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Abstract. The paper is concerned with the finite element solution of the Poisson equation with ho-
mogeneous Dirichlet boundary condition in a three-dimensional domain. Anisotropic, graded meshes
from a former paper are reused for dealing with the singular behaviour of the solution in the vicinity
of the non-smooth parts of the boundary. The discretization error is analyzed for the piecewise linear
approximation in the H1(Ω)- and L2(Ω)-norms by using a new quasi-interpolation operator. This new
interpolant is introduced in order to prove the estimates for L2(Ω)-data in the differential equation which
is not possible for the standard nodal interpolant. These new estimates allow for the extension of certain
error estimates for optimal control problems with elliptic partial differential equation and for a simpler
proof of the discrete compactness property for edge elements of any order on this kind of finite element
meshes.
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1. Introduction

We consider the homogeneous Dirichlet problem for the Laplace equation,

−∆u = f in Ω, u = 0 on ∂Ω, (1.1)

where Ω is a polyhedral domain. Note that we could consider a more general elliptic
equation of second order. But by a linear change of the independent variables the main
part of the differential operator could be transformed to the Laplace operator in another
polyhedral domain such that it is sufficient to consider the Laplace operator here.

The aim of the paper is to prove the discretization error estimate

‖u− uh‖H1(Ω) ≤ Ch‖f‖L2(Ω) (1.2)
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for the finite element solution uh ∈ Vh which is constructed by using piecewise linear
and continuous functions on a family of appropriate finite element meshes Th. Note that
we assume here not more than f ∈ L2(Ω) such that the L2-error estimate

‖u− uh‖L2(Ω) ≤ Ch2‖f‖L2(Ω) (1.3)

follows by the Aubin–Nitsche method immediately. The generic constant C may have
different values on each occurrence.

If the solution of the boundary value problem (1.1) was in H2(Ω) then the finite el-
ement meshes could be chosen quasi-uniform, and the error estimates (1.2) and (1.3)
would be standard. However, if the domain Ω is non-convex, the solution will in general
contain vertex and edge singularities, that means u 6∈ H2(Ω). In this case the conver-
gence order is reduced in comparison with (1.2) and (1.3) when quasi-uniform meshes
are used. As a remedy, we focus here on a priori anisotropic mesh grading techniques
as they were investigated by Apel and Nicaise in [4]. In comparison with isotropic local
mesh refinement, the use of anisotropic elements avoids an unnecessary refinement along
the edges.

The estimate (1.2) is in general proven by using the Céa lemma (or the best approxi-
mation property of the finite element method),

‖u− uh‖H1(Ω) ≤ C inf
vh∈Vh

‖u− vh‖H1(Ω), (1.4)

and by proving an interpolation error estimate as an upper bound for the right-hand
side of (1.4). The particular difficulty is that when the Lagrange interpolant is used
together with anisotropic mesh grading, then the local interpolation error estimate

|u− Ihu|W 1,p(T ) ≤ hT |u|W 2,p(T ) (1.5)

does not hold for p = 2 but only for p > 2, see [2]. Hence the classical proof of a finite
element error estimate via

‖u− uh‖H1(Ω) ≤ C‖u− Ihu‖H1(Ω) ≤ C

∑
T∈Th

hT |u|2H2(T )

1/2

does not work. This problem was overcome by Apel and Nicaise, [4], by using (1.5) and
related estimates in weighted spaces, as well as the Hölder inequality for the prize that
f ∈ Lp(Ω) with p > 2 has to be assumed in problem (1.1). Hence estimate (1.2) cannot
be proved in this way.

For prismatic domains and tensor product type meshes the problem was overcome
in [1, 6] by proving local estimates for a certain quasi-interpolation operator. This
work cannot be easily extended to general polyhedral domains since the orthogonality
of certain edges of the elements was used there. The aim of the current paper is to
construct a quasi-interpolation operator Dh such that the error estimate

‖u−Dhu‖H1(Ω) ≤ Ch‖f‖L2(Ω) (1.6)
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can be proved for the anisotropic meshes introduced in [4].
Quasi-interpolants were introduced by Clément [14]. The idea is to replace nodal

values by certain averaged values such that non-smooth functions can be interpolated.
This original idea has been modified by many authors since then. The contribution by
Scott and Zhang [30] was most influential to our work.

The plan of the paper is as follows. In Section 2 we introduce notation, recall regularity
results for the solution u of (1.1) and describe the finite element discretization. The
main results are proved in Section 3. The paper continues with numerical results in
Section 4 and ends with two sections where we describe applications which motivated
us to improve the approximation result from ‖u − uh‖H1(Ω) ≤ Ch‖f‖Lp(Ω), p > 2, to
‖u − uh‖H1(Ω) ≤ Ch‖f‖L2(Ω). The first one is a discretization of a distributed optimal
control problem with (1.1) as the state equation. The second application consists in a
simpler proof of the discrete compactness property for edge elements of any order on
this kind of finite element meshes.

We finish this introduction by commenting on related work. The idea to treat sin-
gularities due to a non-smooth boundary by using graded finite element meshes is old.
The two-dimensional case was investigated by Oganesyan and Rukhovets [25], Babuška
[9], Raugel [27], and Schatz and Wahlbin [28]. In three dimensions we can distinguish
isotropic mesh grading, see the papers by Apel and Heinrich [3] and Apel, Sändig, and
Whiteman [5], and anisotropic mesh grading, see the already mentioned papers [2, 1, 6]
for the special case of prismatic domains, and [4] for general polyhedral domains. This
work has been extended by Băcuţă, Nistor, and Zikatanov [12] to higher order finite
element approximations where naturally higher regularity of the right-hand side f has
to be assumed. Boundary element methods with anisotropic, graded meshes have been
considered by von Petersdorff and Stephan [26]. The main alternative to mesh grading
is augmenting the finite element space with singular functions, see for example Strang
and Fix [32], Blum and Dobrowolski [11], or Assous, Ciarlet Jr., and Segré [8] for various
variants. It works well in two dimensions where the coefficient in front of the singular
function is constant. In the case of edge singularities this coefficient is a function which
can be approximated, see Beagles and Whiteman [10], or it can be treated by Fourier
analysis, see Lubuma and Nicaise [22].

2. Notation, regularity, discretization

It is well known that the solution of the boundary value problem (1.1) contains edge and
vertex singularities which are characterized by singular exponents. For each edge e, the
corresponding leading (smallest) singular exponent λe is simply defined by λe = π/ωe
where ωe is the interior dihedral angle at the edge e. For vertices v of Ω, the leading
singular exponent λv > 0 has to be computed via the eigenvalue problem of the Laplace-
Beltrami operator on the intersection of Ω and the unit sphere centered at v. Note that
λe >

1
2 and λv > 0. A vertex v or an edge e will be called singular if λv <

1
2 or λe < 1,

respectively. We exclude the case that 1
2 is a singular exponent of any vertex. For a

detailed discussion of edge and vertex singularities we refer to [16, Sections 2.5 and 2.6].
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As in [4] we subdivide the domain Ω into a finite number of disjoint tetrahedral
subdomains, subsequently called macro-elements,

Ω =
L⋃
`=1

Λ`.

We assume that each Λ` contains at most one singular edge and at most one singular
vertex. In the case that Λ` contains both a singular edge and a singular vertex, that
vertex is contained in that edge. Note that the edges of Λ` are considered to have O(1)
length. For `1 6= `2, the closures of the macroelements Λ`1 and Λ`2 may be disjoint or
they intersect defining a coupling face, or a coupling edge, or a coupling node. Denote by
Fc, Ec and Nc the sets of coupling faces, edges and nodes, respectively.

For the description of the regularity of the solution u of (1.1), we set λ
(`)
v = λv if

the macro-element Λ` contains the singular vertex v of Ω. If Λ` does not contain any

singular vertex we set λ
(`)
v = +∞. Moreover, we set λ

(`)
e = λe if Λ` contains the singular

edge e of Ω, otherwise we set λ
(`)
e = +∞. Furthermore, we define in each macro-element

Λ` a Cartesian coordinate system x(`) = (x
(`)
1 , x

(`)
2 , x

(`)
3 ) such that the singular vertex, if

existing, is located in the origin, and the singular edge, if existing, is contained in the

x
(`)
3 -axis. We also introduce by

r(`)(x(`)) :=
(

(x
(`)
1 )2 + (x

(`)
2 )2

)1/2
,

R(`)(x(`)) :=
(

(x
(`)
1 )2 + (x

(`)
2 )2 + (x

(`)
3 )2

)1/2
,

θ(`)(x(`)) :=
r(`)(x(`))

R(`)(x(`))
,

the distance to the x
(`)
3 -axis, the distance to the origin, the angular distance from the

x
(`)
3 -axis, respectively.
For k ∈ N and β, δ ∈ R we define the weighted Sobolev space

V k,2
β,δ (Λ`) :=

{
v ∈ D′(Λ`) : ‖v‖

V k,2β,δ (Λ`)
<∞

}
where

‖v‖2
V k,2β,δ (Λ`)

:=
∑
|α|≤k

∫
Λ`

∣∣∣Rβ−k+|α|θδ−k+|α|Dαv
∣∣∣2 ,

|v|2
V k,2β,δ (Λ`)

:=
∑
|α|=k

∫
Λ`

∣∣∣RβθδDαv
∣∣∣2

Here, we have used the standard multi-index notation to describe partial derivatives,
and we have omitted the index (`) in R and θ for simplicity.
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Theorem 2.1 (Regularity). [4, Theorem 2.10] The weak solution u of the boundary
value problem (1.1) admits the decomposition

u = ur + us

in Λ`, ` = 1, . . . , L, where ur ∈ H2(Λ`) and

∂us

∂x
(`)
i

∈ V 1,2
β,δ (Λ`), i = 1, 2,

∂us

∂x
(`)
3

∈ V 1,2
β,0 (Λ`),

for any β, δ ≥ 0 satisfying β > 1
2 − λ

(`)
v and δ > 1− λ(`)

e .

Following [4] we consider a triangulation Th of Ω,

Ω =
⋃
T∈Th

T ,

made up of tetrahedra which match the initial partition: if T ∩ Λ` 6= ∅ then T ⊂ Λ`.
Four cases are considered:

1. If Λ` does neither contain a singular edge nor a singular vertex then Th|Λ` is
assumed to be isotropic and quasi-uniform with element size h, see Figure 1, top
left.

2. If Λ` contains a singular vertex but no singular edges then Th|Λ` is isotropic and has
a singular vertex refinement, i.e., the mesh is graded towards the singular vertex
with a grading parameter ν` ∈ (0, 1]. This can be achieved by using a coordinate
transformation of the vertices from Case 1, see Figure 1, top right.

3. If Λ` contains a singular edge but no singular vertices then Th|Λ` is anisotropically
graded towards the singular edge. The grading parameter is µ` ∈ (0, 1]. To
this end, we introduce a family P` of planes transversal to the singular edge and
containing the opposite one. These planes split the macro element into strips and
contain all nodes. In the planes the position of the nodes is achieved by applying
a coordinate transformation to a uniform triangulation, see Figure 1, bottom left.

4. If Λ` contains both a singular vertex and a singular edge then Th|Λ` is graded
towards the singular edge with grading parameter µ` ∈ (0, 1] and towards the
singular vertex with grading parameter ν` ∈ (0, 1]. The mesh is topologically
equivalent to the mesh of Case 3 but the planes of P` do not divide the singular
edge equidistantly but with a grading towards the singular vertex.

We point out that anisotropic elements can appear only in Cases 3 and 4, for which
Th contains needle elements near the singular edge and flat elements near the opposite
one, see Figure 1. We further observe that if Λ` is of type 3 or 4, the elements in Th|Λ`
do not intersect any plane of P`.
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Figure 1: Macroelements of types 1, 2, 3 and 4

For each element T we introduce its lengths h1,T , h2,T , h3,T and hT as follows. Let hT
be the diameter of T . If T ⊂ Λ` with Λ` of type 1 or 2, then h1,T = h2,T = h3,T = hT .
If T ⊂ Λ` with Λ` of type 3 or 4 then h3,T is the length of the edge e3,T of T parallel to
the singular edge, and h1,T = h2,T = 1

2(|e1,T |+ |e2,T |) where e1,T and e2,T are the edges
of T intersecting e3,T and each one of them is contained in some plane of P`.

By classical regularity theory, the solution u of the boundary value problem (1.1) is
continuous, see e.g. [16, page page 79], such that the Lagrange interpolant uI with
respect to the subdivision {Λ`} is well defined. We consider the decomposition

u = uI + uR. (2.1)

It follows that the restriction uR|Λ` has the same smoothness properties as u, see The-
orem 2.1. Furthermore, uR vanishes in coupling nodes and on singular edges. We
construct now an interpolant DhuR ∈ Vh which also vanishes on these nodes such that
uI +DhuR ∈ Vh can be used to estimate the discretization error via (1.4).

To this end, let N , Nin, Nc and Ns be the set of all nodes of Th, the set of all the
interior nodes, the set of coupling nodes, and the set of nodes which belong to some
singular edge, respectively. The terminal points of the singular edges are included in
Ns. The piecewise linear nodal basis on Th is denoted by {φn}n∈N . We associate (as
specified below) with each n ∈ N \ (Nc ∪ Ns) an edge σn with n as an endpoint. Note
that u|σn ∈ L2(σn) since u ∈ Hs(Ω) with s > 1. Hence the operator Dh with

Dhu =
∑

n∈N\(Nc∪Ns)

(Πσnu)(n) · φn(x), (2.2)
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Figure 2: Illustration of the edges σn

is well defined when Πσ : L2(σ)→ P1(σ) is the L2(σ)-projection operator onto the space
of polynomials of degree less than or equal to one. Note that Dhu vanishes on coupling
nodes and on singular edges by construction. In order to impose the boundary conditions
and to be able to prove interpolation error estimates we need to select the edges σn in
an appropriate way, compare the illustration in Figure 2. First, we demand that

• for each node n ∈ N \ (Nc ∪Ns), n and σn belong to the same macroelement.

This requires in particular the following restrictions.

– If n lays on a boundary or coupling face, then σn is contained in that face.

– If n lays on a coupling edge, then σn is contained in that coupling edge.

Note that these requirements made the treatment of the coupling nodes via the in-
terpolation on the initial uI necessary. Note further that this construction leads to a
preservation of the homogeneous Dirichlet boundary condition.

In order to prove the stability of Dh in the anisotropic refinement regions we also
require:

• If n is a vertex of a tetrahedron contained in a macroelement Λ` of types 3 or 4,
then σn is an edge contained on some plane of P`.
• If n1 and n2 belong to a macroelement Λ` of types 3 or 4 and have the same

orthogonal projection onto the x
(`)
1 x

(`)
2 -plane, then the same holds for σn1 and σn2 .

In order to estimate the interpolation error we need to define for each T ∈ Th a set
ST which should satisfy the following assumptions.

• The set ST is a union of elements of Th (plus some faces) and in particular T ⊆ ST .

• The set ST is an open connected domain, and as small as possible.

• We have σn ⊂ ST for all nodes n of T .

• If T ⊂ Λ`, then ST ⊂ Λ`.

• If T ⊂ Λ` with Λ` of type 3 of 4, then ST is a prism where the top and bottom
faces are contained in two planes of P` (and so they are not parallel) and the other
faces are parallel to the singular edge.
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The following properties follow from the definitions of the edges σn and the sets ST .

1. Let T be contained in a macroelement Λ` of type 3 or 4. If T intersects two planes
p1 and p2 of P`, then ST intersects exactly the same planes p1 and p2.

2. If the node n, n 6∈ Nc ∪Ns, belongs to a coupling face, that means that there exist
tetrahedra T1 ⊂ Λ`1 and T2 ⊂ Λ`2 with `1 6= `2 and n ∈ T1∩T2, then ST1 ∩ST2 = ∅
but σn ⊂ ST1 ∩ ST2 .

3. If T is an isotropic element then all the elements in ST are also isotropic and of
size of the same order.

The second point is essential for our proof of the approximation properties. It was the
target for which we made the construction as it is.

3. Error estimates

The aim of this section is to derive error estimates for our discretization. They are
based on local interpolation error estimates for our interpolant Dh. For proving these
estimates we have to distinguish several cases, see also Figure 3 for an illustration:

1. T is an isotropic element without coupling node, u has full regularity,

2. T is an isotropic element with coupling node, u has full regularity,

3. T is an isotropic element with coupling node, u has reduced regularity,

4. T is an anisotropic flat element without coupling node, u has full regularity,

5. T is an anisotropic flat element with coupling node, u has full regularity,

6. T is an anisotropic needle element without node on the singular edge, u has full
regularity,

7. T is an anisotropic needle element with node on the singular edge, u has reduced
regularity.

In Lemma 3.1 we present the general approach for the proof of the local interpolation
error estimate by considering isotropic elements with and without coupling nodes (cases
1 and 2). We proceed with Lemmas 3.2 where we introduce for isotropic elements how to
cope with the weighted norms in the case of reduced regularity (case 3). The interpolated
function is only from a weighted Sobolev space but we will see that this even simplifies
some parts of the proof.

For anisotropic elements the use of an inverse inequality (as was done in the pre-
vious lemmas) has to be avoided; instead we use the structure of the meshes in the
macroelements of types 3 and 4. We start with a stability estimate of ∂3Dhu which
allows immediately the treatment of anisotropic flat elements (cases 4 and 5) in Lemma
3.4. Then we prove stability estimates for the remaining derivatives and continue with
the interpolation error estimates for needle elements. Lemma 3.7 is devoted to case 6,
and Lemma 3.9 to case 7.
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Figure 3: Illustration of the cases that have to considered for the interpolation error
estimates

All these local estimates can then be combined to prove the global interpolation error
estimate, see Theorem 3.10, and the finite element error estimates, see Corollary 3.12.

Lemma 3.1 (isotropic element, full regularity). If T is an isotropic element then the
local interpolation error estimate

|u−Dhu|H1(T ) ≤ ChT |u|H2(ST ) (3.1)

holds provided that u ∈ H2(ST ) and u(n) = 0 for all n ∈ Nc.

Proof. Following the explanations in [30, page 486] and [1, page 1156], an explicit repre-
sentation of Dhu from (2.2) can be given by introducing the unique function ψn ∈ Vh|σn
with

∫
σn
ψnφj = δnj for all j ∈ N such that

(Πσnu)(n) =

∫
σn

uψn (3.2)

and

Dhu|T =
∑
n∈NT

(∫
σn

uψn

)
· φn (3.3)

where we denote by NT the set of nodes of T without the coupling nodes. Note that

‖ψn‖L∞(σn) = C |σn|−1, (3.4)

9



compare [1, page 1157]. (By some calculation one can even specify that C = 4.) With
(3.3), the direct computation

|φn|H1(T ) ≤ Ch−1
T |T |1/2, (3.5)

the trace theorem

‖u‖L1(σn) ≤ C|σn||ST |−1/2(‖u‖L2(ST ) + hT |u|H1(ST ) + h2
T |u|H2(ST )), (3.6)

and |ST | ≤ C|T | we obtain

|Dhu|H1(T ) ≤ C
∑
n∈NT

‖u‖L1(σn)‖ψn‖L∞(σn)|φn|H1(T )

≤ Ch−1
T (‖u‖L2(ST ) + hT |u|H1(ST ) + h2

T |u|H2(ST )). (3.7)

If NT does not contain a node n ∈ Nc we find that Dhw = w for all w ∈ P1 such that
we get by using the triangle inequality and the stability estimate (3.7)

|u−Dhu|H1(T ) = |(u− w)−Dh(u− w)|H1(T ) ∀w ∈ P1

≤ |u− w|H1(T ) + |Dh(u− w)|H1(T )

≤ C
(
h−1
T ‖u− w‖L2(ST ) + |u− w|H1(ST ) + hT |u|H2(ST )

)
.

We use now a Deny–Lions type argument (see e.g. [15]) and conclude estimate (3.1).
In the case when NT contains a node n ∈ Nc we do not have the property that

Dhw = w for all w ∈ P1 but we can use that u(n) = 0. Let σn be an edge contained
in T having n as an endpoint, and let φn be the Lagrange basis function associated
with n. (Note that we deal here with nodes n which are not used in the definition of
Dh. Therefore we can assume that σn is local in Λ`.) Consequently, we have with the
previous argument that

|u− (Dhu+ (Πσnu)(n)φn)|H1(T ) ≤ ChT |u|H2(ST ). (3.8)

Let ITu be the linear Lagrange interpolation of u on T . Since ITu|σn is linear, we have
have (ΠσnITu)(n) = 0. From this fact and using (3.2)–(3.6) as in the derivation of (3.7)
(here with the specific T instead of ST since σn ⊂ T ), we have

|(Πσnu)(n)φn|H1(T ) = |(Πσn(u− ITu))(n)φn|H1(T )

≤ Ch−1
T

(
|u− ITu|L2(T ) + hT |u− ITu|H1(T ) + h2

T |u|H2(T )

)
≤ ChT |u|H2(T )

where we used standard estimates for the Lagrange interpolant in the last step. With
(3.8) and the triangle inequality we conclude estimate (3.1) also in this case.

Lemma 3.2 (isotropic element, reduced regularity). If T is an isotropic element then
the local interpolation error estimate

|u−Dhu|H1(T ) ≤ Ch1−β
T ‖u‖

V 2,2
β,0 (ST )

(3.9)

holds provided that u ∈ V 2,2
β,0 (ST ), β ∈ [0, 1).
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Proof. We start as in the proof of Lemma 3.1 but use the sharper trace theorem

‖u‖L1(σn) ≤ C|σn||ST |−1(‖u‖L1(ST ) + hT |u|W 1,1(ST ) + h2
T |u|W 2,1(ST )).

With (3.3), (3.4), (3.5), and |ST | ≤ C|T | we obtain

|Dhu|H1(T ) ≤ C
∑
n∈NT

‖u‖L1(σn)‖ψn‖L∞(σn)|φn|H1(T )

≤ C|ST |−1/2(h−1
T ‖u‖L1(ST ) + |u|W 1,1(ST ) + hT |u|W 2,1(ST ))

≤ C(h−1
T ‖u‖L2(ST ) + |u|H1(ST ) + |ST |−1/2hT |u|W 2,1(ST ))

and hence via the triangle inequality

|u−Dhu|H1(T ) ≤ C(h−1
T ‖u‖L2(ST ) + |u|H1(ST ) + |ST |−1/2hT |u|W 2,1(ST )). (3.10)

For the first two terms we just use that R ≤ hT , hence 1 ≤ hTR−1, to get

‖u‖L2(ST ) ≤ h2−β
T ‖u‖

V 0,2
β−2,0(ST )

,

|u|H1(ST ) ≤ h1−β
T |u|

V 1,2
β−1,0(ST )

.

To estimate the third term we use the Cauchy–Schwarz inequality and again R ≤ hT , to
obtain for |α| = 2

|Dαu|L1(ST ) ≤ ‖R−β‖L2(ST )‖RβDαu‖L2(ST )

≤ C|ST |1/2h−βT |u|V 2,2
β,0 (ST )

where ‖R−β‖L2(ST ) ≤ C|ST |1/2h−βT is obtained by executing the integration and using

that β < 3
2 . All these estimates imply estimate (3.9).

In order to prove interpolation error estimates for the anisotropic elements we derive
stability estimates for Dh where we avoid the use of the inverse inequality. Let x1, x2

and x3 be a Cartesian coordinate system with the x3-direction parallel to the singular
edge of Λ. We will estimate separately the L2-norm of the derivatives of Dhu.

Let T be an anisotropic element with the characteristic lengths h1,T = h2,T and h3,T .
We will not use that h3,T ≥ hj,T , j = 1, 2, in the next lemma in order to use this estimate
both for the needle and the flat elements.

Lemma 3.3 (Stability in direction of the singular edge). For any anisotropic element
T the estimate

‖∂3Dhu‖L2(T ) ≤ C|ST |−1/2
∑
|α|≤1

hαT ‖Dα∂3u‖L1(ST )

holds provided that ∂3u ∈W 1,1(ST ).
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Proof. We observe that T has an edge eT parallel to the singular edge, and so, parallel to
the x3-axis. Since Dhu is linear on T , we have ∂3Dhu|T = ∂3Dhu|eT . If eT is contained
on the singular edge, then ∂3Dhu|T = 0 since Dhu|eT = u|eT = 0 and we are done. Now,
consider the case that eT is not contained in a singular edge and denote its endpoints
by n1 and n2 such that ∂3φn1

∣∣
T

= −h−1
3,T and ∂3φn2

∣∣
T

= h−1
3,T . Then we have

∂3Dhu = h−1
3,T

[∫
σn2

uψn2 −
∫
σn1

uψn1

]

We observe now that by our assumptions σn1 and σn2 have the same projection σT
into the x1x2-plane and hence form two opposite edges of a plane quadrilateral which is
parallel to the x3-axis and which we will denote by FT . We note further that ψn1 and ψn2

can be considered as the same function ψT defined on σT and ‖ψT ‖L∞(σT ) = C|σT |−1.
With this insight we obtain

|∂3Dhu| = h−1
3

∣∣∣∣∣
∫
σn2

uψn2 −
∫
σn1

uψn1

∣∣∣∣∣ = h−1
3

∣∣∣∣∫
FT

∂3uψT

∣∣∣∣
≤ Ch−1

3 |σT |−1‖∂3u‖L1(FT ) ≤ C|FT |−1‖∂3u‖L1(FT ).

We integrate this estimate over T , apply the standard trace theorem

‖v‖L1(FT ) ≤ C|FT ||ST |−1
∑
|α|≤1

hαT ‖Dαv‖L1(ST )

and obtain the desired estimate.

We are now prepared to estimate the interpolation error for the flat elements occurring
far away from the singular edge in cases 3 and 4.

Lemma 3.4 (anisotropic flat element, full regularity). If T is an anisotropic flat element
(h3,T ≤ h1,T = h2,T ) then the local interpolation error estimate

|u−Dhu|H1(T ) ≤ ChT |u|H2(ST ) (3.11)

holds provided that u ∈ H2(ST ). (Remember that hT = diam(T ).)

Proof. The proof for ∂3(u −Dhu) can be done on the basis of Lemma 3.3. Assume for
the moment that the element T does not contain a coupling node. Similar to the proof
of Lemma 3.1 we obtain for any w ∈ P1

‖∂3(u−Dhu)‖L2(T ) = ‖∂3(u− w)− ∂3Dh(u− w)‖L2(T )

≤ C‖∂3(u− w)‖L2(ST ) + C
∑
|α|=1

hαT ‖Dα∂3u‖L2(ST ).
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We choose now w ∈ P1 such that the constant ∂3w satisfies
∫
ST
∂3(u−w) = 0 and such

that we can conclude by using the Poincaré–Friedrichs inequality (or again a Deny–Lions
type argument)

‖∂3(u− w)‖L2(ST ) ≤ C
∑
|α|=1

hαT ‖Dα∂3u‖L2(ST )

and hence

‖∂3(u−Dhu)‖L2(T ) ≤ C
∑
|α|=1

hαT ‖Dα∂3u‖L2(ST ) ≤ ChT |u|H2(ST ).

Note that the polynomial w can be chosen such that it vanishes in three nodes of T . It
is completely described by choosing the appropriate value at one endpoint of the edge
of T which is parallel to the x3-axis. Since a possible coupling node is not an endpoint
of this edge, the argument above can also be used in the case of coupling nodes.

For the other directions we can proceed as in the proof of Lemma 3.1. In the case
of coupling nodes the interpolation error estimate |u− ITu|H1(T ) ≤ ChT |u|H2(T ) is used
there which does not hold for anisotropic elements. However, the estimate ‖∂i(u −
ITu)‖L2(T ) ≤ ChT |u|H2(T ), i = 1, 2, does hold, see for example [2].

It remains to prove interpolation error estimates for needle elements such that we will
assume h1,T = h2,T ≤ Ch3,T for the next lemmas.

Lemma 3.5 (Stability in direction perpendicular to singular edge, anisotropic needle
element away from singular edge). Assume that the element T does not contain a node
n ∈ Ns and that h1,T = h2,T ≤ Ch3,T . Then for i = 1, 2 we have

‖∂iDhu‖L2(T ) ≤ C
(
|u|H1(ST ) + h3,T |∂3u|H1(ST )

)
(3.12)

provided that u ∈ H1(ST ) and ∂3u ∈ H1(ST ).

Proof. For each node n ∈ NT we denote by Fn,T the top or bottom face of the prismatic
domain ST such that n ∈ Fn,T . Observe that we have σn ⊂ Fn,T ⊂ ST for all n ∈ NT .
Observe further that Fn,T is isotropic with diameter of order h1,T and recall the standard
trace inequality

‖v‖L1(σn) ≤ C|σn||Fn,T |−1
(
‖v‖L1(Fn,T ) + h1,T |v|W 1,1(Fn,T )

)
(3.13)

for all v ∈W 1,1(Fn,T ). We need also the trace inequality

‖v‖L1(Fn,T ) ≤ C|Fn,T ||ST |−1
(
‖v‖L1(ST ) + h3,T ‖∂3v‖L1(ST )

)
(3.14)

which can be proved by using Lemma A.1 from page 23 and the facts that ST is a union
of prisms, and Fn,T is a face of ST .

Let sT be one of the short edges of T and denote its endpoints by n1 and n2. We use the
same notation sT for the direction of this edge in order to denote by ∂sT v = ∇v · sT /|sT |
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the directional derivative. In the following we first estimate ‖∂sTDhu‖L2(T ). After that,
the desired estimates (3.12) easily follow as we will show.

Notice that if n ∈ NT \ {n1, n2} we have ∂sT φn = 0, and if n ∈ {n1, n2} then
‖∂sT φn‖L∞(T ) = |sT |−1 ≤ Ch−1

1,T . For all w ∈ P0(ST ) we have (and here we use that the
element does not contain a node n ∈ Nc ∪Ns)

‖∂sTDhu‖L2(T ) = ‖∂sTDh(u− w)‖L2(T )

≤
∑

n∈NT∩sT

∣∣∣∣∫
σn

(u− w)ψn

∣∣∣∣ ‖∂sT φn‖L2(T )

≤ Ch−1
1,T |T |1/2

∑
n∈NT∩sT

‖u− w‖L1(σn)‖ψn‖L∞(σn)

≤ Ch−1
1,T |T |1/2

∑
n∈NT∩sT

|σn|−1‖u− w‖L1(σn). (3.15)

From the trace inequality (3.13) we have for each n ∈ NT ∩ sT
‖u− w‖L1(σn) ≤ C|σn||Fn,T |−1

(
‖u− w‖L1(Fn,T ) + h1,T |u|W 1,1(Fn,T )

)
.

Since the definition of Fn,T implies Fn1 = Fn2 =: FT , we have

‖u− w‖L1(σn) ≤ C|σn||FT |−1
(
‖u− w‖L1(FT ) + h1,T |u|W 1,1(FT )

)
.

Now we choose w as the average of u on FT and use a Poincaré type inequality on FT
to get

‖u− w‖L1(σn) ≤ C|σn||FT |−1h1,T |u|W 1,1(FT ).

Therefore we arrive at

‖∂sTDhu‖L2(T ) ≤ C|T |1/2|FT |−1|u|W 1,1(FT )

≤ C|T |1/2|ST |−1
(
|u|W 1,1(ST ) + h3,T |∂3u|W 1,1(ST )

)
≤ C|ST |−1/2

(
|u|W 1,1(ST ) + h3,T |∂3u|W 1,1(ST )

)
(3.16)

≤ C
(
|u|H1(ST ) + h3,T |∂3u|H1(ST )

)
where we used again the trace inequality (3.14).

Now, let s1,T and s2,T be two different short edges (edge vectors) of T such that the
determinant of the matrix made up of

s1,T
|s1,T | ,

s2,T
|s2,T | and e3 as columns is greater than a

constant depending only the maximum angle of T . Note that this is possible due to the
maximal angle condition, see [18]. Then, if the canonical vector ei, i = 1, 2, is expressed
as

ei = c1,i
s1,T

|s1,T |
+ c2,i

s2,T

|s2,T |
+ c3,ie3,

it follows that c1,i, c2,i and c3,i are bounded by above by a constant depending only on
the maximum angle condition. Since

∂i = c1,i∂s1,T + c2,i∂s2,T + c3,i∂3

we obtain (3.12) from (3.16) with sT = s1,T and sT = s2,T , Lemma 3.3, and recalling
that h1,T = h2,T ≤ Ch3,T .
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Lemma 3.6 (Stability in direction perpendicular to singular edge, anisotropic needle
element at the singular edge). Assume that the element T contains at least one node
n ∈ Ns and that h1,T = h2,T ≤ Ch3,T . Then we have for i = 1, 2

‖∂iDhu‖L2(T )

≤ C|ST |−1/2

|u|W 1,1(ST ) +
h3,T

hi,T
‖∂3u‖L1(ST ) +

∑
|α|=1

hαT |Dαu|W 1,1(ST )

 (3.17)

provided that u ∈W 2,1(ST ).

Proof. For each node n ∈ Ns of T we select one short edge σn with an endpoint at n
and contained in the same macroelement as T such that we can apply Lemma 3.5. We
have for i = 1, 2 ∥∥∥∥∥∥∂i

Dhu+
∑

n∈Ns∩T

(Πσnu)(n)φn

∥∥∥∥∥∥
L2(T )

≤ C|ST |−1/2
(
|u|W 1,1(ST ) + h3,T |∂3u|W 1,1(ST )

)
. (3.18)

Now we deal with ‖∂i[(Πσnu)(n)φn]‖L2(T ) which is first estimated by

‖∂i[(Πσnu)(n)φn]‖L2(T ) ≤ C‖∂iφn‖L2(T )|σn|−1‖u‖L1(σn) (3.19)

for each n ∈ Ns ∩ T .
Let n ∈ Ns ∩ T and be Fn,T be the face of ST having σn as an edge and another

edge on the singular edge. Let Pn,T be the greatest parallelogram contained in Fn,T and
having σn as an edge. So, Pn,T is parallel to the x3-axis, and its area is comparable with
the area of Fn,T since opposite edges of the trapezoid Fn,T have equivalent length. Using
a trace inequality we have

‖u‖L1(σn) ≤ C|σn||Fn,T |−1(‖u‖L1(Pn,T ) + h3,T ‖∂3u‖L1(Pn,T )).

But, since u = 0 on the edge of Pn,T contained on the singular edge we can use the
Poincaré inequality to obtain

‖u‖L1(σn) ≤ C|σn||Fn,T |−1(|σn|‖∂σnu‖L1(Pn,T ) + h3,T ‖∂3u‖L1(Pn,T )). (3.20)

From Lemma A.2 we have for all v ∈W 1,1(ST )

‖v‖L1(Pn,T )

≤ C|Fn,T ||ST |−1
(
‖v‖L1(ST ) + |s1,T |‖∂s1,T v‖L1(ST ) + |s2,T |‖∂s2,T v‖L1(ST )

)
. (3.21)

Using twice (3.21) we obtain from (3.20)

‖u‖L1(σn)

≤ C|σn|2|ST |−1
(
‖∂σnu‖L1(ST ) + |s1,T |‖∂s1,T σnu‖L1(ST ) + |s2,T |‖∂s2,T σnu‖L1(ST )

)
+

+ C|σn||ST |−1h3,T

(
‖∂3u‖L1(ST ) + |s1,T |‖∂s1,T 3u‖L1(ST ) + |s2,T |‖∂s2,T 3u‖L1(ST )

)
.

(3.22)
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With the estimates

‖∂σnu‖L1(ST ) ≤ |u|W 1,1(ST ),

‖∂si,T σnu‖L1(ST ) ≤ |u|W 2,1(ST ), i = 1, 2,

‖∂si,T 3u‖L1(ST ) ≤ |∂3u|W 1,1(ST ), i = 1, 2,

the inequality
‖∂iφn‖L2(T ) ≤ Ch−1

i,T |T |1/2,
and |σn| ∼ hi,T (i = 1, 2) we obtain from (3.19)

‖∂i[(Πσnu)(n)φn]‖L2(T ) ≤ C|ST |−1/2
(
|u|W 1,1(ST ) + (h1,T + h2,T )|u|W 2,1(ST )

)
+ C|ST |−1/2h3,T

hi,T
‖∂3u‖L1(ST ). (3.23)

Finally, taking into account that, since h1,T = h2,T ≤ Ch3,T , we have

(h1,T + h2,T )|u|W 2,1(ST ) + h3,T ‖∂3u‖W 1,1(ST ) ≤ C
∑
|α|=1

hαT |Dαu|W 1,1(ST ),

inequality (3.17) follows from (3.18) and (3.23).

We are now prepared to estimate the interpolation error for needle elements.

Lemma 3.7 (anisotropic needle element, full regularity). If T is an anisotropic element
with h1,T = h2,T ≤ Ch3,T then the local interpolation error estimates

|u−Dhu|H1(T ) ≤ C
∑
|α|=1

hαT |Dαu|H1(ST ) (3.24)

hold provided that u ∈ H2(ST ).

Remark 3.8. The estimate (3.24) does not hold for the Lagrange interpolant, see [2].

Proof. (Lemma 3.7) Since the needle elements with full regularity do not contain a
coupling node we can apply both Lemmas 3.3 and 3.5. That means we have shown that

|Dhu|H1(T ) ≤ C
∑
|α|≤1

hαT ‖Dα∂3u‖L2(ST ) + C
(
|u|H1(ST ) + h3,T |∂3u|H1(ST )

)
≤ C

∑
|α|≤1

hαT |Dαu|H1(ST ).

We exploit now that Dhw = w for all w ∈ P1. Consequently, we get

|u−Dhu|H1(T ) = |(u− w)−Dh(u− w)|H1(T ) ∀w ∈ P1

≤ |u− w|H1(T ) + |Dh(u− w)|H1(T )

≤ C
∑
|α|≤1

hαT |Dα(u− w)|H1(ST ).

We use now again a Deny–Lions type argument where the form of Lemma 1 in [1] best
suits our needs, and conclude the desired estimate.
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Lemma 3.9 (anisotropic needle element, reduced regularity). Let T be an anisotropic
element with h1,T = h2,T ≤ Ch3,T and let ST have zero distance to the singular edge.
Then the local interpolation error estimate

|u−Dhu|H1(T ) ≤ Ch1−δ
1,T

2∑
i=1

‖∂iu‖V 1,2
δ,δ (ST )

+ Ch3,T ‖∂3u‖V 1,2
0,0 (ST )

(3.25)

holds provided that u has the regularity demanded by the right-hand sides of the estimates
and δ ∈ [0, 1). If T is an element with h1,T = h2,T ≤ Ch3,T and ST has zero distance to
both a singular vertex and a singular edge then the local interpolation error estimate

|u−Dhu|H1(T ) ≤ Ch1−β−δ
1,T hδ3,T

2∑
i=1

‖∂iu‖V 1,2
β,δ (ST )

+ Ch−β1,Th3,T ‖∂3u‖V 1,2
β,0 (ST )

(3.26)

hold provided that u has the regularity demanded by the right-hand sides of the estimates
and β, δ ∈ [0, 1), β + δ < 1.

Proof. As in the proof of Lemma 3.7 we distinguish between the derivatives ∂3Dhu and
the derivatives along directions perpendicular to the x3-axis. From Lemma 3.3 we obtain
by using the triangle inequality and |ST |−1/2‖∂3u‖L1(ST ) ≤ ‖∂3u‖L2(T )

‖∂3(u−Dhu)‖L2(T ) ≤ ‖∂3u‖L2(T ) + C|ST |−1/2
∑
|α|≤1

hα‖Dα∂3u‖L1(ST )

≤ C‖∂3u‖L2(ST ) + C|ST |−1/2
∑
|α|=1

hα‖Dα∂3u‖L1(ST ).

For the estimate of ∂iDhu, i = 1, 2, we use Lemma 3.6, from which we conclude that

‖∂i(u−Dhu)‖L2(T )

≤ C|u|H1(ST ) + C|ST |−1/2

h3,T

hi,T
‖∂3u‖L1(ST ) +

∑
|α|=1

hαT |Dαu|W 1,1(ST )

 .

These two estimates can be summarized by using h1,T ≤ Ch3,T to

|u−Dhu|H1(T )

≤ C|u|H1(ST ) + C|ST |−1/2

h3,T

h1,T
‖∂3u‖L1(ST ) +

∑
|α|=1

hαT |Dαu|W 1,1(ST )

 . (3.27)

It remains to estimate the terms against the weighted norms. Firstly, we have

|u|H1(ST ) ≤
2∑
i=1

‖R1−βθ1−δ ·Rβ−1θδ−1∂iu‖L2(T ) + ‖R1−βθ ·Rβ−1θ−1∂3u‖L2(T )

≤
2∑
i=1

max
ST

R1−βθ1−δ ‖∂iu‖V 1,2
β,δ (ST )

+ max
ST

R1−β ‖∂3u‖V 1,2
β,0 (ST )

.
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With R1−βθ1−δ = r1−δR−βRδ ≤ r1−β−δRδ ≤ Ch1−β−δ
1,T hδ3,T (where we used the assump-

tion β + δ ≤ 1) and R1−β ≤ h1−β
3,T ≤ h

−β
1,Th3,T we derive

|u|H1(ST ) ≤ Ch1−β−δ
1,T hδ3,T

2∑
i=1

‖∂iu‖V 1,2
β,δ (ST )

+ Ch−β1,Th3,T ‖∂3u‖V 1,2
β,0 (ST )

.

With R1−δθ1−δ = r1−δ ≤ r1−δ ≤ Ch1−δ
1,T (using that the exponent is positive) we derive

also

|u|H1(ST ) ≤ Ch1−δ
1,T

2∑
i=1

‖∂iu‖V 1,2
δ,δ (ST )

+ Ch3,T ‖∂3u‖V 1,2
0,0 (ST )

.

Secondly, for T intersecting the singular edge, but no singular vertices, we have

h3,T

h1,T
‖∂3u‖L1(ST ) ≤

h3,T

h1,T
‖∂3u‖V 1,2

0,0 (ST )
‖r‖L2(ST ) ≤ h3,T |ST |1/2‖∂3u‖V 1,2

0,0 (ST )
.

If T has also a singular vertex, then we have with Rβ−1θ−1 = Rβr−1

h3,T

h1,T
‖∂3u‖L1(ST ) ≤

h3,T

h1,T
‖∂3u‖V 1,2

β,0 (ST )
‖R−βr‖L2(ST ) ≤ h3,Th

−β
1,T |ST |1/2‖∂3u‖V 1,2

β,0 (ST )

where we used that

‖R−βr‖L2(ST ) ≤ ‖r1−β‖L2(ST ) ≤ Ch1−β
1,T |ST |1/2 (3.28)

which can be obtained by integration. The second derivatives in estimate (3.27) are
treated in a similar way. For i = 1, 2, 3 we get

‖∂i3u‖L1(ST ) ≤ ‖R−β‖L2(ST )‖Rβ∂i3u‖L2(ST ) ≤ h−β1,T |ST |1/2‖∂3u‖V 1,2
β,0 (ST )

.

For i, j = 1, 2 and supposing that T does not have singular vertices we have

hi,T ‖∂iju‖L1(ST ) ≤ h1,T ‖R−δθ−δ‖L2(ST )‖Rδθδ∂iju‖L2(ST )

≤ h1−δ
1,T |ST |1/2|∂iu|V 1,2

δ,δ (ST )
,

where we used again an argument as in (3.28). If T has a singular vertex, then

hi,T ‖∂iju‖L1(ST ) ≤ h1,T ‖R−βθ−δ‖L2(ST )‖Rβθδ∂iju‖L2(ST ).

But, R−βθ−δ = R−β+δr−δ ≤ Rδr−β−δ ≤ hδ3,T r
−β−δ, and so, since β + δ < 1, a similar

argument as in (3.28) give us

‖R−βθ−δ‖L2(ST ) ≤ hδ3,T ‖r−β−δ‖L2(ST ) ≤ Ch−β−δ1,T hδ3,T |ST |1/2.

Hence we have

hi,T ‖∂iju‖L1(ST ) ≤ Ch1−β−δ
1,T hδ3,T |ST |1/2‖∂iu‖V 1,2

β,δ (ST )
.

Therefore, the desired estimates are proved.
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Theorem 3.10 (global interpolation error estimate). Let u be the solution of the
boundary value problem (1.1) with f ∈ L2(Ω), and let uI , uR be the functions obtained
from the splitting (2.1). Assume that the refinement parameters µ` and ν` satisfy the
conditions

µ` < λ(`)
e , (3.29)

ν` < λ(`)
v +

1

2
, (3.30)

1

ν`
+

1

µ`

(
λ(`)

v −
1

2

)
> 1, (3.31)

` = 1, . . . , L. Then the global interpolation error estimate

|uR −DhuR|H1(Λ`) ≤ Ch‖f‖L2(Λ`) (3.32)

is satisfied.

Proof. The proof can be carried out following the lines of the proof of Theorem 5.1 in
[4] with the setting p = 2. Note that only a finite number (independent of h) of the ST
overlap at any point.

Remark 3.11. The refinement conditions (3.29)–(3.31) were discussed in [4] already:
The conditions (3.29) and (3.30) balance the edge and vertex singularities. The third
condition, (3.31), follows from (3.30) in the case µ` = ν`; only in the case µ` < ν`
it imposes a condition between µ` and ν` limiting the anisotropy of the mesh. For the

Fichera example treated in Section 4 we have λ
(`)
v ≈ 0.454 and λ

(`)
e = 2

3 . With the choice
ν` = 0.9 the conditions (3.29) and (3.31) imply the choice 0.414 < µ` <

2
3 . For ν` = 0.8

we would get the weaker condition 0.184 < µ` <
2
3 .

Note also that in the absence of singularities we have set λ
(`)
e =∞ and/or λ

(`)
v =∞.

In these cases we can set µ` = 1 and/or ν` = 1.

Corollary 3.12 (H1 and L2 finite element error estimate). Let u be the solution of
the boundary value problem (1.1), and let uh be the corresponding finite element solution
on a finite element mesh as constructed in Section 2 with grading parameters satisfying
the conditions (3.29)–(3.31). Then the discretization error can be estimated by

‖u− uh‖H1(Ω) ≤ Ch‖f‖L2(Ω), (3.33)

‖u− uh‖L2(Ω) ≤ Ch2‖f‖L2(Ω). (3.34)

Proof. We choose vh = uI+DhuR in estimate (1.4) and observe that u−vh = uR−DhuR.
With Lemma 3.10 we obtain the estimate (3.33). The L2-error estimate can be derived
by the standard Aubin–Nitsche method.

Remark 3.13. A trivial conclusion from (3.33) is the stability estimate

‖uh‖H1(Ω) ≤ C‖f‖L2(Ω) (3.35)

which we will need in Section 5.
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Figure 4: Modification of macroelement of type 4

Remark 3.14. In macroelements of type 4 with µ` = ν` < 1, Apel and Nicaise suggested
in [4] the use of a more elegant refinement strategy as depicted in Figure 4. Our proof
cannot be transfered to this kind of mesh immediately since there may be elements T
where ST is not prismatic as it was exploited in the proof of Lemmas 3.5 and 3.6. We
conjecture that the assertion still holds but do not pursue this further in this paper.

4. Numerical test

As in [4] we consider the Poisson problem (1.1) in the “Fichera domain” Ω := (−1, 1)3 \
[0, 1]3 and choose the right-hand side f = 1+R−3/2 ln−1(R/4) which is in L2(Ω) but not
in Lp(Ω) for p > 2. For this problem we have λv ≈ 0.45 for the concave vertex [29] and
λe = π

ω0
= 2

3 for the three concave edges. All other edges and vertices are non-singular.
This boundary value problem was solved on quasi-uniform and on graded meshes

with our refinement strategy using µ = ν = 0.5 < min{λe, λv + 1
2}, where types 1,

2 and 4 occur. Additionally we include the strategy where the macros of type 4 are
replaced by type 5, compare Remark 3.14. Pictures of such meshes can be found in [4].
The refinement strategies and an a posteriori error estimator of residual type [31] were
implemented into the finite element package MooNMD [19]. The estimated error norms
are plotted against the number of unknowns in Figure 5. We see that the theoretical
approximation order h1 ∼ N−1/3 from Corollary 3.12 can be verified in the practical
calculation for both refinement strategies. The error with the second strategy is slightly
smaller. We denoted by N the number of nodes.
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Figure 5: Plot of the estimated error against the number of unknowns. The labels at the
curve denote the estimated convergence order in terms of h ∼ N−1/3.

5. Discretization error estimates for a distributed optimal
control problem

Hinze introduced the variational discretization concept for linear-quadratic control con-
strained optimal control problems in [17]. We follow here this concept in a special case.
Consider the the optimal control problem

min
(y,u)∈H1

0 (Ω)×Uad
J(y, u) :=

1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω),

where the state y ∈ H1
0 (Ω) is the weak solution of the Poisson problem

−∆y = u in Ω, y = 0 on ∂Ω, (5.1)

and the control u is constrained by constant bounds aa, ub ∈ R, this means that the set
of admissible controls is defined by

Uad := {u ∈ L2(Ω) : ua ≤ u ≤ ub a.e. Ω}.

The regularization parameter α is a fixed positive number and yd ∈ L2(Ω) is the desired
state. It is well known that this problem has a unique optimal solution (ȳ, ū). There
is an optimal adjoint state p̄ ∈ H1

0 (Ω), and the triplet (ȳ, ū, p̄) satisfies the first order
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optimality conditions

(∇ȳ,∇v)L2(Ω) = (ū, v)L2(Ω) ∀v ∈ H1
0 (Ω),

(∇p̄,∇v)L2(Ω) = (ȳ − yd, v)L2(Ω) ∀v ∈ H1
0 (Ω),

(αū+ p̄, u− ū)L2(Ω) ≥ 0 ∀u ∈ Uad.

With the variational discretization concept the approximate solution is obtained by
replacing H1

0 (Ω) by a finite element space Vh ⊂ H1
0 (Ω) and searching (ȳh, ūh, p̄h) ∈

Vh × Uad × Vh such that

(∇ȳh,∇vh)L2(Ω) = (ūh, vh)L2(Ω) ∀vh ∈ Vh,
(∇p̄h,∇vh)L2(Ω) = (ȳh − yd, vh)L2(Ω) ∀vh ∈ Vh,

(αūh + p̄h, u− ūh)L2(Ω) ≥ 0 ∀u ∈ Uad.

Note that the control space is not discretized; nevertheless ūh can be obtained by the
projection of −p̄h/α onto Uad, see [17]. The discretization error estimate

‖ū− ūh‖L2(Ω)+‖ȳ − ȳh‖L2(Ω)+‖p̄− p̄h‖L2(Ω) ≤ Ch2
(
‖ū‖L2(Ω)+‖yd‖L2(Ω)

)
can be concluded from (3.34) and (3.35), see [17, 7]. With the proof of Corollary 3.12
we have established this result for anisotropic discretizations of the state equation (5.1)
in the case of three-dimensional polyhedral domains.

6. Discrete compactness property for edge elements

The Discrete Compactness Property is a useful tool to study the convergence of finite
element discretizations of the Maxwell equations, both for eigenvalue and source prob-
lems. It was first introduced by Kikuchi [20] and proved for Nédélec edge elements of
lowest order on tetrahedral shape regular meshes. We refer to the monograph by Monk
[23] and the references therein for further analysis on isotropic meshes. The property
was also analyzed on anisotropically refined tetrahedral meshes on polyhedra for edge
elements of lowest order by Nicaise [24] (excluding corner singularities) and by Buffa,
Costabel, and Dauge [13].

Lombardi [21] extended this result to edge elements of arbitrary order, also including
corners and edge singularities. The proof is based on two tools: 1) interpolation error
estimates for edge elements on meshes satisfying the maximum angle condition, and
2) interpolation error estimates for a piecewise linear interpolation operator defined on
W 2,p(Ω)∩H1

0 (Ω), p ≥ 2, preserving boundary conditions. For the latter, the Lagrange in-
terpolation was used (implying p > 2) together the results of Apel and Nicaise [4], giving
some artificial restrictions on the grading parameters defining the allowed anisotropically
graded meshes. Using now estimate (3.33) of Corollary 3.12 we can extend the result of
[21] allowing little more general meshes.
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In what follows we define a family of edge element spaces and introduce the DCP for
this family. We refer to [21] for further definitions and notation. First we introduce the
divergence-free space

X = {v ∈ H0(curl,Ω) : div v = 0 on Ω} .

Then we introduce discretizations of this space where the divergence-free condition is
weakly imposed. Let I be a denumerable set of positive real numbers having 0 as the
only limit point. From now till the end of this section, we assume that h ∈ I. For each
h, let Th be the mesh on the polyhedron Ω constructed in Section 2. Given an integer
k ≥ 1, let Xh be the space defined as

Xh = {vh ∈ H0(curl,Ω) : vh|T ∈ Nk(T )∀T ∈ Th, (∇ph,vh) = 0∀ph ∈ Sh}

where Nk(T ) is the space of edge elements of order k on T , and

Sh =
{
ph ∈ H1

0 (Ω) : ph|T ∈ Pk(T ) ∀T ∈ Th
}
.

We say that the family of spaces {Xh}h∈I satisfies the discrete compactness property if
for each sequence {vh}h∈J, J ⊆ I, verifying for a constant C

vh ∈ Xh, ∀h ∈ J,

‖vh‖H0(curl,Ω) ≤ C, ∀h ∈ J,

there exists a function v ∈ X and a subsequence {vhn}n∈N such that (for n→∞)

vhn → v in L2(Ω)

vhn ⇀ v weakly in H0(curl,Ω).

Theorem 6.1. If the grading parameters defining the meshes Th satisfy the conditions
(3.29)–(3.31), then the family of spaces {Xh}h>0 verifies the discrete compactness prop-
erty.

Proof. Follow exactly the arguments used to prove Theorem 5.2 of [21] taking into ac-
count that the inequality (4.21) of that paper is now a consequence of estimate (3.33).

A. Proof of trace inequalities

Lemma A.1. Let P be a triangular prism with vertices vi, i = 1, . . . , 6, where the face
v1v2v3 is opposite to the face v4v5v6, and where the edges v1v4, v2v5, and v3v6 are parallel
to the x3-axis, see Figure 6. Denote by F the face v1v2v3. Then for all v ∈ W 1,p(P ),
p ∈ [1,∞), we have

‖v‖pLp(F ) ≤
Creg
cos γ

· h−1
3

(
‖v‖pLp(P ) + hp3‖∂3v‖pLp(P )

)
,

where h3 is length of the shortest vertical edge, and γ is the angle between the x1x2-plane
and the plane containing the face F . The constant Creg depends only on the minimum
angle of the face F .
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Figure 6: Illustration of the prism

Proof. We can assume v1 = (0, 0, 0) and v4 = (0, 0, h3). Suppose v2 = (a2, b2, c2),
v3 = (a3, b3, c3). Let s, t such that

a2s+ b2t = c2

a3s+ b3t = c3.

It is clear that there exist such s and t since v1, v2, and v3 do not lay on one line. Then
the map f(x̃) = Bx̃ with

B =

 1 0 0
0 1 0
s t 1


sends P̃ to P where P̃ is a prism with three vertical edges and some of its vertices are
ṽ1 = (0, 0, 0), ṽ2 = (a2, b2, 0), ṽ3 = (a3, b3, 0) and ṽ4 = (0, 0, h3). Let F̃ be the face ṽ1ṽ2ṽ3

of P̃ .
Let ṽ be defined by ṽ(x̃) = v(x) if x = Bx̃. Then we have

‖v‖pLp(F ) =
1

cos γ
‖ṽ‖p

Lp(F̃ )
.

Now, if Q̃ is the right prism with vertices ṽ1, . . . , ṽ4, (a2, b2, h3) and (a3, v3, h3), then we
have using a trace inequality on Q̃ and noting that Q̃ ⊆ P̃ that

‖ṽ‖p
Lp(F̃ )

≤ Cph−1
3

(
‖ṽ‖p

Lp(Q̃)
+ hp3‖∂̃3ṽ‖p

Lp(Q̃)

)
≤ Cph−1

3

(
‖ṽ‖p

Lp(P̃ )
+ hp3‖∂̃3ṽ‖p

Lp(P̃ )

)
with Cp depending only on p. Therefore, we have

‖v‖pLp(F ) =
Cp

cos γ
h−1

3

(
‖ṽ‖p

Lp(P̃ )
+ hp3‖∂̃3ṽ‖p

Lp(P̃ )

)
=
Creg
cos γ

h−1
3 |B|

(
‖v‖pLp(P ) + hp3‖∂3v‖pLp(P )

)
where we used that ∂̃3ṽ(x̃) = ∂3v(x). Since |B| = 1 we obtain the desired result.
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σn = s1,T

s2,T

Fn

σ(z)

ξ(z)

Qn

Figure 7: Illustration of the notation used in Lemma A.2. The dotted lines indicate the
prism Qn, dashed lines the parallelogram Pn while the triangle ξ(z) is hatched.
Note that σ(z) = ξ(z) ∩ Fn.

Lemma A.2. Let T be an anisotropic element with the node n on the singular edge and
let σn be a short edge. Let Pn ⊂ ST be a parallelogram of maximal area having σn as
an edge and another edge on the singular edge, see Figure 7. And let Fn the face of ST
containing Pn. Then |Pn| ≥ C|Fn|, and for all v ∈W 1,1(ST ) we have

‖v‖L1(Pn) ≤ C|Fn||ST |−1
(
‖v‖L1(ST ) + |s1,T |‖∂s1,T v‖L1(ST ) + |s2,T |‖∂s2,T v‖L1(ST )

)
.

where s1,T and s2,T are two short edges of T .

Proof. The inequality |Pn| ≥ C|Fn| follows from our assumptions on the mesh, in par-
ticular from the comparable length of opposite edges of Fn. For proving the estimate
choose the coordinate system such that n = (0, 0, 0).

Assume first v is regular. We have

‖v‖L1(Pn) ≤ C

∫ h3,Pn

0

∫ |σn|
0
|v((0, 0, z) + tσn)| dt dz

=

∫ h3,Pn

0

∫
σ(z)
|v| ds dz

where σ(z) is the segment parallel to σn and with the same length and passing through
(0, 0, z). If ξ(z) is the triangle contained in ST having σ(z) as an edge and being parallel
to the bottom face of ST , then since we can assume v|ξ(z) is regular (because v is it), by
a trace inequality we have∫

σ(z)
|v| ≤ C |σn||ξ|

∫
ξ(z)

(|v|+ |s1,T ||∂s1,T v|+ |s2,T ||∂s2,T v|)
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where |s1,T | and |s2,T | are the lengths of two small edges of T and |ξ| = |ξ(0)|. So we
have

‖v‖L1(Pn) ≤ C
|σn|
|ξ|

∫ h3,Pn

0

∫
ξ(z)

(|v|+ |s1,T ||∂s1,T v|+ |s2,T ||∂s2,T v|)

≤ C
|Fn|
|ST |

∫ h3,Pn

0

∫
ξ(z)

(|v|+ |s1,T ||∂s1,T v|+ |s2,T ||∂s2,T v|)

≤ C
|Fn|
|ST |

∫
Qn

(|v|+ |s1,T ||∂s1,T v|+ |s2,T ||∂s2,T v|)

≤ C
|Fn|
|ST |

∫
ST

(|v|+ |s1,T ||∂s1,T v|+ |s2,T ||∂s2,T v|)

where Qn is the prism formed by the union of ξ(z) with z ∈ [0, h3,Pn ] that is contained
in ST .

If v ∈W 1,1(ST ), let {vk}k be a sequence of C∞ functions converging to v in W 1,1(ST ).
For each k we have

‖vk‖L1(Pn) ≤ C|Fn||ST |−1
(
‖vk‖L1(ST ) + |s1,T |‖∂s1,T vk‖L1(ST ) + |s2,T |‖∂s2,T vk‖L1(ST )

)
.

Now, the proof concludes by taking limit k →∞.
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