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ABSTRACT: Recent studies relating the approximations for the equations of state for

thin shells and their consequent perturbative evolution are extended to thin-shell worm-

holes in theories beyond general relativity and more than four spacetime dimensions. The

assumption of equations of state of the same form for static and slowly evolving shells

appears as a strong restriction excluding the possibility of oscillatory evolutions. Then

the new results considerably differ from previous ones obtained within the usual linearized

approach.

KEY WORDS: Dilaton gravity; Einstein–Gauss–Bonnet gravity; thin-shell wormholes.

PACS numbers: 04.40.Nr, 04.50.Kd, 04.50.Gh

∗e-mail: erdec@df.uba.ar
†e-mail: ctomasini@df.uba.ar
‡e-mail: csimeone@df.uba.ar

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CONICET Digital

https://core.ac.uk/display/159292832?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1708.09019v1


1 Introduction

The outstanding physical properties of traversable wormholes [1] have driven a consider-

able amount of work. In particular, two central issues were addresed: the kind of matter

supporting such topologically non trivial geometries, and their stability under perturba-

tions. A class of wormholes for which these aspects have been studied in great detail are

those supported by thin matter layers (thin shells). Most stability analyses of thin-shell

wormholes have been performed within the approach in which a linear relation is assumed

between the energy density and pressure; see the leading works [2, 3], and for recent studies

see, for example, [4, 5, 6] and references therein. On the other hand, in a series of arti-

cles following Ref. [7] the perturbative dynamics of shells in several examples within the

framework of relativistic gravity was studied under the assumption that the form of the

relations between the energy density and pressures valid for a static shell also holds for the

evolution following a slow perturbation; the results obtained within this approach differed

significantly from previous ones obtained with the linearized stability treatment (see [8] for

a detailed discussion). Different evolutions associated to different equations of state clearly

do not imply a flaw in any approach adopted; however, it is natural to compare the results

and try to identify an aspect playing a central role in determining different behaviours. In

what follows, we extend the proposal of [7] to theories of gravity beyond general relativity

and more than four spacetime dimensions. We consider the perturbative dynamics of thin-

shells supporting wormholes in the frameworks of four-dimensional dilaton gravity and in

five-dimensional Einstein–Gauss–Bonnet gravity. Within the linearized stability analysis

all the examples here examined admited static stable configurations [9, 10, 11, 12, 13];

in the new approach introduced in [7] the results will be notably different. As usual,

we choose natural units, so that c = Gn = 1, with Gn the n-dimensional gravitational

constant.

2 Dilaton wormholes in 3+1 dimensions

The classical symmetries of the action describing the world-sheet dynamics of strings on

a curved manifold in presence of background fields are not preserved at the quantum
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level in an arbitrary background, unless certain restrictions are imposed on the admissible

external fields. In brief, the requirement of preserving at the quantum level the conformal

invariance of the two-dimensional world sheet theory, formulated up to the first order in

the inverse of the string tension, leads to the same equations of motion resulting from the

variational principle δS = 0 imposed on certain D-dimensional field theory. In particular,

in the theory of closed bosonic strings [14] with the addition of an electromagnetic field,

the suitable action S for D = 4 written in the so-called Einstein frame has the form [15]

S =
∫

d4x
√−g

(

−R + 2(∇φ)2 + e−2bφF 2
)

, (1)

where R is the Ricci scalar of the background metric gµν , φ is the dilaton field, F µν is

the electromagnetic field and b (0 ≤ b ≤ 1) determines the coupling between them. The

variational principle δS = 0 leads to

∇µ

(

e−2bφF µν
)

= 0, (2)

∇2φ+
b

2
e−2bφF 2 = 0, (3)

Rµν = 2∇µφ∇νφ+ 2e−2bφ
(

FµαF
α
ν − 1

4
gµνF

2
)

. (4)

These are the equations for the dilaton and electromagnetic fields, and the Einstein equa-

tions with these fields as the source. They admit static spherically symmetric solutions

with a metric of the form [16, 17, 18]

ds2± = −f(r)dt2 + f−1(r)dr2 + h(r)(dθ2 + sin2 θdϕ2), (5)

where

f(r) =
(

1− A

r

)(

1− B

r

)(1−b2)/(1+b2)

, (6)

h(r) = r2
(

1− B

r

)2b2/(1+b2)

. (7)

The constants A and B above correspond to the inner and outer horizons of a black hole

geometry, and are related with the mass M and electromagnetic charge Q by

A = M +
√

M2 − (1− b2)Q2, B =
(1 + b2)Q2

M +
√

M2 − (1− b2)Q2
(8)
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In what follows we consider a shell placed at a radius a outside the outer horizon of

the original black hole manifold. This shell is defined to connect two identical copies of

the exterior part of that geometry, so that the complete resulting geometry is that of a

wormhole symmetric across the throat, which is a minimal area surface. The matter on the

shell is related with the geometry at each side by the Lanczos equations1 [19, 20, 21, 22]

〈Kij −Khij〉 = −8πSij , (9)

where Sij is the surface energy-momentum tensor, K±
ij is the extrinsic curvature at each

side given by

K±
ij = −n±

α

(

∂2Xα

∂ξi∂ξj
+ Γα

βγ

∂Xβ

∂ξi
∂Xγ

∂ξj

)

r=a

, (10)

K is the corresponding trace and 〈·〉 stands for the jump of a given quantity across the

surface r = a; n±
α are the components of the unit normals at each side. Greek indices

label the background coordinates, and latin indices label those on the surface r = a. The

resulting energy density and pressure are then

σ = − 1

4π

h′(a)

h(a)

√

f(a) + ȧ2, (11)

p =
1

8π

√

f(a) + ȧ2
[

2ä+ f ′(a)

f(a) + ȧ2
+

h′(a)

h(a)

]

, (12)

where a dot stands for a derivative with respect to the proper time on the shell, and a

prime denotes a derivative with respect to the radial coordinate r. A static configuration

would then have the energy-momentum given by

σ0 = −
√

f(a0)

4π

h′(a0)

h(a0)
, (13)

p0 =

√

f(a0)

8π

[

f ′(a0)

f(a0)
+

h′(a0)

h(a0)

]

. (14)

Starting from this point, stable static solutions were found for a linearized equation of

state [9] and also for a generalized Chaplygin equation of state [10]. Here we will follow

the alternative approach introduced in [7] and recently analysed in [8]. From the equations

1We assume the necessary relative factor in the matter contribution to the action to get the usual
factor 8π on the right-hand side of Eq. (9).
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above we can read the relation existing between the surface energy density and the pressure

for the case of a shell evolving with time:

p = Y σ, Y = −1

2

[

1 +

(

2ä+ f ′(a)

f(a) + ȧ2

)

h(a)

h′(a)

]

, (15)

and the analogous relation for a static shell:

p0 = X0σ0, X0 = −1

2

[

1 +
f ′(a0)h(a0)

f(a0)h′(a0)

]

. (16)

If now we follow the approximate –perturbative– treatment introduced in [7], we demand

that the form of the equation of state valid for the static configuration holds for the shell

undergoing a slow evolution by imposing the condition

Y = X, X = −1

2

[

1 +
f ′(a)h(a)

f(a)h′(a)

]

. (17)

It is straightforward to prove that from this condition the equation of motion obtained for

the shell radius is

2äf(a) = ȧ2f ′(a), (18)

which has a solution of the form

ȧ(τ) = ȧ0

√

√

√

√

f(a(τ))

f(a0)
. (19)

This kind of solution excludes any oscillatory motion, as the sign of the velocity of the shell

is determined by the initial conditions. Then, as obtained in [8] and other works following

the same approach, only a monotonic motion is possible under the assumptions adopted.

In general, because in the parameter range 0 ≤ b ≤ 1 the metric function f(r) increases

with r, we would have a decelerated contraction after an inwards perturbation and an

accelerated expansion after an outwards perturbation. In the second case the possibility

of a shell speed making eventually invalid the perturbative treatment should be adressed.

Because f(r) → 1 as r → ∞, the shell speed is bounded, and in an outwards perturbation

a small initial speed ensures a subsequent slow evolution only if f(a0) is not far from unity;

this condition is fulfilled if the radius of the initial configuration is considerably larger than

the outer horizon radius of the original black hole geometry.
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3 Einstein–Gauss–Bonnet wormholes in 4+1 dimen-

sions

The theory of gravity in five dimensions associated to the Einstein action plus the so-

called Gauss–Bonnet terms is the most general metric theory of gravity which leads to

equations of motion of second order [23]. This theory was extensively studied mainly

because it can be obtained within the string theoretical framework [24, 25, 26, 27]. The

Gauss–Bonnet higher order terms in the gravitational action physically correspond to short

distance corrections to general relativity. The study of black hole solutions in Einstein–

Gauss–Bonnet theory began in the 80’s, when the static spherically symmetric solution

was found by Boulware and Deser [28]. After that, Wiltshire obtained the charged black

hole geometry in both Maxwell and Born–Infeld electrodynamics [29, 30]. The action of

the theory, including an electromagnetic field and non vanishing cosmological constant Λ,

reads

S =
∫

d5x
√−g

[

R− 2Λ− 1

4
FµνF

µν + α
(

RαβγδR
αβγδ − 4RαβR

αβ +R2
)

]

. (20)

where α is a constant of dimensions (length)2. The value of this constant determines the

departure of the theory from pure relativity (α = 0). Because there has been some interest

in pure Gauss–Bonnet gravity, and in this case the correct relative sign of the associated

terms in the action requires α > 0, we shall assume this condition. The variational principle

with the action above gives field equations which include a spherically symmetric static

solution of the form

ds2 = −f(r)dt2 + f−1(r)dr2 + r2
(

dθ2 + sin2 θdχ2 + sin2 θ sin2 χdϕ2
)

, (21)

where the metric function f(r) admits two branches:

f(r) = 1 +
r2

4α
∓ r2

4α

√

1 +
16αM

πr4
+

8αQ2

3r6
+

4αΛ

3
. (22)

For the minus sign we have the normal branch presenting horizons, and thus describing

a black hole geometry, while for the plus sign we would have the so-called exotic branch,

which includes a naked singularity. However, in the mathematical construction of a worm-

hole geometry by the usual cut and paste procedure both horizons and singularities are
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removed by placing the wormhole throat at a radius greater than the largest horizon ra-

dius; hence there would be no reason to avoid the exotic branch within such framework.

Moreover, this branch presents the desirable feature of allowing for simple wormhole con-

figurations supported by ordinary matter (i.e. matter satisfying the energy conditions)

even for several parameters set to zero (see below).

3.1 Gauss–Bonnet terms as an effective Tµν

The variational principle δS = 0 leads to field equations which can be understood in two

ways. In the first one the Gauss–Bonnet contribution is considered as an effective energy-

momentum tensor, so that we recover the usual Einstein equations with an additional

source:

Rµν −
1

2
gµνR + Λgµν =

1

2

(

TEM
µν + TGB

µν

)

, (23)

where

TEM
µν = FµαF

α
ν − 1

4
gµνFαβF

αβ, (24)

and

TGB
µν = α

[

8RαβR
α β
µ ν − 4RµαβγR

αβγ
ν

+ 8RµαR
α
ν − 4RRµν + gµν

(

RαβγδR
αβγδ − 4RαβR

αβ +R2
)]

. (25)

In this picture the junction conditions at a given surface are just those of general relativity,

〈Kij −Khij〉 = −8πSij , (26)

and the surface energy-momentum tensor includes a Gauss-Bonnet contribution. If the

surface joins two identical copies of the exterior part of a spherically symmetric static

metric, the resulting new complete manifold is that of a wormhole of throat radius a,

supported by a shell with energy density and pressure given by

σ = − 3

4πa

√

f(a) + ȧ2, (27)

p = −2

3
σ +

1

8π

2ä + f ′(a)
√

f(a) + ȧ2
. (28)
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We see that there is no possibility to avoid exotic matter in the construction of a thin shell

wormhole with this interpretation of the Gauss-Bonnet terms. For a static configuration

(a = a0) we have

σ0 = −
3
√

f(a0)

4πa0
, (29)

p0 = −2

3
σ0 +

1

8π

f ′(a0)
√

f(a0)
. (30)

Starting from this point, the existence of static configurations stable under perturbations

preserving the symmetry were found in [11] following the linearized approch. Here, instead,

we follow the procedure of the preceding section. The relation between the static energy

density and pressure is

p0 = X0σ0, X0 = −1

3

(

2 +
a0f

′(a0)

2f(a0)

)

. (31)

On the other hand, for the general case of a moving shell at the wormhole throat we have

p = Y σ, Y = −1

3

(

2 +
2aä+ af ′(a)

2f(a) + 2ȧ2

)

. (32)

If we demand that the form of the equation of state for the static case is preserved in a

slow evolution of the shell, we impose the approximation

p = Xσ, X = −1

3

(

2 +
af ′(a)

2f(a)

)

. (33)

From (32) and (33) we immediately obtain the condition

f ′(a)ȧ2 = 2f(a)ä (34)

which is the equation of motion for the shell at the wormhole throat. As before, the

solution turns to be of the form

ȧ(τ) = ȧ0

√

√

√

√

f(a(τ))

f(a0)
, (35)

which implies, again, a monotonic evolution: an expansion if the initial velocity points

outwards, and a contraction if it points inwards. The accelerated or decelerated charac-

ter of the motion would be determined, in each case, by the dependence of the metric
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function f with the radial coordinate. For example, consider the assumption α ≪ a2, so

that the theory implies a slight departure from relativity at the scale of our wormhole

configuration, and the simplest case of vanishing charge and vanishing cosmological con-

stant. Then we would have f(r) ≃ 1−2M/(πr2) for the normal branch of the metric, and

f(r) ≃ 1 + 2M/(πr2) + r2/(2α) for the exotic branch. In the first case the shell would

undergo an accelerated expansion with decreasing acceleration after an outwards perturba-

tion, and a decelerated contraction after an inwards perturbation; the same considerations

of the preceding examples would then apply regarding the validity of the perturbative

approximation. In the second case the assumption α ≪ a2 would fail after an inwards

perturbation, as there would be no limit for the decrease of the shell radius. On the other

hand, for the exotic branch of the metric the theory in this approximation provides a sort of

effective cosmological constant ΛEff ∼ α−1 which would drive an outwards expansion with

unbounded speed; in fact, for large values of the shell radius we would have ȧ ∼ a. This

would make eventually invalid the perturbative treatment, which relies in the hypothesis

of a slow motion of the shell.

3.2 Gauss–Bonnet terms as a geometric object

The Gauss–Bonnet terms of the equations of the theory can be associated to the geometry,

and not to an effective energy momentum tensor, which allows for a more satisfactory

understanding of the character of the matter on the shell joining two metrics. Besides, this

has other advantages in the framework in which we are working. In this picture the junction

conditions are generalized to include the Gauss–Bonnet contribution, and this has two

positive consequences: First, for certain values of the parameters, thin-shell wormholes can

be supported by matter satisfying the energy conditions [31, 32, 12, 33]; moreover, when

associated to the exotic branch of Wiltshire solution, wormholes are supported by normal

matter even in the case of a relatively small and positive Gauss–Bonnet constant, and

with vanishing charge and zero cosmological constant [33]. Second, as this substantially

changes the form of the surface energy density and pressure on the shell, it could allow for
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an, in principle, different kind of motion. The field equations read

Rµν −
1

2
gµνR + Λgµν + 2αHµν = 8π Tµν , (36)

where

Hµν = RRµν − 2RµαR
α
ν − 2RαβRµανβ

+ Rαβγ
µ Rναβγ −

1

4
gµν(R

2 − 4RαβRαβ +RαβγδRαβγδ). (37)

The matching conditions relating the metrics at the two sides of a given surface with the

character of matter on this surface are given by the Darmois–Israel conditions generalized

to Einstein–Gauss–Bonnet gravity. They were obtained in Ref. [34] (see also [35]) starting

from the equations above and read

〈Kij −Khij〉+ 2α〈3Jij − Jhij + 2PikljK
kl〉 = −8πSij, (38)

where latin indices label the coordinates on the joining surface, and the divergence-free

part of the Riemann tensor Pijkl and the tensor Jij are defined as follows:

Pijkl = Rijkl + (Rjkhli −Rjlhki)− (Rikhlj − Rilhkj) +
1

2
R(hikhlj − hilhkj), (39)

Jij =
1

3

[

2KKikK
k
j +KklK

klKij − 2KikK
klKlj −K2Kij

]

. (40)

Working with this interpretation of the Einstein–Gauss–Bonnet theory and within the

linearized stability approach, the possibility of stable thin-shell wormholes connecting two

geometries of the form (21) was shown in Refs. [12, 13] for suitable values of the parameters.

We follow, instead, the procedure of the preceding sections to perform the perturbative

dynamics analysis under the approximation introduced in [7]. From the junction conditions

above, the energy density and pressure for a shell connecting two identical spherically

symmetric exterior geometries are

σ = − 1

8π

[

6∆

a
− 2α

a3

(

4∆3 − 12∆(1 + ȧ2)
)

]

, (41)

p =
1

8π

[

4∆

a
+ 2

ℓ

∆
− 8α

a2

(

ℓ∆− ℓ

∆
(1 + ȧ2)− 2∆ä

)]

, (42)
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where we have introduced

∆ =
√

f(a) + ȧ2, ℓ =
f ′(a)

2
+ ä. (43)

The corresponding expressions for the static case are

σ0 = −
√

f(a0)

8πa0

[

6− 4α

a20
(2f(a0)− 6)

]

, (44)

p0 =

√

f(a0)

8πa0

[

4 +
a0f

′(a0)

f(a0)
− 4α

f ′(a0)

a0

(

f(a0)− 1

f(a0)

)]

, (45)

so that the following relation between the energy density and pressure holds:

p0 = X0σ0, X0 =
a0 [4a0f(a0) + a20f

′(a0)− 4αf ′(a0) (f(a0)− 1)]

f(a0) [8α (f(a0)− 3)− 6a20]
. (46)

In the case of a moving shell, instead, the corresponding relation is

p = Y σ, Y =
2∆a+ ℓa2∆−1 − 4α [ℓ∆− ℓ∆−1(1 + ȧ2)− 2∆ä]

−3∆a + αa−1 (4∆3 − 12(1 + ȧ2)∆)
. (47)

The assumption that the form of the equation of state for a static configuration is a good

approximation for a moving shell imposes the condition

Y = X, X =
a [4af(a) + a2f ′(a)− 4αf ′(a) (f(a)− 1)]

f(a) [8α (f(a)− 3)− 6a2]
. (48)

Now, differing from the cases considered above, this condition does not lead in a straight-

forward way to a simple equation of motion for the shell. However, if we are interested in

the possibility of oscillatory evolutions which can be associated to a kind of stable equilib-

rium, we can look for the existence of turning “points”, that is values of the shell radius

for which it must be ȧ = 0 and ä > 0, or ȧ = 0 and ä < 0. At such positions of the shell

we would have, under the approximation adopted, that

X(a) = Y (a, ȧ = 0, ä). (49)

A direct calculation then leads to the condition

ä
[

a2 + 4α (1 + f(a))
]

= 0. (50)
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In a construction starting from the exotic branch of the Wiltshire solution we have always

f(a) > 0, and in the case of the black hole geometry we only consider a shell radius larger

than which would be the outer horizon radius, so that again f(a) > 0; hence for α > 0

this condition can be fulfilled only if

ä = 0, (51)

which contradicts the existence of a turning point. Therefore, despite the considerably

greater complexity of the equations of motion in the picture in which the Gauss–Bonnet

contribution is associated to the geometry, the outcome is analogous to the conclusion

of the simpler approach of the preceding section, and oscillatory evolutions can not take

place under the hypothesis adopted.

4 Summary

In the present work we have extended the approach to treat the perturbative dynamics of

shells first adopted in Refs. [7], and recently analysed in detail in [8], to different thin-

shell wormholes in theories of gravity beyond general relativity. We have considered the

shells supporting four-dimensional wormholes in the framework of dilaton gravity and five-

dimensional wormholes in two different pictures of Einstein–Gauss–Bonnet gravity. In all

cases, and differing from previous results obtained within the linearized stability procedure

[9, 10, 11, 12, 13], the same kind of evolution of the examples in [7, 8] and related works has

been found. While in some cases there is at least the possibility of slow evolutions, in other

cases the shells at the wormhole throats would even speed up in a way making eventually

not valid the perturbative treatment. The approximation of relations between the energy

density and pressure of the same form for static shells and for shells undergoing a slow

symmetric perturbation then appears as a strong restriction excluding the possibility of

oscillatory solutions associated to stable wormhole configurations.
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