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Highlights  

 

 Spinal cord injury (SCI) induces an early increase in TSPO and 5α-RII mRNA 

levels 

 A later decrease in 5α-RI and 5α-RII expression after SCI is observed 

 TSPO and 5α-RII up-regulation may represent a protective response against 

injury  

 PG induces a marked increase in spinal TSPO, StAR, 5α-RI and 5α-RII 

expression 

 PG may favor local production of reduced metabolites and prevents allodynia 

 

 

 

 

Abstract 

 

Neuropathic pain is a frequent complication of spinal cord injury (SCI), still refractory 

to conventional treatment. The presence and biological activity of steroidogenic 

regulatory proteins and enzymes in the spinal cord suggests that neurosteroids locally 

generated could modulate pain messages. In this study we explored temporal changes in 

the spinal expression of the 18kDa translocator protein TSPO, the steroidogenic acute 

regulatory protein (StAr) and the steroidogenic enzyme 5-reductase (5α-RI/II) in an 

experimental model of central chronic pain. Male Sprague-Dawley rats were subjected 

to a SCI and sacrificed at different time points (1, 14 or 28 days). The development of 

mechanical and cold allodynia was assessed. Injured animals showed an early increase 

in the mRNA levels of TSPO and 5α-RII, whereas in the chronic phase a significant 

decrease in the expression of 5α-RI and 5α-RII was observed, coinciding with the 

presence of allodynic behaviors. Furthermore, since we have shown that progesterone 

(PG) administration may offer a promising perspective in pain modulation, we also 

evaluated the expression of steroidogenic proteins and enzymes in injured animals 

receiving daily injections of the steroid. PG-treated did not develop allodynia and 
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showed a marked increase in the mRNA levels of TSPO, StAR, 5α-RI and 5α-RII 28 

days after injury. Our results suggest that in the acute phase after SCI, the increased 

expression of TSPO and 5α-RII may represent a protective endogenous response against 

tissue injury, which is not maintained in the chronic allodynic phase. PG may favor 

local steroidogenesis and the production of its reduced metabolites, which could 

contribute to the antiallodynic effects observed after PG treatment.  

 

Abbreviations 

 

Spinal cord injury (SCI), Central nervous system (CNS), Progesterone (PG), Control 

animals (CTL), Injured animals (HX), Injured animals that received daily injections of 

natural progesterone (HX+PG), Polymerase chain reaction (PCR), Cyclophilin (Cyc), 

Translocator protein (TSPO), Steroidogenic acute regulatory protein (StAr/STARD1), 

5α-reductase (5α-RI/II), 5α-dihydroprogesterone (5α–DHP), 3α,5α-

tetrahydroprogesterone (3α,5α-THP), allopregnanolone (ALLO). 
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1. Introduction 

 

 

In the spinal cord, as well as in other central nervous system structures, steroids can be 

synthesized either de novo from cholesterol or from circulating steroid hormones, that 

easily cross the blood-brain/spinal barrier and serve as precursors for 

neurosteroidogenic enzymes. Thus, steroids produced by the nervous system are 

referred to as “neurosteroids” (Baulieu and Robel 1990), while those acting in the 

nervous system, including those synthesized locally or in the peripheral glands (ovary, 
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testis and adrenal glands) and also synthetic steroids, are called “neuroactive steroids” 

(Paul and Purdy 1992, Schumacher et al. 2015). 

 

Among neurosteroids/neuroactive steroids, progesterone (PG) and its reduced 

metabolite 3,5-tetrahydroprogesterone (3,5-THP), also known as 

allopregnanolone (ALLO), exert a wide range of actions in the central nervous system, 

acting as physiological regulators of nervous function, as well as protective agents in 

pathological conditions (De Nicola et al. 2013, Melcangi et al. 2014, Schumacher et al. 

2014, Guennoun et al. 2015). In the recent years, an important area of research has been 

devoted to explore the role of PG and ALLO, either exogenously administered or 

endogenously synthesized, in the modulation of neuropathic pain (Giatti et al. 2015, 

Coronel et al. 2016a). 

 

Thus, PG administration has been found to prevent allodynia after injuries to the sciatic 

nerve (Coronel et al. 2011a, Dableh and Henry 2011), trigeminal nerve root (Kim et al. 

2012) or spinal cord (Coronel et al. 2011b), and eradicate allodynic and hyperalgesic 

symptoms in animals subjected to chemotherapy induced peripheral neuropathy (Meyer 

et al. 2010). In addition, ALLO administration has been shown to reduce mechanical 

and thermal hyperalgesia after sciatic nerve ligature (Pathirathna et al. 2005b), 

counteract diabetes-induced motor impairment and thermal hyperalgesia (Afrazi and 

Esmaeili-Mahani 2014) and suppress neuropathic symptoms evoked by antineoplastic 

drugs, such as vincristine (Meyer et al. 2010) or oxaliplatin (Meyer et al. 2011).  

 

In addition, it has been demonstrated that local PG and ALLO synthesis increases in the 

nervous system of animals with neuropathic pain, probably as an endogenous 

mechanism triggered to cope with the chronic pain condition (Mensah-Nyagan et al. 

2008, Mensah-Nyagan et al. 2009). The expression and/or activity of different 

steroidogenic enzymes increase in the spinal cord of animals that develop neuropathic 

pain after peripheral nerve injury, resulting in an up-regulation of the biosynthetic 

pathways leading to PG and ALLO production (Mensah-Nyagan et al. 2008, Mensah-

Nyagan et al. 2009). However, the spinal expression of steroidogenic regulatory 

proteins and enzymes has not been evaluated during the onset and development of SCI-

induced neuropathic pain.  
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Therefore, in this study we evaluated temporal changes evoked by the SCI in the 

expression of key components of the enzymatic pathways leading to PG and ALLO 

synthesis and correlated our findings with the presence of allodynic behaviors. We 

centered our studies on the 18kDa translocator protein (TSPO), previously known as 

peripheral benzodiazepine receptor (Papadopoulos et al. 2006) and the steroidogenic 

acute regulatory protein (StAR/STARD1) (King and Stocco 2011), which mediate and 

regulate the translocation of cholesterol from intracellular stores to the inner 

mitochondrial membrane, the rate limiting step for neurosteroidogenesis (Rone et al. 

2009), and on both isoenzymes of 5-reductase (5-R type I and II), the enzyme 

regulating the synthesis of PG reduced metabolites (Stoffel-Wagner 2003). 

Furthermore, since we have previously demonstrated that PG administration prevents 

both mechanical and thermal allodynia after SCI, we have also analyzed whether PG 

anti-allodynic effects could be related to changes in the expression of the regulatory 

proteins / enzymes under study.  

 

2. Methods 

 

 

2.1 Spinal cord injury 

All experimental procedures were reviewed and approved by the local Animal Care and 

Use Committee (Assurance Certificate Nº A5072-01) and the Ethical Committee from 

Instituto de Biología y Medicina Experimental (Buenos Aires, Argentina), and followed 

the Guide for the Care and Use of Laboratory Animals (National Institutes of Health). 

Care was taken to minimize animal discomfort and to limit the number of animals used. 

Male Sprague-Dawley rats (200-220 g), bred at the colony of the Instituto de Biología y 

Medicina Experimental, were deeply anesthetized with ketamine (50 mg/kg, i.p.) and 

xylazine (5 mg/kg, i.p.). In a group of rats, the spinal cord was exposed and unilaterally 

hemisected at thoracic T13 level (Labombarda et al. 2008, Coronel et al. 2011b, 

Coronel et al. 2014, Coronel et al. 2016b), as originally described by Christensen et al 

(Christensen et al. 1996). In sham-operated animals the spinal cord was exposed but not 

lesioned. Post-operative care included control of body temperature using an electric 

heating pad, and prophylactic antibiotic administration (cephalexine 20 mg/kg/day) 

during 5 days, starting immediately after surgery. Animals were monitored for eventual 

infections until they were euthanized either 1, 14 or 28 days after injury. 
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2.2 Progesterone administration 

Injured animals received daily subcutaneous injections of natural progesterone (Sigma, 

Saint Louis, MO, USA; P8783, 16 mg/kg/day; HX+PG) or vehicle (Ricine oil, Ewe, 

Sanitas, Buenos Aires, Argentina; HX) (Coronel et al. 2011b, Coronel et al. 2014, 

Coronel et al. 2016b). In PG-treated animals, the steroid was administered immediately 

after performing the lesion and once a day thereafter until the animals were euthanized, 

28 days after injury. We have previously tested this dose of PG in several animal 

models of nervous system injury (Labombarda et al. 2009, Coronel et al. 2011a, 

Coronel et al. 2011b, Coronel et al. 2014, Garcia-Ovejero et al. 2014, Coronel et al. 

2016b). In particular, this dose of PG has been shown to prevent mechanical and 

thermal allodynia after spinal cord (Coronel et al. 2011b, Coronel et al. 2014, Coronel et 

al. 2016b) and sciatic nerve (Coronel et al. 2011a) injuries. Sham-operated animals 

receiving oil were used as control animals (CTL).  

 

 

2.3 Assessment of pain behaviors 

Behavioral testing was performed by a blinded observer. The animals were tested 1 day 

before surgery, in order to obtain normal baseline values, and at different time points 

(days 7, 14, 21 and 28) after SCI or sham-operation, as previously described (Coronel et 

al. 2011b, Coronel et al. 2014, Coronel et al. 2016b). Only rats showing normal 

responses to mechanical and thermal stimulation before surgery were included in the 

experiments. Eight animals were included in each experimental group. They were 

placed in transparent testing chambers and allowed to acclimate for 15 min before 

testing.  

 

2.3.1 Mechanical allodynia 

Paw mechanical sensitivity was assessed by evaluating the response to normally 

innocuous mechanical stimuli using a series of 8 calibrated von Frey filaments (1, 2, 4, 

6, 8, 10, 15, 26 g, Stoelting, Wood Dale, IL, USA). Each filament was delivered three 

times with 5 s intervals. The lowest force at which application elicited at least two 

withdrawal responses (brisk paw withdrawal together with a nocifensive behavior such 

as attack to the stimulus, escape or vocalization) was taken as the mechanical response 

threshold. A paw withdrawal reflex obtained with 6 g or less was considered an 

allodynic response (Coronel et al. 2011b, Coronel et al. 2014, Coronel et al. 2016b). 
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Values shown in Fig 1a correspond to the mean  SEM. As previously reported, results 

were analyzed using the Friedman Repeated Measures of Analysis of Variance followed 

by Multiple Comparison Test (Coronel et al. 2011b, Coronel et al. 2014, Coronel et al. 

2016b). 

 

2.3.2 Cold allodynia 

Cold sensitivity of the hindpaw to acetone (Choi test) was quantified by paw withdrawal 

frequency (Choi et al. 1994). Thus, 100 l of acetone was applied to the plantar surface 

of the paw using a plastic tubule connected to a 1 ml syringe. Acetone was applied five 

times to each paw at intervals of at least 5 min. The number of brisk foot withdrawals 

accompanied by nocifensive behaviors (mentioned in the previous section) was 

recorded. If paw withdrawal was observed at least two times after acetone exposure, it 

was considered an allodynic response (Coronel et al. 2011b, Coronel et al. 2014, 

Coronel et al. 2016b). Values shown in Fig 1b correspond to the mean  SEM. As 

previously reported, results were analyzed using the Friedman Repeated Measures of 

Analysis of Variance followed by Multiple Comparison Test (Coronel et al. 2011b, 

Coronel et al. 2014).  

 

2.4 Tissue preparation for Real Time-Polymerase Chain Reaction (PCR) 

Either 1, 14 or 28 days after SCI, animals receiving PG or vehicle, as well as CTL 

animals, were deeply anesthetized with chloral hydrate (800 mg/kg, i.p.) and killed by 

decapitation. Spinal lumbar segments caudal to the injury site (L4-5) and equivalent 

regions from CTL animals were immediately removed and the dorsal spinal halves were 

dissected (Coronel et al. 2011b, Coronel et al. 2014, Coronel et al. 2016b). Tissues were 

frozen and stored at -70oC until gene expression studies were performed. Samples from 

the different experimental groups were run at the same time. 

 

2.5 Real Time-PCR 

Spinal dorsal halves were collected as described above (n=8 in each group). RNA was 

extracted using Trizol (Invitrogen, USA), as previously described (Coronel et al. 2011b, 

Coronel et al. 2014, Coronel et al. 2016b). Nucleotide sequences of forward (F) and 

reverse (R) primers used for amplification were: TSPO: F: CTT GCA GAA ACC CTC 

CTG GCA TC, R: CCA AGG GAA CCA TAG CCT CCT CTG (designed using the 
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Oligo Primer Analysis software version 6.54, Molecular Biology Insights Inc, Cascade, 

Colorado, USA); StAR: F: CTG CTA GAC CAG CCC ATG GAC, R: TGA TTT CCT 

TGA CAT TTG GGT TCC (Abatikuw et al. 2011); 5-RI: F: ACT GGG CAA CCT 

GCC TAA C, R: ATC AGA ACC GGG AAA ACC A (Munetsuna et al. 2009); 5-RII: 

F: CAG GAA GCC TGG AGA AGT CA, R: CAA TAA TCT CGC CCA GGA AA 

(Munetsuna et al. 2009). Cyclophilin (Cyc) F: GTG GCA AGA TCG AAG TGG AGA 

AAC, R: TAA AAA TCA GGC CTG TGG AAT GTG; accession number: 

NM_022536, was chosen as housekeeping gene and designed using the Oligo Primer 

Analysis software version 6.54 (Molecular Biology Insights Inc, Cascade, Colorado, 

USA). Relative gene expression was determined using Syber green master mix and the 

ABI PRISM 7500 sequence detection system (Applied Biosystems, Foster City, 

California, USA) (Coronel et al. 2011b, Coronel et al. 2014, Coronel et al. 2016b). The 

change in the target mRNA was calculated using the method describe by Pfaffl (Pfaffl 

2001) and expressed as fold-increase relative to control values. Eight animals were 

included in each experimental group and samples were run in triplicate. Data shown in 

Figs 2 and 3 correspond to the mean  SEM of mRNA levels relative to control values 

(CTL: sham-operated animals receiving oil). Statistical analysis was performed by 

applying Student t Test (Fig 2, a-c) or One-Way Analysis of Variance followed by 

Newman-Keuls post-hoc test (Fig 2, d). 

 

3. Results 

 

3.1 Behavioral evaluation of neuropathic pain: development of mechanical and cold 

allodynia after spinal cord injury, and effect of progesterone administration 

 

As previously observed, animals subjected to a spinal cord hemisection showed 

guarding behaviors and changes in the posture such as plantar flexion and toe-

clenching.  

 

After injury, both the ipsilateral and contralateral hindpaws showed a progressive 

decrease in mechanical withdrawal threshold (Fig 1a, p<0.001 vs CTL at day 14) and 

allodynic values were detected 21 and 28 days after injury (Fig 1a, p<0.001 vs CTL at 

both time points). Paw withdrawals were accompanied by active attention to the 

stimulus, abrupt head turning and attack, vocalization, and/or body reposturing, 
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indicating that noxious stimuli were detected supraspinally. These aversive behaviors 

and the allodynic responses were still observed at the endpoint of this study (day 28, Fig 

1a).  

 

When cold sensitivity was assessed, a similar behavioral pattern was obtained: there 

was a gradual and clear increase in the number of positive nociceptive responses in both 

hindpaws starting 14 days after injury (Fig 1b, p<0.001 vs CTL), with the highest 

number of allodynic responses detected at days 21 and 28 (Fig 1b, p<0.001 vs CTL in 

both cases). As described in the previous paragraph, paw withdrawals were 

accompanied by aversive behaviors, until the end of the study. 

  

In correlation with our previous reports (Coronel et al. 2016b), injured animals 

receiving PG did not develop mechanical allodynia (Fig 1a, p<0.001 vs HX at days 21 

and 28) and showed reduced sensitivity to cold stimulation (Fig 1b, p<0.05 vs HX at 

day 14, p<0.001 vs HX at day 21 and p<0.01 vs HX at day 28). 

 

 

 

 

3.2 Temporal changes in TSPO, StAR, 5α-RI and 5α-RII mRNA levels after spinal 

cord injury 

 

Injured animals showed an early increase in the expression of TSPO (Fig 2, p<0.05 

vs CTL at days 1 and 14) and 5α-RII (Fig 2, p<0.05 vs CTL at day 1, p<0.01 vs 

CTL at day 14). On the contrary, the mRNA levels corresponding to StAR and 5α-

RI were similar to those detected in CTL animals (Fig 2, p0.05 vs CTL for both 

molecules and at both time points).  

 

In the chronic phase (day 28), coinciding with the presence of allodynic behaviors, 

a significant decrease in the expression of 5α-RI (Fig 2, p<0.01 vs CTL) and 5α-RII 

(Fig 2, p<0.05 vs CTL) was observed, while TSPO and StAR mRNA levels 

remained similar to CTL values (Fig 2, p0.05 vs CTL for both molecules).  
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3.3 Effect of progesterone administration on TSPO, StAR, 5α-RI and 5α-RII mRNA 

levels in the chronic phase after spinal cord injury 

 

Twenty eight days after SCI, animals receiving PG showed a marked increase in the 

mRNA levels of TSPO (Fig 3, p<0.001 vs HX and CTL), StAR (Fig 3, p<0.05 vs 

HX and CTL), 5α-RI (Fig 3, p<0.01 vs HX) and 5α-RII (Fig 3, p<0.001 vs HX and 

CTL) in the spinal dorsal cord. Thus, at this time point, PG treatment induced 

TSPO and StAR up-regulation and counteracted the injury induced decrease in 5α-

RI and 5α-RII expression. 

 

 

4. Discussion 

 

 

The present study shows that: a) SCI induces an early increase in the spinal expression 

of TSPO and 5α-RII, and a significant decrease in the mRNA levels of 5α-RI and 5α-

RII in the chronic phase after injury, coinciding with the presence of allodynic 

behaviors; b) PG treatment results in a marked increase in the expression of TSPO, 

StAR, 5α-RI and 5α-RII in the chronic phase, likely favoring local steroidogenesis and 

the production of reduced metabolites such as ALLO, and prevents allodynia. 

 

Recent evidence shows that both PG and ALLO, either endogenously synthesized or 

exogenously administered, exert neuroprotective effects and reduce neuropathic pain-

associated behaviors in different animal models of pain. In fact, and as previously 

mentioned, several groups around the world, including ours, have demonstrated the 

efficacy of administering PG (Meyer et al. 2010, Coronel et al. 2011a, Coronel et al. 

2011b, Dableh and Henry 2011, Kim et al. 2012, Coronel et al. 2014) or ALLO 

(Pathirathna et al. 2005b, Meyer et al. 2010, 2011, Afrazi and Esmaeili-Mahani 2014) to 

alleviate neuropathic pain in experimental conditions. 

 

As well as in other steroidogenic tissues, biosynthesis of neurosteroids in the spinal cord 

begins with the translocation of cholesterol to the inner mitochondrial membrane, 

mediated by TSPO (Papadopoulos et al. 2006), a high-affinity drug- and cholesterol-

binding mitochondrial protein, and StAR (King and Stocco 2011), a hormone-induced 

mitochondria-targeted protein that initiates cholesterol transfer (Rone et al. 2009). 
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Cholesterol is then converted into pregnenolone, which is further reduced into PG. By 

the action of 5-R, PG can be converted into 5-dihydroprogesterone (5-DHP), which 

is reduced into 3,5-THP or ALLO (Stoffel-Wagner 2003). Thus, the reaction 

catalized by 5-R is crucial for the production of PG-reduced metabolites, 5-DHP and 

ALLO. Two isoforms of 5-R have been identified; in the spinal cord 5-RI and 5-

RII display distinct expression patterns (Patte-Mensah et al. 2004b).  

 

Recent studies have also reported that TSPO plays critical roles in various neurological 

diseases, including inflammatory and neuropathic pain (Rupprecht et al. 2010, Wei et 

al. 2013, Liu et al. 2014). A recent report suggests that the early TSPO up-regulation in 

the spinal cord and its subsequent activation reverts allodynia and hyperalgesia in rats 

with spinal nerve ligation (Wei et al. 2013). Moreover, the activation of this translocator 

protein and the consequent increase in neurosteroid formation have been partly 

attributed to the inhibition of chemokine-dependent astrocyte-to-neuron signaling and 

central sensitization (Liu et al. 2016). Furthermore, a current study has reported that 

thalamic brain levels of TSPO negatively correlate with clinical pain and circulating 

levels of the pro-inflammatory cytokine interleukin-6 in patients with chronic back pain, 

suggesting that TSPO exerts pain-protective/anti-inflammatory effects in humans, as 

predicted by animal studies (Loggia et al. 2015). 

 

In line with these previous findings, we have now shown that SCI also results in an 

early increase in the spinal expression of TSPO and 5α-RII, possibly resulting in higher 

local production of PG and its reduced metabolites. Although in this study we did not 

evaluate the spinal concentrations of neurosteroids, we have already demonstrated that 

PG and ALLO levels are increased in the spinal cord 75 hours after injury, without a 

significant increase in plasma (Labombarda et al. 2006). In addition, rat spinal tissue 

homogenates have been shown to be capable of converting cholesterol into various 

metabolites including PG and ALLO (Patte-Mensah et al. 2003, Patte-Mensah et al. 

2004a, Patte-Mensah et al. 2004b, Saredi et al. 2005), clearly indicating that the 

regulatory proteins / enzymes detected correspond to active forms. In relation to StAR 

expression, we did not detect any changes in its mRNA levels. However, since StAR 

activity is regulated through post-translational modifications (Duarte et al. 2014), we 

cannot exclude injury-induced changes in its steroidogenic activity.  
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An increase in the spinal expression and/or activity of other steroidogenic enzymes, 

such as P450 side-chain cleavage (Patte-Mensah et al. 2003, Patte-Mensah et al. 2004a), 

3β-hydroxysteroid dehydrogenase (Saredi et al. 2005) and 3-hydroxysteroid 

oxidoreductase (Meyer et al. 2008), has also been described in other experimental 

models of neuropathic pain (Mensah-Nyagan et al. 2008, Mensah-Nyagan et al. 2009). 

In addition, and confirming its local production, the spinal levels of PG (Saredi et al. 

2005) and ALLO (Patte-Mensah et al. 2004a) have been shown to be significantly 

increased after peripheral nerve injury.   

 

Interestingly, endogenous PG has been shown to decrease sensitivity to pain by 

increasing levels of endorphins and opioid receptors (Dawson-Basoa and Gintzler 1997, 

Dawson-Basoa and Gintzler 1998). In addition, PG administration is able to modulate 

the spinal expression of N-methyl-D-aspartate (NMDA) receptor subunits, protein 

kinase C gamma (PKC) (Coronel et al. 2011a, Coronel et al. 2011b), pro-inflammatory 

enzymes (Coronel et al. 2014) and cytokines (Coronel et al. 2016b), all key players for 

chronic pain generation, probably through genomic actions mediated by the classical 

intracellular progesterone receptor (PR). In contrast to PG (and 5-DHP), ALLO does 

not bind to PR and acts by modulating neurotransmitter receptors. It is well 

demonstrated that 3,5-reduced steroids like ALLO are potent endogenous positive 

allosteric modulators of the inhibitory functions of GABAA receptors (Belelli and 

Lambert 2005), whose activity is crucial in the regulation of pain. ALLO has also been 

found to enhance specific GABAA receptor subtypes (Pathirathna et al. 2005b, Peng et 

al. 2009) and to block neuronal low-voltage activated (T-type) Ca2+ channels 

(Pathirathna et al. 2005a). Thus, the early increase in the steroidogenic pathway may 

represent an endogenous protective mechanism tending to control pain development, 

which cannot be maintained in the chronic phase after SCI. Accordingly, and as shown 

in the present study, 28 days after injury TSPO mRNA levels return to control values, 

both isoforms of 5-R are down-regulated and animals develop mechanical and thermal 

allodynia.  

 

Interestingly, PG administration induces the up-regulation of TSPO, StAR, 5α-RI and 

5α-RII, probably increasing spinal cord steroidogenic activity and favouring the 
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production of reduced metabolites and thus alleviating pain behaviors. Our findings are 

in line with previous studies showing that early repeated PG administration increases 

spinal TSPO expression and activity and reduces pain in animals subjected to a 

peripheral nerve injury (Liu et al. 2014). At least in this experimental model, the 

modulation of TSPO expression seems to be mediated by PG reduced metabolites (Liu 

et al. 2014). Further, PG regulation of 5α-RII expression could be mediated by the 

interaction with its intracellular receptor PR, since the presence of PR response 

elements has been previously described in the promoter region of the 5α-RII gene 

(Matsui et al. 2002). Thus, after PG treatment, the steroid could be transcriptionally 

regulating 5α-RII expression in order to favor its own conversion into reduced 

metabolites for efficient pain control.  

 

Since the dorsal horn is fully equipped to metabolize PG to ALLO (Mensah-Nyagan et 

al. 2008) and, as we have shown here the generation of reduced metabolites seems to be 

favored after PG treatment (due to an increase in the expression of 5-RI and 5-RII), it 

is likely that when exogenously administered PG reaches the spinal cord it is converted 

to ALLO, which contributes to pain reduction via the allosteric modulation of GABAA 

receptors and the consequent reinforcement of inhibitory circuits.  

 

Thus, by favoring local steroidogenesis and the production of its reduced metabolites, 

PG could play a potential role in the modulation of neuropathic pain. 
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Figure legends 

 

Figure 1: Spinal cord injury induced the development of mechanical (a) and thermal (b) 

allodynia in both the ipsilateral and contralateral hindpaws. Progesterone administration 

was able to prevent these pain-related behaviors (a,b). The following symbols were used 

to represent p values: * p<0.05, ** p<0.01 and *** p<0.001 when comparing HX vs 

HX+PG, and + p<0.05, ++ p<0.01 and +++ p<0.001 when comparing HX vs CTL.  
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Figure 2: Relative mRNA levels corresponding to TSPO, StAR, 5α-RI and 5α-RII 

detected in the lumbar dorsal spinal cord 1, 14 and 28 days after spinal cord injury (a-c) 

or 28 days after spinal cord injury and progesterone administration (d). Note the 

significant increase in TSPO and 5α-RII expression detected 1 and 14 days after injury 

(a,b). Interestingly, in the chronic phase, TSPO returns to control values and there is a 

marked down-regulation of 5α-RI and 5α-RII (c). In animals receiving progesterone 

treatment, an increase in TSPO, StAR, 5α-RI and 5α-RII expression is observed, when 

compared to vehicle-treated injured animals. Symbols that represent p values: ns 

p>0.05, * p<0.05, ** p<0.01 and *** p<0.001. 

 

 


