron colliders:

transverse-momentum resummation at next-to-next-to-leading logarithmic accuracy,

JHEP 06 (2015) 185 [arXiv:1505.03162] [INSPIRE].

[75] G. Altarelli, R.K. Ellis, M. Greco and G. Martinelli, Vector boson production at colliders: a

theoretical reappraisal, Nucl. Phys. B 246 (1984) 12 [INSPIRE].

[76] P.B. Arnold and R.P. Kauffman, W and Z production at next-to-leading order: from large

q(t) to small, Nucl. Phys. B 349 (1991) 381 [INSPIRE].

[77] C. Balázs, J.-w. Qiu and C.P. Yuan, Effects of QCD resummation on distributions of

leptons from the decay of electroweak vector bosons, Phys. Lett. B 355 (1995) 548

[hep-ph/9505203] [INSPIRE].

[78] C. Balázs and C.P. Yuan, Soft gluon effects on lepton pairs at hadron colliders,

Phys. Rev. D 56 (1997) 5558 [hep-ph/9704258] [INSPIRE].

[79] R.K. Ellis, D.A. Ross and S. Veseli, Vector boson production in hadronic collisions,

Nucl. Phys. B 503 (1997) 309 [hep-ph/9704239] [INSPIRE].

– 43 –

http://dx.doi.org/10.1103/PhysRevD.90.015017
http://arxiv.org/abs/1403.7196
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.7196
http://dx.doi.org/10.1007/JHEP11(2014)116
http://arxiv.org/abs/1409.0531
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.0531
http://dx.doi.org/10.1143/PTP.115.667
http://arxiv.org/abs/hep-ph/0512137
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0512137
http://dx.doi.org/10.1016/j.nuclphysb.2007.04.022
http://arxiv.org/abs/hep-ph/0703079
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0703079
http://dx.doi.org/10.1143/PTP.118.581
http://arxiv.org/abs/0709.1752
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.1752
http://dx.doi.org/10.1016/j.physletb.2008.02.056
http://arxiv.org/abs/0801.0026
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.0026
http://dx.doi.org/10.1103/PhysRevD.74.015001
http://arxiv.org/abs/hep-ph/0603074
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0603074
http://dx.doi.org/10.1088/1126-6708/2006/01/095
http://arxiv.org/abs/hep-ph/0510337
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0510337
http://dx.doi.org/10.1103/PhysRevD.90.114006
http://arxiv.org/abs/1407.4481
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.4481
http://dx.doi.org/10.1016/j.physletb.2008.03.030
http://arxiv.org/abs/0801.2229
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.2229
http://dx.doi.org/10.1007/JHEP08(2015)154
http://arxiv.org/abs/1507.02565
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.02565
http://dx.doi.org/10.1007/JHEP06(2015)185
http://arxiv.org/abs/1505.03162
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.03162
http://dx.doi.org/10.1016/0550-3213(84)90112-3
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B246,12"
http://dx.doi.org/10.1016/0550-3213(91)90330-Z
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B349,381"
http://dx.doi.org/10.1016/0370-2693(95)00726-2
http://arxiv.org/abs/hep-ph/9505203
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9505203
http://dx.doi.org/10.1103/PhysRevD.56.5558
http://arxiv.org/abs/hep-ph/9704258
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9704258
http://dx.doi.org/10.1016/S0550-3213(97)00403-3
http://arxiv.org/abs/hep-ph/9704239
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9704239


J
H
E
P
1
2
(
2
0
1
5
)
0
4
7

[80] R.K. Ellis and S. Veseli, W and Z transverse momentum distributions: resummation in qT
space, Nucl. Phys. B 511 (1998) 649 [hep-ph/9706526] [INSPIRE].

[81] J.-w. Qiu and X.-f. Zhang, QCD prediction for heavy boson transverse momentum

distributions, Phys. Rev. Lett. 86 (2001) 2724 [hep-ph/0012058] [INSPIRE].

[82] J.-w. Qiu and X.-f. Zhang, Role of the nonperturbative input in QCD resummed Drell-Yan

QT distributions, Phys. Rev. D 63 (2001) 114011 [hep-ph/0012348] [INSPIRE].

[83] A. Kulesza and W.J. Stirling, Soft gluon resummation in transverse momentum space for

electroweak boson production at hadron colliders, Eur. Phys. J. C 20 (2001) 349

[hep-ph/0103089] [INSPIRE].

[84] A. Kulesza, G.F. Sterman and W. Vogelsang, Joint resummation in electroweak boson

production, Phys. Rev. D 66 (2002) 014011 [hep-ph/0202251] [INSPIRE].

[85] E.L. Berger and J.-w. Qiu, Differential cross-section for Higgs boson production including

all orders soft gluon resummation, Phys. Rev. D 67 (2003) 034026 [hep-ph/0210135]

[INSPIRE].

[86] E.L. Berger and J.-w. Qiu, Differential cross-sections for Higgs boson production at

Tevatron collider energies, Phys. Rev. Lett. 91 (2003) 222003 [hep-ph/0304267] [INSPIRE].

[87] F. Landry, R. Brock, P.M. Nadolsky and C.P. Yuan, Tevatron Run-1 Z boson data and

Collins-Soper-Sterman resummation formalism, Phys. Rev. D 67 (2003) 073016

[hep-ph/0212159] [INSPIRE].

[88] S. Berge, P.M. Nadolsky and F.I. Olness, Heavy-flavor effects in soft gluon resummation for

electroweak boson production at hadron colliders, Phys. Rev. D 73 (2006) 013002

[hep-ph/0509023] [INSPIRE].

[89] S. Mantry and F. Petriello, Transverse momentum distributions in the non-perturbative

region, Phys. Rev. D 84 (2011) 014030 [arXiv:1011.0757] [INSPIRE].

[90] T. Becher, M. Neubert and D. Wilhelm, Electroweak gauge-boson production at small qT :

infrared safety from the collinear anomaly, JHEP 02 (2012) 124 [arXiv:1109.6027]

[INSPIRE].

[91] A. Banfi, M. Dasgupta, S. Marzani and L. Tomlinson, Predictions for Drell-Yan φ∗ and QT

observables at the LHC, Phys. Lett. B 715 (2012) 152 [arXiv:1205.4760] [INSPIRE].

[92] M. Guzzi, P.M. Nadolsky and B. Wang, Nonperturbative contributions to a resummed

leptonic angular distribution in inclusive neutral vector boson production,

Phys. Rev. D 90 (2014) 014030 [arXiv:1309.1393] [INSPIRE].

[93] U. D’Alesio, M.G. Echevarria, S. Melis and I. Scimemi, Non-perturbative QCD effects in qT
spectra of Drell-Yan and Z-boson production, JHEP 11 (2014) 098 [arXiv:1407.3311]

[INSPIRE].

[94] J.C. Collins and D.E. Soper, Angular distribution of dileptons in high-energy hadron

collisions, Phys. Rev. D 16 (1977) 2219 [INSPIRE].

[95] S. Catani, M. Grazzini and A. Torre, Transverse-momentum resummation for heavy-quark

hadroproduction, Nucl. Phys. B 890 (2014) 518 [arXiv:1408.4564] [INSPIRE].

[96] C.T.H. Davies, B.R. Webber and W.J. Stirling, Drell-Yan cross-sections at small transverse

momentum, Nucl. Phys. B 256 (1985) 413 [INSPIRE].

[97] C.T.H. Davies and W.J. Stirling, Nonleading corrections to the Drell-Yan cross-section at

small transverse momentum, Nucl. Phys. B 244 (1984) 337 [INSPIRE].

– 44 –

http://dx.doi.org/10.1016/S0550-3213(97)00655-X
http://arxiv.org/abs/hep-ph/9706526
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9706526
http://dx.doi.org/10.1103/PhysRevLett.86.2724
http://arxiv.org/abs/hep-ph/0012058
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0012058
http://dx.doi.org/10.1103/PhysRevD.63.114011
http://arxiv.org/abs/hep-ph/0012348
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0012348
http://dx.doi.org/10.1007/s100520100666
http://arxiv.org/abs/hep-ph/0103089
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0103089
http://dx.doi.org/10.1103/PhysRevD.66.014011
http://arxiv.org/abs/hep-ph/0202251
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0202251
http://dx.doi.org/10.1103/PhysRevD.67.034026
http://arxiv.org/abs/hep-ph/0210135
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0210135
http://dx.doi.org/10.1103/PhysRevLett.91.222003
http://arxiv.org/abs/hep-ph/0304267
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0304267
http://dx.doi.org/10.1103/PhysRevD.67.073016
http://arxiv.org/abs/hep-ph/0212159
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0212159
http://dx.doi.org/10.1103/PhysRevD.73.013002
http://arxiv.org/abs/hep-ph/0509023
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0509023
http://dx.doi.org/10.1103/PhysRevD.84.014030
http://arxiv.org/abs/1011.0757
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.0757
http://dx.doi.org/10.1007/JHEP02(2012)124
http://arxiv.org/abs/1109.6027
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.6027
http://dx.doi.org/10.1016/j.physletb.2012.07.035
http://arxiv.org/abs/1205.4760
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.4760
http://dx.doi.org/10.1103/PhysRevD.90.014030
http://arxiv.org/abs/1309.1393
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.1393
http://dx.doi.org/10.1007/JHEP11(2014)098
http://arxiv.org/abs/1407.3311
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.3311
http://dx.doi.org/10.1103/PhysRevD.16.2219
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D16,2219"
http://dx.doi.org/10.1016/j.nuclphysb.2014.11.019
http://arxiv.org/abs/1408.4564
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.4564
http://dx.doi.org/10.1016/0550-3213(85)90402-X
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B256,413"
http://dx.doi.org/10.1016/0550-3213(84)90316-X
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B244,337"


J
H
E
P
1
2
(
2
0
1
5
)
0
4
7

[98] S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Vector boson production at

hadron colliders: hard-collinear coefficients at the NNLO, Eur. Phys. J. C 72 (2012) 2195

[arXiv:1209.0158] [INSPIRE].

[99] T. Gehrmann, T. Lubbert and L.L. Yang, Transverse parton distribution functions at

next-to-next-to-leading order: the quark-to-quark case, Phys. Rev. Lett. 109 (2012) 242003

[arXiv:1209.0682] [INSPIRE].

[100] S. Catani, E. D’Emilio and L. Trentadue, The gluon form-factor to higher orders: gluon

gluon annihilation at small Q-transverse, Phys. Lett. B 211 (1988) 335 [INSPIRE].

[101] D. de Florian and M. Grazzini, Next-to-next-to-leading logarithmic corrections at small

transverse momentum in hadronic collisions, Phys. Rev. Lett. 85 (2000) 4678

[hep-ph/0008152] [INSPIRE].

[102] D. de Florian and M. Grazzini, The structure of large logarithmic corrections at small

transverse momentum in hadronic collisions, Nucl. Phys. B 616 (2001) 247

[hep-ph/0108273] [INSPIRE].

[103] S. Catani and M. Grazzini, Higgs boson production at hadron colliders: hard-collinear

coefficients at the NNLO, Eur. Phys. J. C 72 (2012) 2013 [Erratum ibid. C 72 (2012)

2132] [arXiv:1106.4652] [INSPIRE].

[104] T. Gehrmann, T. Luebbert and L.L. Yang, Calculation of the transverse parton distribution

functions at next-to-next-to-leading order, JHEP 06 (2014) 155 [arXiv:1403.6451]

[INSPIRE].

[105] S. Catani, M. Ciafaloni and F. Hautmann, Gluon contributions to small x heavy flavor

production, Phys. Lett. B 242 (1990) 97 [INSPIRE].

[106] S. Catani, M. Ciafaloni and F. Hautmann, High-energy factorization and small x heavy

flavor production, Nucl. Phys. B 366 (1991) 135 [INSPIRE].

[107] J.C. Collins and R.K. Ellis, Heavy quark production in very high-energy hadron collisions,

Nucl. Phys. B 360 (1991) 3 [INSPIRE].

[108] E.M. Levin, M.G. Ryskin, Yu.M. Shabelski and A.G. Shuvaev, Heavy quark production in

semihard nucleon interactions, Sov. J. Nucl. Phys. 53 (1991) 657 [INSPIRE].

[109] M. Deak, F. Hautmann, H. Jung and K. Kutak, Forward jet production at the large hadron

collider, JHEP 09 (2009) 121 [arXiv:0908.0538] [INSPIRE].

[110] J. Blumlein, Analytic continuation of Mellin transforms up to two loop order,

Comput. Phys. Commun. 133 (2000) 76 [hep-ph/0003100] [INSPIRE].

[111] J. Blumlein and S. Kurth, Harmonic sums and Mellin transforms up to two loop order,

Phys. Rev. D 60 (1999) 014018 [hep-ph/9810241] [INSPIRE].

[112] J. Blumlein and V. Ravindran, Mellin moments of the next-to-next-to leading order

coefficient functions for the Drell-Yan process and hadronic Higgs-boson production,

Nucl. Phys. B 716 (2005) 128 [hep-ph/0501178] [INSPIRE].

[113] J. Blumlein and S.-O. Moch, Analytic continuation of the harmonic sums for the 3-loop

anomalous dimensions, Phys. Lett. B 614 (2005) 53 [hep-ph/0503188] [INSPIRE].

[114] S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its

application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002

[hep-ph/0703012] [INSPIRE].

[115] E. Laenen, G.F. Sterman and W. Vogelsang, Higher order QCD corrections in prompt

photon production, Phys. Rev. Lett. 84 (2000) 4296 [hep-ph/0002078] [INSPIRE].

– 45 –

http://dx.doi.org/10.1140/epjc/s10052-012-2195-7
http://arxiv.org/abs/1209.0158
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.0158
http://dx.doi.org/10.1103/PhysRevLett.109.242003
http://arxiv.org/abs/1209.0682
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.0682
http://dx.doi.org/10.1016/0370-2693(88)90912-4
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B211,335"
http://dx.doi.org/10.1103/PhysRevLett.85.4678
http://arxiv.org/abs/hep-ph/0008152
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0008152
http://dx.doi.org/10.1016/S0550-3213(01)00460-6
http://arxiv.org/abs/hep-ph/0108273
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0108273
http://dx.doi.org/10.1140/epjc/s10052-012-2013-2
http://arxiv.org/abs/1106.4652
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4652
http://dx.doi.org/10.1007/JHEP06(2014)155
http://arxiv.org/abs/1403.6451
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.6451
http://dx.doi.org/10.1016/0370-2693(90)91601-7
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B242,97"
http://dx.doi.org/10.1016/0550-3213(91)90055-3
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B366,135"
http://dx.doi.org/10.1016/0550-3213(91)90288-9
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B360,3"
http://inspirehep.net/search?p=find+J+"Sov.J.Nucl.Phys.,53,657"
http://dx.doi.org/10.1088/1126-6708/2009/09/121
http://arxiv.org/abs/0908.0538
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.0538
http://dx.doi.org/10.1016/S0010-4655(00)00156-9
http://arxiv.org/abs/hep-ph/0003100
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0003100
http://dx.doi.org/10.1103/PhysRevD.60.014018
http://arxiv.org/abs/hep-ph/9810241
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9810241
http://dx.doi.org/10.1016/j.nuclphysb.2005.03.003
http://arxiv.org/abs/hep-ph/0501178
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0501178
http://dx.doi.org/10.1016/j.physletb.2005.03.073
http://arxiv.org/abs/hep-ph/0503188
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0503188
http://dx.doi.org/10.1103/PhysRevLett.98.222002
http://arxiv.org/abs/hep-ph/0703012
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0703012
http://dx.doi.org/10.1103/PhysRevLett.84.4296
http://arxiv.org/abs/hep-ph/0002078
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0002078


J
H
E
P
1
2
(
2
0
1
5
)
0
4
7

[116] NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II,

JHEP 04 (2015) 040 [arXiv:1410.8849] [INSPIRE].

[117] Particle Data Group collaboration, K.A. Olive et al., Review of particle physics,

Chin. Phys. C 38 (2014) 090001 [INSPIRE].

[118] E.L. Berger, J.-w. Qiu and X.-f. Zhang, QCD factorized Drell-Yan cross-section at large

transverse momentum, Phys. Rev. D 65 (2002) 034006 [hep-ph/0107309] [INSPIRE].

[119] E.L. Berger, J. Gao, Z.-B. Kang, J.-W. Qiu and H. Zhang, Hadronic production of W and

Z bosons at large transverse momentum, Phys. Rev. D 91 (2015) 113001

[arXiv:1503.08836] [INSPIRE].

[120] N. Kidonakis and V. Del Duca, Electroweak boson hadroproduction at large transverse

momentum: factorization, resummation and NNLO corrections,

Phys. Lett. B 480 (2000) 87 [hep-ph/9911460] [INSPIRE].

[121] N. Kidonakis and R.J. Gonsalves, NNLO soft-gluon corrections for the Z-boson and

W-boson transverse momentum distributions, Phys. Rev. D 89 (2014) 094022

[arXiv:1404.4302] [INSPIRE].

[122] T. Becher, C. Lorentzen and M.D. Schwartz, Resummation for W and Z production at

large pT , Phys. Rev. Lett. 108 (2012) 012001 [arXiv:1106.4310] [INSPIRE].

[123] T. Becher, G. Bell, C. Lorentzen and S. Marti, Transverse-momentum spectra of electroweak

bosons near threshold at NNLO, JHEP 02 (2014) 004 [arXiv:1309.3245] [INSPIRE].

[124] CMS collaboration, Measurement of the rapidity and transverse momentum distributions of

Z bosons in pp collisions at
√
s = 7 TeV, Phys. Rev. D 85 (2012) 032002

[arXiv:1110.4973] [INSPIRE].

[125] ATLAS collaboration, Measurement of the Z/γ∗ boson transverse momentum distribution

in pp collisions at
√
s = 7 TeV with the ATLAS detector, JHEP 09 (2014) 145

[arXiv:1406.3660] [INSPIRE].

[126] ATLAS collaboration, Measurement of the transverse momentum distribution of W bosons

in pp collisions at
√
s = 7 TeV with the ATLAS detector, Phys. Rev. D 85 (2012) 012005

[arXiv:1108.6308] [INSPIRE].

[127] ATLAS collaboration, Measurement of angular correlations in Drell-Yan lepton pairs to

probe Z/γ∗ boson transverse momentum at
√
s = 7TeV with the ATLAS detector,

Phys. Lett. B 720 (2013) 32 [arXiv:1211.6899] [INSPIRE].

[128] LHCb collaboration, Measurement of the cross-section for Z → e+e− production in pp

collisions at
√
s = 7 TeV, JHEP 02 (2013) 106 [arXiv:1212.4620] [INSPIRE].

[129] A. Banfi, M. Dasgupta and S. Marzani, QCD predictions for new variables to study dilepton

transverse momenta at hadron colliders, Phys. Lett. B 701 (2011) 75 [arXiv:1102.3594]

[INSPIRE].

[130] A. Banfi, M. Dasgupta, S. Marzani and L. Tomlinson, Probing the low transverse

momentum domain of Z production with novel variables, JHEP 01 (2012) 044

[arXiv:1110.4009] [INSPIRE].

[131] S. Catani and B.R. Webber, Infrared safe but infinite: soft gluon divergences inside the

physical region, JHEP 10 (1997) 005 [hep-ph/9710333] [INSPIRE].

– 46 –

http://dx.doi.org/10.1007/JHEP04(2015)040
http://arxiv.org/abs/1410.8849
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.8849
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://inspirehep.net/search?p=find+J+"Chin.Phys.,C38,090001"
http://dx.doi.org/10.1103/PhysRevD.65.034006
http://arxiv.org/abs/hep-ph/0107309
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0107309
http://dx.doi.org/10.1103/PhysRevD.91.113001
http://arxiv.org/abs/1503.08836
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.08836
http://dx.doi.org/10.1016/S0370-2693(00)00356-7
http://arxiv.org/abs/hep-ph/9911460
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9911460
http://dx.doi.org/10.1103/PhysRevD.89.094022
http://arxiv.org/abs/1404.4302
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.4302
http://dx.doi.org/10.1103/PhysRevLett.108.012001
http://arxiv.org/abs/1106.4310
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4310
http://dx.doi.org/10.1007/JHEP02(2014)004
http://arxiv.org/abs/1309.3245
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.3245
http://dx.doi.org/10.1103/PhysRevD.85.032002
http://arxiv.org/abs/1110.4973
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.4973
http://dx.doi.org/10.1007/JHEP09(2014)145
http://arxiv.org/abs/1406.3660
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.3660
http://dx.doi.org/10.1103/PhysRevD.85.012005
http://arxiv.org/abs/1108.6308
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.6308
http://dx.doi.org/10.1016/j.physletb.2013.01.054
http://arxiv.org/abs/1211.6899
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.6899
http://dx.doi.org/10.1007/JHEP02(2013)106
http://arxiv.org/abs/1212.4620
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.4620
http://dx.doi.org/10.1016/j.physletb.2011.05.028
http://arxiv.org/abs/1102.3594
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.3594
http://dx.doi.org/10.1007/JHEP01(2012)044
http://arxiv.org/abs/1110.4009
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.4009
http://dx.doi.org/10.1088/1126-6708/1997/10/005
http://arxiv.org/abs/hep-ph/9710333
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9710333

	Introduction
	Transverse-momentum resummation
	Numerical results at the LHC
	Inclusive results at fixed q(T)
	Vector boson production at the LHC

	Summary
	Lepton angular distribution and q(T) recoil in transverse-momentum resummation

