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Immunophilins are a family of intracellular receptors for immunosuppressive drugs. Those immunophilins that are related to
immunosuppression are the smallest proteins of the family, i.e., FKBP12 and CyPA, whereas the other members of the family
have higher molecular weight because the show additional domains to the drug-binding site. Among these extra domains, the
TPR-domain is perhaps the most relevant because it permits the interaction of high molecular weight immunophilins with the

90-kDa heat-shock protein, Hsp90. This essential molecular chaperone regulates the biological function of several protein-
kinases, oncogenes, protein phosphatases, transcription factors and cofactors . Hsp90-binding immunophilins where first
characterized due to their association with steroid receptors. They regulate the cytoplasmic transport and the subcellular
localization of these and other Hsp90 client proteins, as well as transcriptional activity, cell proliferation, cell differentiation
and apoptosis. Hsp90-binding immunophilins are frequently overexpressed in several types of cancers and play a key role in
cell survival. In this article we analyze the most important biological actions of the best characterized Hsp90-binding immuno-
philins in both steroid receptor function and cancer development and discuss the potential use of these immunophilins for
therapeutic purposes as potential targets of specific small molecules.

Immunophilins form a family of molecular chaperones that
show rotamase or peptidyl-prolyl-(cis/trans)-isomerase (PPIase)
activity, ie., the reversible cis«trans interconvertion of Xaa-
Pro bonds." These are abundant foldases in all cell types and
are classified into two subfamilies according to their ability to

Key words: FKBP51, FKBP52, FKBP38, FKBPL, NF-kB, steroid
receptor

Abbreviations: AR: androgen receptor; CsA: cyclosporine A; CyP:
cyclophilins; ER: estrogen receptor; FKBP: FK506-binding protein;
FKBPL/WisP39: FK506-binding protein-like/WAF1-CIP1-stabilizing
protein 39; GR: glucocorticoid receptor; Hsp90: heat-shock protein
of 90-kDa; IkB: inhibitor of kB; IKK: IkB kinases; mTOR: mam-
malian target of rapamycin; MR: mineralocorticoid receptor;
NF-«kB: nuclear factor kappa-light-chain-enhancer of activated B
cells; PP5: protein-phosphatase 5; PPIase: peptidylprolyl isomerase;
PR: progesterone receptor; TDO: tryptophan-2,3-dioxygenase; TPR:
tetratricopeptide repeats

Grant sponsor: Universidad de Buenos Aires; Grant number:
UBACYT-GC-0020130100318BA; Grant sponsor: Agencia Nacional
de Promocién Cientifica y Tecnoldgica; Grant number: PICT 2011-
1715

DOI: 10.1002/ijc.29509

History: Received 2 Oct 2014; Accepted 17 Feb 2015; Online 6 Mar
2015

Correspondence to: Mario D. Galigniana, IBYME-CONICET,
Vuelta de Obligado 2490, Buenos Aires (C1428ADN), Argentina,
Tel.: [541147832869], ext. 304, Fax: +[54-11-4786-2564].

E-mail: mgaligniana@conicet.gov.ar

Int. ). Cancer: 138, 797-808 (2016) © 2015 UICC

bind specific immunosuppressant drugs’—Cyclophilins when
they bind the cyclic undecapeptide cyclosporine A (CsA) or
FK506-Binding Proteins (FKBPs) when they bind the macro-
lide FK506 (or tacrolimus). Table 1 shows a list of the most
relevant abbreviations used in this work and a brief description
of the biological actions of each factor.

The signature domain of immunophilins is the PPlase
domain, which is also the drug binding domain. Only the
smallest members of each subfamily, CyPA and FKBP12, are
related to the immunosuppressive action. This takes place
when the respective drugeimmunophilin complex inhibits the
Ser/Thr-phosphatase activity of PP2B/calcineurin preventing
the dephosphorylation of the transcription factor Nuclear
Factor of Activated T cells and its subsequent nuclear trans-
location. Therefore, the production of interleukines and
interferon-y is inhibited.> Some members of the FKBP sub-
family also bind other macrolide, rapamycin (or sirolimus).
However, FKBP12erapamycin complexes show a different
mechanism of action; they target mTOR (Mammalian Target
of Rapamycin), a Ser/Thr protein kinase able to regulate cell
proliferation, cell growth, cell motility and protein synthesis.*

High molecular weight immunophilins have a more com-
plex architecture than that shown by the two immunosup-
pressive members of the family (Fig. 1) and are not related
to the immunosupression process. In addition to the PPIase
domain, they also have the nucleotide-binding domain, where
ATP binds, the calmodulin-binding domain, a poorly charac-
terized domain able to interact with calmodulin and sequen-
ces of 34 amino acids repeated in tandem, the TPR domains,
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Table 1. Nomenclature and biological role of some factors related to immunophilins

Abbreviation

Full or conventional name

Property

FK506

Tacrolimus, Fujimicyn

PPlase Peptidyprolyl isomerase

mTOR mTOR

FKBP FK506-Binding Protein

TPR Tetratricopeptide repeats

Hsp90 Heat-shock protein of 90-kDa

Hop/p60 Heat-shock organizing protein

RAC3 Receptor-associated coactivator 3

NF-xB Nuclear factor x-light-chain-enhancer
of activated B cells

IxB Inhibitor of kB

IKK IxB kinase

DO TDO

Macrolide lactone used as immunosuppressive drug. FKBP12eFK506
complexes inhibit the enzymatic activity of PP2B/calcineurin.

Enzymatic activity of rotamase (cis/trans isomerization of X-Propeptide
bonds).

Ser/Thr kinase signalling cascade regulated by FKBP12eRapamycin
complexes.

Subfamily of immunophilins showing a PPlase domain where FK506
binds.

Degenerate 34 amino acid sequence motif involved in protein-protein
interactions.

Forms complexes with TPR-domain immunophilins (one TPR protein per
Hsp90 dimer).

TPR domain protein that favors the formation of complexes between
Hsp90 and Hsp70.

Coactivator of steroid receptors that is recruited to nuclear complexes
in several tumors.

Family of proteins with structural similarity to the retroviral oncoprotein
v-Rel that shows transcriptional activity properties.

Family of inhibitory proteins showing different affinities for individual
NF-kB complexes.

Family of IxB kinases that favors IkB dissociation from NF-xB and its
nuclear relocalization.

Degradation of tryptophan to kynurenine, which favors the activation of
the aryl hydrocarbon recep tor and consequently tumor cell prolifera-
tion and invasiveness.

through which they interact with the 90-kDa heat-shock pro-
tein, Hsp90. The Hsp90-binding immunophilins were first
described as members of the steroid receptor heterocomplex,’
these immunophilins being the best characterized of this
group—FKBP52 (gene name fkbp4), FKBP51 (gene name
fkbp5), CyP40 (gene name ppID) and the FKBP-like proteins
(which show no enzymatic activity) PP5 (gene name ppp5C)
and FKBPL/WisP39 (gene name fkbpl). All of these immuno-
philins have their counter-part in plants,® suggesting a con-
served function during the evolution.

Hsp90-Binding Immunophilins and Transcription
Factors

All steroid receptors exist as oligomeric heterocomplexes.’
Early evidence already showed that the presence of the
Hsp90 dimer plays a cardinal role in these complexes.” "
The first evidence that the immunophilin FKBP52 (first
called p59 and Hsp56) was bound to Hsp90 in non-
transformed receptors can be traced back to the early 90 s."*
This immunophilin is present in mature rather than inter-
mediate receptor complexes. In nontransformed isoforms,
the stoichiometry of the receptors(Hsp90), complex shows
one molecule of Hsp70, one molecule of p23 and a TPR-
domain cochaperone bound to the TPR acceptor site of the
Hsp90 dimer.'>"> During the early steps of heterocomplex

assembly, the TPR protein Hop/p60/Stil is required for
bringing together Hsp90 and Hsp70, but after the formation
of the complex and its subsequent transference to the apore-
ceptor, Hop/p60/Stil is released and a TPR-domain immu-
nophilin occupies the TPR acceptor site on the Hsp90
dimer. FKBP51 is the immunophilin present in the mature
and transcriptionally inactive receptor and is exchanged by
FKBP52 upon steroid binding (Fig. 2). Because the PPlase
domain of FKBP52, but not the PPlase domain of FKBP51,
is able to interact with dynein/dynactin,'*'> the motor pro-
tein complex is also recruited to steroid receptors and
powers the active cytoplasmic transport to the nucleus along
cytoskeletal tracks.'>"?

Hsp90 is mostly localized in the cytoplasm of unstressed
cells and a small fraction is nuclear. In early times there was a
controversy related to the fact that Hsp90 could not exist asso-
ciated to the nuclear pool of steroid receptors.'®'” Nonetheless,
this notion contradicted experiments showing cross-linking of
Hsp90 with PR in nuclear extracts'® and more importantly,
crosslinking with ER in intact cells,"”” demonstrating that both
receptors form nuclear heterocomplexes with Hsp90 in the
absence of agonist. Today, it is accepted that this is the case
and that Hsp90 complexes are able to be assembled with ste-
roid receptors in the nuclear compartment.***!

The classic model for steroid receptor activation usually
described in the literature was posed in the literature even

Int. ). Cancer: 138, 797-808 (2016) © 2015 UICC



Mazaira et al.

-

108
FKBP12

799

| Jye—

TPR PPlase PPlase-like
IMMUNOQPHILIN DOMAIN

117 138 145 1 316 457

117 138 148
FKBP52

268 303 318

U __-_-_

204 220

FKBP38 _ - -

243 252 285 286 319 349

129 175

221 240

CvPA

L

118
CyP40 |

I8

" il i’

Figure 1. Structural domains of some Hsp90-binding immunophilins belonging to the FKBP and cyclophilin (CyP) subfamilies compared with
their respective archetype members responsible for the immunosuppression action, FKBP12 and CyPA. Note that these two immunophilins

only show the PPlase domain, whereas those that are capable to interact with Hsp90 have multiple repetitions of the TPR domain. PPlase-

like domains preserve structural homology with the PPlase domain, but they lack enzymatic activity of peptidylprolyl isomerase. [Color fig-

ure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

before the time of those findings*>**

and postulated the heu-
ristic notion that Hsp90 anchors the receptor to cytoplasmic
structures. The release of the chaperone (a process usually
referred to as “transformation”) was thought to be the essen-
tial requirement for receptor translocation to the nucleus.
While Gasc et al** showed that Hsp90 and FKBP52 are
bound to PR in the nucleus, recent experimental evidence
demonstrates that the Hsp90sFKBP52 complex is not dissoci-
ated from steroid receptors upon steroid binding, but it is
also required for the cytoplasmic retrotransport of the recep-
tor."* Moreover, the chaperone complex also facilitates the
passage of the whole steroid receptor heterocomplex through
the nuclear pore interacting with structures of the pore such
as nucleoporins.”® Therefore, the transformation processes
leading to receptor dimerization is predicted to be a nuclear
event rather than an early cytoplasmic step. Very recent pub-
lications have confirmed these findings and have demon-
strated that steroid receptor dimerization occurs in the

26,27
as the novel model

nucleus and not in the cytoplasm,
predicts.

Other Hsp90-binding immunophilins commonly associ-
ated to steroid receptors are CyP40, PP5 and FKBPL/WisP39.
CyP40 is a member of the cyclophilin subfamily and is usu-
ally found associated to ER and PR rather than to GR and
MR,**7 whereas PP5 is an immunophilin-like protein that
shows  Ser/Thr-protein-phosphatase activity with pro-
proliferative actions in most cells.”’ Both Hsp90-binding

immunophilins are also able to interact with dyenin motors

Int. J. Cancer: 138, 797-808 (2016) © 2015 UICC

suggesting a possible redundancy with FKBP52 as protein
carrying factors. FKBPL/WisP39 is other immunophilin-like
protein that was originally found during screening for genes
that were protective against ionizing radiation.**?> It is most
closely related to FKBP52 and also shows the ability to inter-
act with Hsp90 in steroid receptor complexes, sharing with
FKBP52 exactly the same properties for the cytoplasmic ret-
rotransport of the GR.>*** Table 2 summarizes the most rele-
vant features of the immunophilins analyzed in this work.

Most of the members of the Hsp90-binding immunophilin
family also form complexes with other transcription factors
and protein kinases related to the regulation of the cell
cycle.*® Among them, p53 cytoplasmic mutants are associated
to Hsp90 and FKBP52, this chaperone complex also being
responsible for the retrotransport of the proapoptotic factor
via dynein/dynactin motor proteins.’”” The pl60 nuclear
receptor coactivator family member RAC3 (Receptor-Associ-
ated Coactivator-3), which is recruited by steroid receptors®®
and other factors whose expression is related to several
tumors (i.e, NF-kB,> E2F,* AP-1,*' STAT6,* etc.) is also
able to interact with the Hsp90e¢FKBP52edynein heterocom-
plex, a molecular transport machinery that is also responsible
for RAC3 cytoplasmic retrotransport.*’

Recently, it was demonstrated that NF-«xB is regulated by
FKBP51 and FKBP52 in an antagonistic manner.** FKBP51
is an inhibitory factor of NF-kB overall action, whose activity
is not dependent on its PPIase activity. However, FKBP52 is
a strong activator, a role where the PPlase enzymatic activity
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Figure 2. Molecular mechanism of action of the glucocorticoid receptor. According to the conjectural classic model, the Hsp90-based heter-
ocomplex is dissociated from GR upon hormone (H) binding (upper part of the model). This permits a conformational change in the receptor
exposing its nuclear localization signal (colored pink corner). After receptor diffusion throughout the cytoplasm, it is translocated to the
nucleus and transcription takes place. The experimentally proved modern model sustains that steroid binding promotes the exchange of
the Hsp90-binding immunophilin FKBP51 by FKBP52, which is able to interact with dynein motors and also shows a positive regulation of
the transcriptional activity. The whole GReHsp90eFKBP52 complex is actively transported towards the nucleus using microtubules tracks
and translocates through the nuclear pore complex (NPC), such that transformation (Hsp90 release) occurs in the nucleoplasm. Note that
the novel model predicts that GR dimerization must be a nuclear event, as it has recently been proved.?®*>> One of the targets genes for
GR is the fkbp5 gene, which encodes for FKBP51 and generates and ultra-short inhibitory feedback on the receptor action. [Color figure can
be viewed in the online issue, which is available at wileyonlinelibrary.com.]

is essential. Interestingly, Hsp90 is not required for these
effects and the regulation by immunophilins appears to be
direct because purified RelA binds to purified FKBP52.** This
immunophilin-dependent  regulatory ~mechanism  could
explain the pleiotropic actions of NF-kB according to the
FKBP52 to FKBP51 expression ratio in different cell types
and biological circumstances. In view of these and the above-
commented properties, immunophilins have become an

attractive novel pharmacologic target.*>™*

FKBP51

The relevance of FKBP51 in steroid receptor signalling was
first elucidated in New World Monkeys. In squirrel monkeys,
the levels of free cortisol in plasma are two orders of magni-
tude higher than in other primates, including humans. How-
ever these animals do not develop signs of hypercortisolism.
This is due to GR resistance in the target organs, which is
conferred by overexpression of FKBP51.***> An important fea-
ture of the fkbp5 gene that encodes for FKBP51 is that its
expression is induced by glucocorticoids, generating an intra-
cellular ultra-short negative feedback loop for GR activity™
(Fig. 2). Thus, steroid-activated GR induces fkbp5 transcription
by activation of two intronic hormone responsive elements®"

increasing the expression of FKBP51. At the end, the GR func-
tion is greatly impaired by reduction of both GR steroid bind-
ing capacity and inhibition of transcriptional activity.
Importantly, an impaired signalling cascade via cortisol-
activated GR leads to an impaired negative feedback regula-
tion, and thus, to partial glucocorticoid resistance. Interest-
ingly, this circuit appears to be one of the most robust
biological abnormalities observed in mood disorders® and the
existence of specific polymorphic isoforms of FKBP51 strongly
correlates with the dysregulation of the stress response and the
development of post-traumatic stress-disorders.>>>*

Recently, it was demonstrated that FKBP51 is a mitochon-
drial protein.”> About 50% of the cellular pool of this immu-
nophilin localizes in mitochondria in a TPR-domain-
dependent manner. FKBP51 undergoes a rapid and reversible
nuclear accumulation accompanied by nucleolar concentra-
tion under several situation of stress (peroxides, heat-shock,
UV light, serum deprivation, high osmolarity of the medium,
metals, proinflammatory stimuli, etc.).”> Overexpression of
FKBP51 shows antiapoptotic effects, whereas its knock-down
sensitizes cells to programmed cell death. Accordingly,
FKBP51 expression is high in most cancer cell lines and in
cancer tissues.

Int. J. Cancer: 138, 797-808 (2016) © 2015 UICC
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Table 2. Relevant immunophilins belonging to the FKBP subfamily in humans

Cytogenetic
Protein Aliases Gene band Ligands Known biological functions
FKBP12  FKBP1 fkbp1A  20p13 FK506 Calcineurin inhibitor**>, Inmunosuppressor
factor.?>® TGFB,*** IP34> and ryanodine
receptors'*® modulator.
PKC12 Rapamycin
PPI-1A
FKBP51  FKBP54 fkbp5 6p21.31 FK506 GR,“® MR,"*” PR'“® transcriptional inhibition
and AR activation.”® IKK**® and p65/RelA'®
interactor. Impairs dynein-powered dependent
retrotransport of nuclear factors.'*® Impairment
of neuronal differentiation.*>°
p54 Rapamycin
AlG6 SAFit 1 & 2
ARP6
FKBP52  HBI fkbp4 12p13.33 FK506 Favors ligand binding to steroid receptors'>*and
dynein-powered retrotransport.’* NF-xB activator.**®
Neurotrophic factor.?>® TDO activity suppressor.””
Copper transport.*>?
p59 Rapamycin
Hsp56
FKBP59
FKBP38  PPlase FKBPS  fkbp8 19p12 FK506, GPI1046 Inherent calcineurin inhibitor.*®® Bcl2 regulator.**”
PRL3 inhibitor. Hepatitis C virus interactor.**®
Antiapoptotic factor'®?
FKBPr38 N-(N’,N’-dimethyl
carboxamidomethyl)
cycloheximide.
FKBPL NG7 fkbpl 6p21.3 ALM201 steroid receptor action.'>® Antiangiogenic factor.'?”
DIR1
WISP39

FKBP51 is regarded as a negative regulator of steroid
receptor activity in most studies reported to date®® except for
the case of AR, where the overexpression of FKBP51
increases AR transcriptional activity in the presence or
absence of androgens in the medium and siRNA knock-
down of the immunophilin strongly impairs AR-dependent
gene transcription and cell proliferation.”®*® The proliferation
of prostate cancer cells can be constrained by androgen
deprivation therapy accompanied by a therapy with antian-
drogens (e.g., bicalutamide) to inhibit AR action by steroid
competition with the androgen binding site and displacement
of the H12 helix of AR to prevent formation of a productive
AF-2 (Activation Function-2) binding pocket,® a domain that
is harbored by the hormone-binding domain and acts as a
docking site for coactivators.”’ Therefore, most of the studies
have been focused on the endocrine perspective of the gland
by testing androgen synthesis inhibitors or AR antagonists
(see Ref. [62 for a recent review). Nonetheless, for reasons
that are still obscure, this original situation reverts along the
time and a castration-resistant prostate cancer is finally

Int. ). Cancer: 138, 797-808 (2016) © 2015 UICC

developed,®® raising logical concerns about the efficacy of
such therapeutic strategy. In spite of the apparent androgen
independence of the tumor, the AR still remains as a critical
oncogenic factor that affects both tumor growth and cell sur-
vival in the majority of the castration-resistant prostate can-
cers and about half of the patients with metastatic disease
show even a significant amplification of the AR gene, result-
ing therefore in overexpression of the AR protein.**®> Inter-
estingly, an endogenous anti-inflammatory prostaglandin 15-
deoxy-A'>"*-prostaglandin J2 targets the AR and acts as a
potent AR inhibitor,”® rapidly repressing AR target genes,
among them, fkbp5. This could prevent the positive action of
its product, FKBP51, in AR biological actions.

A relevant role for FKBP51 in sustaining cancer cell
growth and aggressiveness has been shown in various types
of cancers.®*””> One of the first evidences connecting FKBP51
with malignant pathologies was the observation that this
Hsp90-binding immunophilin is overexpressed in idiopathic
myelofibrosis,®” a known chronic myeloproliferative disorder
characterized by bone marrow fibrosis and megakaryocyte
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hyperplasia. The overexpression of FKBP51 affects the regula-
tion of the growth factor independence of megakaryocyte
progenitors and induces resistance to apoptosis. Even though
hyperexpression of FKBP51 is observed in several human
cancers, including lymphomas, gliomas, melanoma, prostate
cancer, etc.,”* it is down-regulated in other types such as
pancreatic cancer.” Interestingly, FKBP51 binding to Hsp90
favors the recruitment of the co-chaperone p23 and positively
regulates AR signaling’® and is associated with chemoresist-
ance and radioresistance.”>”” It has also been shown by
siRNA interference studies that FKBP51 suppresses the pro-
liferation of colorectal adenocarcinoma.”®

All these observations raise the possibility that FKBP51
could be use as a cancer biomarker. In addition, it would be
important to investigate common single-nucleotide polymor-
phisms in the fkbp5 gene to explore the possibility that, like
in the previously referenced case of post-traumatic syndrome
disorders, FKBP51 might contribute to individual variations
in the biological response to different therapeutic approaches,
in particular drug sensitivity. Moreover, the role of FKBP51
in tumourigenesis must be clarified. To date, there are neither
clear explanations to justify the fact that FKBP51 functions
as an oncogenic factor or a tumor suppressor depending on
the tissue type, nor the reasons by which it is down-regulated
in pancreatic tumor tissue and is overexpressed in melano-
mas or lymphomas.

FKBP52

The amino acid sequence of FKBP52 shares 60% identity and
75% similarity with FKBP51.”%% The FKBP12-like domains
described by Callebaut et al.”® show a good correlation with
those present in FKBP51 and FKBP52. These two immuno-
philins not only share high homology, but they are also quite
similar in the organization of their domains and three-
dimensional structures.’® The main functional difference
between them lays in the PPlase domain, which is certainly
conserved, but residues of the proline-rich loop suspended
above the PPlase pocket differ between both proteins affect-
ing protein interactions with larger peptide substrates.®"**
These differences are responsible for the divergent functions
of both proteins. Hence, an FKBP51 mutant containing two
point mutations (A116 V and L119P) in the FKBP51
proline-rich loop showed full FKBP52-like activity towards
AR.® Moreover, the exchange of both PPlase domains in
chimeric proteins transforms FKBP52 into FKBP51 and vice
versa."> Thus, the replacement of the N-terminal domain in
FKBP52 by that of FKBP51 led to a GR inhibitory immuno-
philin with highly reduced capacity to bind dynein. Con-
versely, replacing the PPlase domain of FKBP51 by that of
FKBP52 almost completely abolished the inhibitory effect of
FKBP51 on GR transcriptional activity and also reconstituted
the capacity to interact with dynein."®

8485 and is also

FKBP52 is overexpressed in breast cancer
required for normal sexual differentiation and develop-

ment.***® Accordingly, FKBP52-deficient male mice display

Biological relevance of Hsp90-binding immunophilins

characteristics of partial androgen insensitivity syndrome,
including dysgenic prostate.””®* Interestingly, the BF-3 (Bind-
ing Function-3) surface of the AR (a region coupled to the
AF-2 pocket of the receptor) appears to be the most effective
binding site for drugs rather than the AF-2 domain.”
Accordingly, BF-3 mutations have been identified in patients
with prostate cancer or androgen insensitivity syndrome” >
and AR X-ray structures showed that BF-3 and AF-2 are
structurally attached.”® Mutations within the BE3 surface of
the AR also result in increased dependence on FKBP52 for
function. In particular, the region containing Pro723 and
Phe673 has been labeled as a putative FKBP52 interaction
and/or regulatory surface. It has been shown that the
cyclohexane-carboxamide derivative MJC13 specifically inhib-
its FKBP52-regulated AR activity by interaction with the BF3
surface,” but not due to binding to FKBP52. Nonetheless,
FKBP52 function is abrogated, including the ability to trans-
locate AR to the nucleus. Importantly, the secretion of
prostate-specific antigen to the medium, the expression of
FKBP51 (a positive regulator of AR function) and steroid-
dependent proliferation of prostate cancer cells are inhibited,
which may have therapeutic implications.

FKBP52 has recently been related to development of glio-
blastoma multiforme, the most frequent and aggressive pri-
mary tumor of the central nervous system.”* In these tumors,
the degradation of tryptophan to kynurenine by tryptophan-
2,3-dioxygenase (TDO) favors the constitutive activation of
the aryl-hydrocarbon receptor,”” leading to the inhibition of
the antitumor immune response and favoring tumor cell pro-
liferation and invasiveness.”® FKBP52 knock-down increased
TDO constitutive expression and kynurenine production, an
effect that seems to be dependent on the PPIase activity of
the immunophilin because it is also observed in cells treated
with FK506 . This observation raised the possibility that the
immunesupressive action of FK506 via calcineurin could also
be potentiated by increasing the activity of TDO. In a recent
study, it was demonstrated that this effect may be GR-
dependent.”*

Other key factor that plays a key role in cancer and
inflammation is NF-kB. In unstimulated cells, inactive NF-xB
is retained in the cytoplasm due to its association with IxB
(Inhibitor of kB), whereas in stimulated cells (stress, TNF,
IL-1B. etc.), IxB is dissociated upon phosphorylation by IKKs
(IxkB kinases) and degraded by the proteasome. This favors
the retrograde transport and subsequent nuclear translocation
of the active RelAep50. This heterodimer is the most frequent
dimer of NF-kB in most cell types of all tissues’” and regu-
lates transcription of genes that affect cell proliferation, sur-
vival, metastasis and angiogenesis.”® It has recently been
shown that NF-kB retrotransport is significantly impaired by
FKBP51 overexpression, whereas FKBP52 favors NF-«xB
nuclear retention time, a variable directly related to its
tumorigenic action.”” Moreover, the transcriptional response
is also regulated by the expression balance of FKBP51 and
FKBP52, the former immunophilin being an inhibitory factor

Int. ). Cancer: 138, 797-808 (2016) © 2015 UICC
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Figure 3. Novel model for the regulation of the biological action of NF-xB by FKBP51 and FKBP52. The p50eRelA complex, the most frequent
dimer in all cell types, is associated to FKBP51 and Hsp70 in the cytoplasm. When cells are stimulated, the protein-kinase IKK is activated
by phosphorylation via the cdc37¢(Hsp90), interacting complex, which results in 1xB phosphorylation, its dissociation from the NF-xkB com-

plex and subsequent degradation via the proteasome. The active NF-kB dimer exchanges immunophilins, such that FKBP51 replaces
FKBP52 in the heterocomplex. The latter immunophilin recruits dynein/dynactin motors proteins and mediates the retrotransport of active
NF-xB dimers in a PPlase activity-independent manner. FKBP52 is also associated to NF-kB promoter sites of target genes favoring tran-
scriptional activity, an effect that is strongly dependent on the PPlase enzymatic activity of FKBP52 and is consequently prevented by the
macrolide FK506. An excess of FKBP51 competes with FKBP52 (<) and prevents NF-kB biological effects. The steroid-dependent activation
of the GR is also favored by FKBP52 because both its cytoplasmic retrotransport and the transcriptional activity mechanisms are favored.
Active GR inhibits NF-xB action due to tans-repression mechanisms. Note that FKBP51 is also located in mitochondria, where antiapoptotic
effects are favored by this immunophilin. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

of NF-kB and the latter a strong activator dependent on its
PPIlase activity** (Fig. 3). Actually, ChIP assays have demon-
strated that both immunophilins are recruited to the pro-
moter sites of NF-xB target genes and are functionally
exchanged upon cell stimulation, such that FKBP52 (the
stimulant immunophilin) replaces FKBP51, the negative regu-
lator.** Many cancer types exhibit persistent activation of
NF-xB, which induces an inflammatory response that is
thought to favor cancer development.”® Therefore, blocking
the NF-«xB pathway shows therapeutic benefits and one novel
and still unexplored strategy to achieve this could be the
direct inhibition of immunophilin function.

Figure 3 integrates our recent findings for the role of
FKBP51 and FKBP52 on NF-kB signaling.'” The p50eRelA
dimer is associated to FKBP51 in its inactive cytoplasmic
state. The Hsp70, an Hsp90 partner chaperone that regulates
client proteins functions is also part of this heterocomplex.
Upon cell stimulation, the kinase activity of IKK is activated
by phosphorylation via the cdc37+(Hsp90), interacting com-
plex.'”" This results in IxkB phosphorylation, dissociation
from the NF-xB complex and the subsequent degradation of
IkB via proteasome. Active NF-«kB replaces FKBP51 by

Int. ). Cancer: 138, 797-808 (2016) © 2015 UICC

FKBP52, an immunophilin that is able to interact with
dynein/dynactin motors proteins'®® favoring both the retro-
transport of NF-kB'%*'** and its interaction with the nuclear
sites of action. FKBP52 greatly favors NF-kB biological action
in a PPlase-dependent manner (for example, it is inhibited
by FK506 or rapamycin) when the immunophilin is recruited
to the promoter sites of NF-kB target genes. On the other
hand, the recruitment of FKBP51 to those promoters inhibits
the NF-kB biological response. Both immunophilins compete
one another and can hamper the original effect of the other.
The steroid-dependent activation of the GR, which is also
improved by FKBP52'>'%® also prevents NF-kB effects via its
known mechanism of transrepression.'®®

Upon radiation exposure of breast cancer tissue, HER-2
(Human Epidermal Growth Factor Receptor-2) exerts a pro-
survival effect by NF-xB activation through Akt-mediated
pro-survival pathways.'"” Interestingly, HER-2 itself is one of
the genes activated by NF-kB upon radiation, suggesting a
positive feedback loop between HER-2 and NF-xB.'”® Conse-
quently, it is possible that FKBP52 could also positively regu-
late this loop via NF-kB offering a new therapeutic target for
breast cancer treatment.
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FKBP38

FKBP38 is a noncanonical FKBP family member that pro-
vides a scaffold platform to facilitate protein-protein interac-
tions, in particular with anti-apoptotic factors.'” Thus, the
molecular interaction of FKBP38 with Bcl-2 contributes to
tumorigenesis and chemoresistance.''® Even though the
PPIase domain of FKBP38 shows overall structural similarity
to that shown by other immunophilins such as FKBP12,
FKBP52 and Cyp40, it lacks the key residues required for
FK506 binding and enzymatic activity.'"!

FKBP38 is involved in mTOR signal transduction path-
way, favors tumor invasion and metastasis."'? It is overex-
pressed in several types of human cancer cells and tumor
tissues, including prostate, colon, breast, liver, lung, lymph
node and stomach.''®'"*"'5 It is accepted that in cancer
cells, FKBP38 blocks apoptosis mechanisms caused by cal-
cium, staurosporine, cycloheximide, etoposide and UV radia-
tion in a Bcl-2-dependent manner.'%>'*°

FKBP38 may modulate the degradation of Bcl2 via protea-
some by direct binding via its TPR domain to the S4 subunit
of the 19S proteasome, which increases proteosomal activity
in the membrane fractions.''® Also, FKBP38 may modulate
the cleavage of Bcl-2 by direct interaction with Bcl-2 and
blocking the caspase-mediated cleavage pathway.''” The sta-
bilization of Bcl-2 by FKBP38 favors its accumulation, indu-
ces resistance to anticancer chemotherapy with cisplatin and
paclitaxel and generates a poor prognosis."'®'" Also, up-
regulation of Bcl-2 and Bcl-XL at transcriptional, transla-
tional and stability levels markedly protects neuroblastoma
cells from apoptosis induced by cytotoxic agents.'** There-
fore, the FKBP38-dependent expression and maintenance of
the function of Bcl-2 plays a pivotal role in the molecular
mechanism to chemoresistance in cancer cells.

FKBPL

FKBPL/WisP39 was first identified as a gene down-regulated
by radiation treatment,” which correlates with a radioresistant
phenotype. Accordingly, the down-regulation of FKBPL
affected cellular responses to radiotherapy, leading to increased
DNA repair and cell survival.'! FKBPL is also a key compo-
nent of a heterocomplex involved in the post-translational sta-
bilization of the cyclin-dependent kinase inhibitor, p21.'*
Along with Hsp90, it forms a trimeric complex with p21 pre-
venting its proteasomal degradation, which initiates cell-cycle
arrest following irradiation. The stabilization of p21 by the
GTSE-1 (G2 and S phase-expressed-1) protein was also shown
to be dependent on the FKBPL/WisP39¢Hsp90 complexes,
such that high level of GTSE-1 expression caused resistance to
taxane chemotherapy modulating cell-cycle progression.'*’

As it was commented above, FKBPL shares the same prop-
erties of FKBP52 for the cytoplasmic retrotransport of GR.* Tt
is also able to interact with the AR enhancing transcription'**
and the ER.'*> FKBPL/WisP39 modulates ER expression with

an inverse correlation between FKBPL and ER levels,'® lead-

Biological relevance of Hsp90-binding immunophilins

ing to a decreased proliferation of breast cancer cell due to the
inhibition of downstream signaling of ER-responsive genes.
However, FKBPL/Wisp39 overexpression decreases ER phos-
phorylation via p21 stabilization, an event that has been linked
to increased sensitivity to endocrine therapies."*® Moreover,
FKBPL/WisP39 affects the response to the ER antagonists
tamoxifen and fulvestrant, since increased levels of expression
of this immunophilin-like protein increases cell sensitivity to
both drugs."*> Consequently, FKBPL/Wisp39 is a biomarker to
predict response to endocrine therapies.

Interestingly, FKBPL/WisP39 has also been related to angio-
genesis since its secretion inhibits cell migration, tubule forma-
tion and angiogenesis.'””” Increased expression of FKBPL/
WisP39 also leads growth inhibition of not only breast cancer
cells,"* but also myelocytic leukemia cells.'*® In the latter case,
it does not induce significant apoptosis on leukemic cells, but it
increases cell arrest at Go/G; phase preventing cell proliferation.

Future Therapies with Selective Small Molecules

The developing of immunophilin ligands shows promising
pharmacological perspectives in the near future. The ability
to regulate the functions of a specific protein using cell-
permeable small molecules is an unquestionable powerful
method not only to study biological systems from the
mechanistic perspective, but also a desired alternative to be
used in therapeutic treatments. In this sense, Hsp90-
binding immunophilins are novel targets that could offer
new therapeutic opportunities in many fields, most likely
in cancer therapy, as it is inferred from the previously dis-
cussed features of these proteins, but also in neurodegener-
ative diseases and other neurological disorders such as
depression.’* Following the isolation of rapamycin and
CsA, it was FK506 the most used drug for the prevention
of liver transplant rejection and since then, its use
expanded rapidly into the transplantation of other organs
(see Ref. [129 for a recent review). Strong attempts to syn-
thesize new selective immunophilin ligands are in course
of action."?"** Nonetheless, drug discovery has always
been hampered because the failure to pharmacologically
differentiate against the highly homologous members of
the family, in particular for the case of FKBP51 and
FKBP52. Most of the novel ligands are still unselective in
this regard. However a recent publication described the
properties of two new compounds named SAFitl and
SAFit2 that show selective antagonistic affinity by
FKBP51'%° (K; values equal to 4 and 6 nM, respectively)
and >10,000 fold lower affinity for FKBP52.

Treatments with FK506 have been shown to inhibit the
proliferation of prostate cancer cells and this fact was
assigned to blockade of the enhancing effect of FKBP51 on
the AR in these cells.”®’® It has also been reported a physical
association of FKBP51 with the Hsp90 bound kinase
upstream of IkB, IKK via its IKK « subunit.”'*® Consistent
with this, the FKBP ligand rapamycin blocked IkB/NF-kB/
mTOR signaling cascade'”’. Because the drug concentration

Int. ). Cancer: 138, 797-808 (2016) © 2015 UICC



Mazaira et al.

used is also able to inhibit FKBP52, it could also be possible
that this effect on NF-«B signaling has actually been occurred
due the inhibition of this stimulant immunophilin rather
than prevention of the overall inhibitory action recently
reported for FKBP51.** The development of selective drugs
for each immunophilin, especially for FKB52, will help to
answer this conundrum and to design eventual therapeutic
approaches.

The developing of specific inhibitors for FKBP38 is even
less prolific to date. Interestingly, the finding that cyclohexi-
mide, a well-known inhibitor of eukaryotic protein synthesis,
also inhibits the PPlase activity of FKBP12, prompted the
development of a derivative named N-(N',N’-dimethyl-car-
boxamidomethyl)-cycloheximide that functions as a relatively
specific inhibitor FKBP38."*® Nonetheless, at the present its
use is quite limited.

In view of the fact that FKBPL shows a wide variety of
antitumor actions, this immunophilin is a quite promising
pharmacologic target. Inasmuch as this divergent member of
the FKBP subfamily lacks PPlase domain, the design of spe-
cific ligands is more difficult. Nonetheless, taking advantage
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in clinical trials showing encouraging results to essentially
correct FKBPL functional deficiencies in a number of
diseases.'*”"*’

Combined pharmacological approaches are also a feasible
possibility. In this regard, treatments with CsA, a cycophilin-
interacting drug, associated to other natural compounds such
as sanglifehrin efficiently suppresses chemokine signalling
and cell migration."*® It has been proposed that the use of
rapamycin along with metrothrexate and tacrolimus in
patients with lymphoma is associated with a significantly
decreased risk of disease progression,"*' although a recent
clinical trial performed in children with acute lymphatic leu-
kemia'** also showed increased toxicity and disapproved the
therapeutic combination of these drugs.

Probing pathways in response to specific inhibitors of
immunophilins in cancer cells will become increasingly
important during the next years. Development and character-
ization of novel small molecules able to target specifically
members of the immunophilin family is an emerging field
whose results will be seen in the very near future. This is
expected especially for the molecular roles of FKBPL,

of the antiantiangiogenic properties of FKBL, a peptide FKBP51 and FKBP52 in cancer development and

mimetic of FKBPL named ALM201 is currently being tested progression.
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