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Abstract 16 

The entomopathogenic fungus Beauveria bassiana is able to grow on insect cuticle 17 

hydrocarbons as the sole carbon source, inducing several enzymes involved in alkane 18 

assimilation and concomitantly increasing virulence against insect hosts. In this study, we 19 

describe some physiological and molecular processes implicated in growth, nutritional 20 

stress response, and cellular alterations found in alkane-grown fungi. The fungal cytology 21 

was investigated using light and transmission electron microscopy (TEM) while the surface 22 

topography was examined using atomic force microscopy (AFM). Fungal hydrophobicity 23 

was also measured on the cell surface. Additionally, the expression pattern of several genes 24 

associated with oxidative stress, peroxisome biogenesis, and hydrophobicity were analysed 25 

by qPCR. We found a novel type of growth in alkane-cultured B. bassiana similar to 26 

mycelial pellets described in other alkane-free fungi, which were able to germinate and 27 

produce viable conidia in media without a carbon source and to be pathogenic against 28 

larvae of the beetles Tenebrio molitor and Tribolium castaneum. Optical microscopy and 29 

TEM showed that pellets were formed by hyphae cumulates with high peroxidase activity, 30 

exhibiting peroxisome proliferation and an apparent surface thickening. Alkane-grown 31 

conidia appeared to be more hydrophobic and cell surfaces displayed different topography 32 

than glucose-grown cells, as it was observed by AFM. We also found a significant 33 

induction in several genes encoding for peroxins, catalases, superoxide dismutases, and 34 

hydrophobins. These results show that both morphological and metabolic changes are 35 

triggered in mycelial pellets derived from alkane-grown B. bassiana. 36 

Keywords: entomopathogenic fungi, hydrocarbon degradation, hydrophobicity, peroxins. 37 
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Introduction 38 

Entomopathogenic fungi do not require any specialized mode of entry to invade 39 

their insect hosts; they usually start the infection cycle by penetrating through the insect 40 

epicuticle. This outermost cuticle layer is composed by lipids, mostly aliphatic 41 

hydrocarbons or alkanes with both straight-chain and methyl-branched, usually between 20 42 

to more than 40 carbons (Pedrini et al., 2007). The ability of entomopathogenic fungi to 43 

degrade insect hydrocarbons and utilize them for energy production and for the 44 

biosynthesis of cellular components was first shown in Beauveria bassiana and 45 

Metarhizium anisopliae (Napolitano and Juárez, 1997). In addition, alkane-grown B. 46 

bassiana was more virulent than glucose-grown fungi by producing either higher insect 47 

mortality or lesser mean lethal time against different hosts (Crespo et al. 2002; Pedrini et al. 48 

2009). Thus, alkane degradation by B. bassiana represents a key metabolic pathway related 49 

to the insect pathogenic nature of the fungus. However, growth on alkanes causes major 50 

changes in fungal metabolism (Crespo et al., 2000) and a scenario of oxidative stress is 51 

caused by the accumulation of reactive oxygen species, which is successfully overcome by 52 

the induction of antioxidant genes and enzymes (Huarte-Bonnet et al., 2015). Moreover, the 53 

spore yields in alkane-grown fungi are usually lower than those obtained in fungi grown in 54 

rich media (Napolitano and Juárez, 1997), impairing the achievement for acceptable mass 55 

production in industrial resources.  56 

Filamentous fungi often grow in liquid cultures exhibiting a plethora of 57 

morphological structures, e.g. three-dimensional aggregates ranging from loose clumps of 58 

mycelia to dense pellets. Pellet growth seems favorable for the production of several 59 

biotechnological products, and the optimizations of pellets formation are constantly revised 60 
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(Wucherpfenning et al., 2010). In this regard, cell aggregation is dependent on several 61 

cultivation conditions like the initial particle concentration, the hydrodynamic conditions, 62 

and the pH value, among other factors (Grimm et al., 2005a). As far as we know, there are 63 

no reports about pellet formation in alkane-grown fungi. The aim of the current study was 64 

to characterise a novel type of cellular growth produced in alkane-cultured B. bassiana, 65 

similar to mycelial pellets described in other filamentous fungi. We described an oxidative 66 

stress scenario associated with peroxidase activity and peroxisome proliferation, the same 67 

as cell surface alterations in alkane-grown B. bassiana. 68 

 69 

Materials and methods 70 

Cultivation of fungi  71 

Fungal cultivation and inoculants preparation 72 

Beauveria bassiana strain GHA was routinely cultured and maintained on potato 73 

dextrose agar (PDA) (BD Difco, Sparks, USA). Conidia harvested from this medium were 74 

suspended in 0.01% Tween 80 in sterile distilled water, vortexed for approximately 3 min, 75 

and filtered through a 75 µm sieve to remove debris. These conidial suspensions were 76 

adjusted in a Neubauer chamber to 1 × 107 conidia ml-1, and were used to inoculate 77 

complete liquid medium (CM) flasks and incubated at 26ºC for 2 days with aeration (180 78 

rpm). CM is composed by 0.4 g KH2PO4, 1.4 g Na2HPO4, 0.6 g MgSO4.7H2O, 1.0 g KCl, 79 

0.7 g NH4NO3.7H2O, 10 g glucose, and 5 g yeast extract in 1,000 ml of distilled water. 80 

Fungi  were harvested by centrifugation for 20 min at 7200×g, washed with sterile water, 81 

weighted and used as initial inoculums to grow under the same conditions for additional 3, 82 
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5 and 7 days in both CM and minimal liquid medium (MM) supplemented with n-83 

hexadecane (MM-C16). MM is composed of CM without the glucose and yeast extract, and 84 

MM-C16 is MM supplemented with n-hexadecane (Sigma-Aldrich, USA) (C16, 1% final 85 

concentration) as previously described (Pedrini et al., 2010).  86 

Conidia suspensions were inoculated in CM flasks and incubated at 26ºC for 2 days 87 

with aeration (180 rpm). Fungi were harvested and grown under the same conditions for 88 

additional 3 and 7 days in CM and MM-C16. Mycelia and conidia (referred from now on as 89 

biomass) were obtained by pellet centrifugation for 20 min at 7200×g. The remaining 90 

fungal cells that were found in close contact with the alkane interface in the supernatant 91 

were isolated from the media culture by filtration and are referred from now on as mycelial 92 

pellets. All cell samples were washed with sterile water. At each time period, pH was 93 

measured on the remaining media, and humid biomass was weighted. Humid biomass ratio 94 

was calculated as humid final biomass/initial inoculum mass. 95 

Microbial adhesion to hydrocarbons (MATH) assay 96 

Cell surface hydrophobicity was determined as Holder et al. (2007). Briefly, conidia 97 

obtained in CM and MM-C16 after 3, 5, and 7 days were washed in PUM buffer (per litre: 98 

22.2 g K2HPO4, 7.26 g KH2PO4, 1.8 g urea, 0.2 g MgSO4. 7H2O, final pH 7.1). Fungal cell 99 

suspensions were adjusted to OD470 0.4 and dispensed into acid-washed glass tubes. 100 

Hexadecane was then added to each tube and samples were vortexed three times for 30 s 101 

each. The tubes were then incubated at 4ºC for 10 min and after removal of the n-102 

hexadecane solid phase the density of the resultant cell suspension determined in a 103 

spectrophotometer at 470nm. The hydrophobic index was calculated using the following 104 
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equation: (A470, control-A470, hexadecane treated)/(A470, control). Four biological replicates with five 105 

repetitions each were measured.  106 

Microscopy images 107 

For optical and transmission electron microscopy (TEM) images, seven day cultures 108 

from CM, MM-C16, and mycelial pellets were used. Fresh samples were observed with a 109 

Nikon eclipse e200 optical microscope (Nikon Corp., Japan). For TEM, samples were 110 

washed and fixed in glutaraldehyde 2% for 2 h with soft vacuum, then washed three times 111 

with phosphate buffer (pH 7.2-7.4). Postfixation was performed with 1% osmium tetroxide 112 

at 4ºC for 1 h, followed by dehydration with a series of alcohols in a vacuum chamber. 113 

Samples were finally infiltrated with epoxy resin and thin sections of approximately 70 nm 114 

were cut. TEM observation was made in a JEM 1200 EX II (JEOL Ltd., Japan). For 3,3-115 

diaminobenzidine (DAB) (Sigma-Aldrich, USA) staining, an additional staining overnight 116 

with DAB was included in both fresh and fixated samples with glutaraldehyde 2%. In order 117 

to characterise the cell topography of fungi grown on CM and MM-C16, atomic force 118 

microscopy (AFM) images from 5 d conidia were obtained in air, using a MultiMode 119 

Scanning Probe Microscope (Veeco, USA) equipped with a Nanoscope V controller 120 

(Veeco).  All measurements were obtained with Tapping® mode, using probes doped with 121 

silicon nitride (RTESP, Veeco with tip nominal radius of 8-12 nm, 271-311 kHz, force 122 

constant 20-80 N/m). Typical rate scanners were 1Hz. Fungal cells were placed on 0.22 µm 123 

pore-size Millipore filters and air-dried before examination.  124 

Mycelial pellets viability and pathogenicity 125 
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Sporulation and viability of 7 d mycelial pellets were assessed as follows: fungal 126 

propagules were placed in Petri plates and held for 5 d at 4ºC in a desiccator with activated 127 

silica gel until moisture content was reduced to ≤ 5% (w/w). Then, 30 mg of dried pellets 128 

were cultured in agar-agar media with ampicillin for 14 d at 26ºC, growth was monitored 129 

daily and conidia produced were harvested with sterile water. Conidial production from the 130 

suspension was determined with a Neubauer chamber, calculated as total conidia/ initial 131 

dried pellet mass. To establish conidial viability, the suspension was also used to inoculate 132 

CM-agar plates and germination was monitored and calculated after 24 h at 26ºC. For each 133 

replicate, 300 conidia were studied, and germination was calculated as 100 × germinated 134 

conidia/total conidia. For these tests, five replicates were done.  135 

For pathogenicity assays, three groups of 10 larvae of each T. castaneum and T. 136 

molitor were placed in sterile plates containing a mixture of fresh 7 d mycelial pellets and 137 

humid vermiculite, prepared as follows: 0.325 g of mycelial pellets were placed in a sterile 138 

plate with 1.5 ml of sterile water, then 1.75 g of sterile vermiculite was added and mixed 139 

gently with a sterile spatula. Control plates were similarly prepared without the mycelial 140 

pellets. Beetles were maintained at 26ºC and 70% RH. Mortality was checked every three 141 

days and all dead larvae were removed after each count. Afterward, dead beetles were 142 

washed in 70% ethanol for 30 s, rinsed in sterile distilled water for 2 min, allowed to dry, 143 

and then placed in individual humid chambers at 25ºC to confirm fungal infection. The 144 

experiment was repeated two more times. Mortality data were corrected for control 145 

mortality using the Abbott’s equation (Abbott, 1925). 146 

Gene expression analysis  147 
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Total RNA was extracted employing the RNAeasy Plant Mini kit (Qiagen, 148 

Germany), including an on-column DNA digestion step (Qiagen). RNA samples were 149 

quantified with a Nanodrop spectrophotometer (Thermo, USA), and the integrity was 150 

assessed on a 1% (w/v) agarose gel. Two-step real-time polymerase chain reaction (RT-151 

PCR) was carried out with iScript cDNA Synthesis Kit and iQ SYBR Green Supermix 152 

(Bio-Rad, USA). Amplification was performed in an StepOne Plus equipment (Applied 153 

Biosystems, USA) employing 20 ng reverse transcribed total RNA for each sample. 154 

Primers corresponding to oxidative stress markers Bbsod1, Bbsod2, Bbsod3, BbcatA, 155 

BbcatB, BbcatC, BbcatD, BbcatP, Bbgpx and Bbgst, peroxisome biogenesis genes Bbpex5, 156 

Bbpex7, Bbpex14/17 and Bbpex19, and hydrophobicity related genes Bbhyd1 and Bbhyd2 157 

were designed using Gene Runner program. In order to confirm that only single products 158 

were amplified, a temperature-melting step was then performed. The calibration curve 159 

method was used for the analysis of data obtained from the RT-PCR system, with gamma 160 

actin (Bbact) as the housekeeping gene. This gene was selected after a validation test with 161 

geNorm algorithm for several commonly used housekeeping genes; i.e., Bb28, BbcypA, 162 

Bbtub, BbCrza, Bbact and Bbgpd using Qbaseplus software (https://www.qbaseplus.com). 163 

Four independent biological replicates were tested, with technical duplicates for each 164 

sample. The relative expression ratio of each target gene was calculated with ∆∆Ct 165 

approach in MM-C16 cells and mycelial pellets, using CM cells as control. Primers used, 166 

PCR efficiencies, and putative functions of the proteins encoded are listed in Table 1.  167 

Statistical analysis 168 
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Differences among means were determined by two-way analysis of variance 169 

(ANOVA) followed by the Tukey posttest, using GraphPad Prism (GraphPad Software 170 

Inc., San Diego, CA). 171 

 172 

Results 173 

Fungal growth on hydrocarbons 174 

After three days of culture with vigorous agitation, several macroscopic, spherical, 175 

non-uniform size aggregates appeared in C16-added MM (Fig. 1A). These aggregates were 176 

found in close contact with the hydrocarbon phase (they could not be isolated from the 177 

aqueous phase by centrifugation) but were not found in CM in the same growing 178 

conditions. Humid biomass (fungal cells excluding the mycelial pellets) and pH of the 179 

media were monitored and results are shown in Table 2. In all cases, biomass ratio 180 

(calculated as humid final mass/initial inoculum mass) was significantly lower (p < 0.05) in 181 

MM-C16 than in CM. pH behavior appeared to be inverted for minimal and complete 182 

cultures; cell-free MM-C16 had a decreased but not significant tendency in pH over days, 183 

whereas cell-free CM increased pH significantly (p < 0.01). 184 

Microbial adhesion to hydrocarbons (MATH) assay 185 

Conidia from CM and MM-C16 cultures were isolated after 3, 5, and 7 days. The 186 

hydrophobic index (HI) for all samples is shown in Fig. 2. The HI from CM conidia 187 

decreased from 0.62 (day 3) to 0.25 (day 7) (p < 0.001). On day 3, the HI was significantly 188 
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higher (p < 0.05) in CM conidia than in MM-C16 conidia. On the contrary, on day 5 the HI 189 

was significantly higher (p < 0.01) in MM-C16 conidia than in CM conidia.  190 

Microscopy images 191 

After observation by optical microscopy, the spherical aggregates showed to be 192 

formed by hyphae cumulate. Optical microscopy showed that the spherical aggregates are 193 

formed by hyphal cumulates (Fig. 1B). Visible n-hexadecane droplets were found 194 

surrounding the pellet surface (Fig. 1C). Alkane-grown mycelial pellets were also stained 195 

with DAB, a chemical used for determining peroxidase activity, which is usually employed 196 

as peroxisome marker (Fahimi, 2017). The hyphal cumulates appeared strongly stained, 197 

different from hyphae close to the aggregate borders, which showed lower staining 198 

reaction. (Figs. 1D, E).  199 

Alkane-grown mycelial pellets were also processed and observed by TEM, the same 200 

as fungal conidia and mycelia. The preparative section cuts from mycelial pellets were 201 

previously analysed by optical microscopy (Fig. 3A), where spheres looked like low dense 202 

clusters of fungal cells that might contain other compounds, like hydrocarbons, immersed 203 

in their structure. In the fungal cells forming the hyphal aggregates, TEM images showed 204 

surfaces with an irregular comb-like form facing the cytoplasm and small vesicles (Fig. 205 

3B), the same as an apparent surface thickening (̴ 0.36 µm) compared to MM-C16 (̴ 0.15 206 

µm) (Fig. 3C) and CM cells (̴ 0.11 µm) (Fig. 3D). Images from DAB stained mycelial 207 

pellets revealed higher peroxidase activity, visualized as small black dots due to DAB 208 

reaction with H2O2, inside the cells and also in cellular interconnections; several 209 

peroxisomes and clear hairpin-like structures in the cell surface were also observed (Figs. 210 
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3E, F). On the contrary, DAB staining CM cells revealed lower peroxidase activity, mainly 211 

found in vacuoles, fewer or not clear mature peroxisomes and smooth cell surfaces (Figs. 212 

3G, H). 213 

AFM images were obtained for CM and MM-C16 conidia from 5-day cultures, 214 

showing distinctive differences on cell surfaces. CM conidia displayed irregular forms and 215 

different and variable diameters (between 1.5 and 5.4 µm) (Figs. 4A, C). On the contrary, 216 

MM-C16 conidia looked like a spherical form, smaller, and homogeneous (between 0.9 and 217 

2.5 µm) (Figs. 4B, D). Also, CM conidia showed distinctive topographical characteristics 218 

with deep and rough edges, whereas MM conidia showed a more uniform structure (Figs. 219 

4E, F). 220 

Mycelial pellets viability and pathogenicity 221 

Dried mycelial pellets were cultured in agar-agar plates. Hyphal growth was visible 222 

after two days and sporulation started on day 6. At day 14, conidia were harvested and 223 

counted. Conidial production varied from 1 × 109 to 5 × 109 conidia per gram of dried pellet 224 

and germination in CM plates was 99.7%. Pathogenicity bioassays were done with fresh 7 225 

d mycelial pellets and results are shown in Table 3. At day 8, T. castaneum mortality was 226 

67.3 ± 13.1 % mortality in all replicates, whereas T. molitor reached 96.7 ± 1.9 % at day 8. 227 

These results showed that mycelial pellets are formed by active fungal cells, pathogenic 228 

against beetle larvae, which can grow without an external carbon source producing viable 229 

conidia.  230 

Gene expression analysis 231 
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Antioxidant stress-marker genes displayed different expression patterns in alkane-232 

grown mycelial pellets (Fig. 5A). For the superoxide dismutase family, Bbsod1 was 233 

induced on day 3 (6.1-fold induction), but not as significantly as on day 7. In contrast, 234 

Bbsod3 was induced on day 3 and day 7 (1.7- and 4.9-fold induction, respectively). 235 

However, Bbsod2 was not induced in the conditions tested. For the glutathione system, 236 

Bbgst showed little induction (3.4- and 1.8-fold on day 3 and day 7, respectively), and 237 

Bbgpx expression was reduced on day 3 (0.7-fold) and induced at day 7 (2.5-fold). For the 238 

catalase family, Bbcatb (4.9-fold expression at day 3), Bbcatc (4.2- and 4.7-fold on day 3 239 

and day 7, respectively) and Bbcatp (14.8-fold and 4.3-fold on day 3 and day 7, 240 

respectively) were induced in alkane cultures. Moreover, the peroxisomal-protein encoding 241 

gene Bbcatp was significantly induced (p < 0.01) on day 3 compared with day 7.  242 

In order to study the expression pattern of genes involved in the peroxisomes 243 

biosynthesis pathway, several genes encoding for PEX proteins were also measured by 244 

qPCR (Fig. 5B). Some pex genes were induced in mycelial pellets, as follows: Bbpex7 (2.5-245 

fold expression on day 3), Bbpex14/17 (1.9-fold and 4.5-fold on day 3 and 7, respectively) 246 

and Bbpex19 (2.8-fold and 3.9-fold on day 3 and 7, respectively). In contrast, Bbpex7 and 247 

Bbpex5 were not induced on day 7, and at both time periods, respectively.  248 

To study candidate genes involved in cell surface hydrophobicity, hydrophobin 249 

genes were measured in mycelial pellets and MM-C16 biomass, using CM biomass as 250 

control (Fig. 5C). Although Bbhyd1 and Bbhyd2 genes were not induced in mycelial pellets, 251 

both genes were strongly induced on day 3 and day 7 in MM-C16 biomass. The transcripts 252 

levels of Bbhyd1 were 22.8-fold induction and 5.8-fold induction on day 3 and day 7, 253 

respectively. For Bbhyd2, the expression level was 74.1-fold induction on day 3, and 13.9-254 
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fold induction on day 7. Thus, gene expression for Bbhyd2 at day 3 was significantly higher 255 

(p<0.001) than on day 7.  256 

 257 

Discussion 258 

A novel type of growth was described in B. bassiana cultured in hexadecane-259 

supplemented liquid minimal media, consisting in hyphal aggregates similar to mycelial 260 

pellets found in other filamentous fungi (Grimm et al., 2005a; Metz and Kossen, 1977). 261 

However, B. bassiana pellets were found only in alkane-grown fungi but not in glucose-262 

grown cells. These complex structures resulted to be stable, spherical aggregates, formed 263 

by branched and partially intertwined hyphae networks that were able to germinate and 264 

produce viable conidia without an external carbon source. Preliminary pathogenity assays 265 

showed that after one week, these propagules caused the death of mealworms and red flour 266 

beetle larvae. Apart from the mycelial pellets development, no significant increment was 267 

recorded in MM-C16 biomass during the entire incubation period; in contrast to CM 268 

cultures, where biomass was more than 4 times higher than the initial inoculums. It has 269 

been already reported that B. bassiana is capable of growing on media supplemented with 270 

hydrocarbons; moreover, it was established that n-hexadecane was the preferred substrate 271 

among several hydrocarbons tested (Huarte-Bonnet et al., 2017; Pedrini et al., 2010). Thus, 272 

these results indicate that alkane-grown B. bassiana is actually under active division and 273 

growth, but these new cells are forming mycelial pellets in the alkane interface and are not 274 

part of the initial biomass.  275 
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Differences in both hydrophobic cell surface indexes and pH pattern were found in 276 

conidial cells isolated from CM and MM-C16 biomass. AFM images also showed 277 

topographical differences between CM and MM-C16 conidia. It is clear that the presence of 278 

n-hexadecane is triggering different cell responses in order to uptake this hydrophobic 279 

substrate. Although it is well established how B. bassiana degrade cuticular hydrocarbons 280 

(Pedrini et al., 2007; 2010; 2013), little is known about the mechanisms involved in the 281 

uptake of alkanes by entomopathogenic fungi. It is believed that different compounds are 282 

secreted or anchored to the fungal cell surface to internalize those carbon sources, as shown 283 

by TEM images in both conidia (Pedrini et al., 2007) and mycelial pellets (this study).  284 

The present study also showed different pH patterns between CM and MM-C16 285 

remaining liquid media. In this regard, secretion of acid compounds could be responsible 286 

for the acidification of the media observed in MM-C16 cultures. Oxalic acid was reported 287 

to be secreted by B. bassiana as a virulence factor against ticks, and its secretion was 288 

dependent on the media used (Kirkland et al., 2005). Also, alkane-assimilating 289 

microorganisms are known to secrete acid biosurfactants to facilitate hydrocarbon uptake; 290 

e.g., acidic sophorolipids, free fatty acids, among others (Kitamoto et al., 2002). Thus, it 291 

could be expected that similar compounds might be found in the remaining media of 292 

alkane-grown B. bassiana. Differential pH in the remaining media and cell surface 293 

hydrophobicity might indirectly shed light to possible mechanisms of secretion and cell 294 

surface adaptation to hydrocarbon growth that is still to be discovered. It was also 295 

previously shown that B. bassiana, neither M. anisopliae nor Aspergillus niger, strongly 296 

acidified the liquid minimal media supplemented with alkanes (Huarte-Bonnet et al., 2017). 297 

As pellet formation is highly regulated by pH in other filamentous fungi (Dynesen and 298 
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Nielsen, 2003; Glazebrook et al., 1992; Grimm et al., 2005b; Ryoo and Choi, 1999), pH 299 

values might be either the cause or the consequence to pellet formation in alkane-grown B. 300 

bassiana. Also, hydrophobins might play a role in hydrocarbons uptake. In this regard, we 301 

found that though no induction was observed for hyd genes in mycelial pellets, MM-C16 302 

biomass showed high expression of both Bbhyd1 and Bbhyd2. However, hydrophobins play 303 

a key role in pellet formation in A. niger, and hydrophobic interactions in the cell surface 304 

were reported to favor the formation and stability of these aggregates (Dynesen and 305 

Nielsen, 2003). These results suggest that although hyd genes are highly induced in B. 306 

bassiana biomass immediately after contact with hydrocarbons, the mycelial pellets derived 307 

from those cells did not express these genes since they might already have these proteins in 308 

their surfaces. However, further assays to specifically detect hydrophobins in both fungal 309 

cells are required to confirm this hypothesis. 310 

An antistress response was triggered in mycelial pellets during growth on alkanes, 311 

in coincidence with previous results obtained for MM-C16 biomass grown in similar 312 

culture conditions (Huarte-Bonnet et al., 2015). In mycelial pellets, at least one gene of 313 

each antistress response family was up-regulated at each time incubation period. Thus, 314 

catalase and superoxide dismutase gene induction could also be used as clues for reactive 315 

oxygen species localization, i.e., Bbsod1 encodes for a Cu/Zn-dependent superoxide 316 

dismutase localized in the cytoplasm (Xie et al., 2010) and Bbsod3 encodes for a 317 

mitochondrial Mn-isoform (Xie et al., 2012), whereas Bbcatb, Bbcatc, and Bbcatp encode 318 

for cytoplasmic, secreted, and peroxisomal catalases, respectively (Wang et al., 2013). In 319 

fact, the peroxisomal isoform was the most induced gene from the antistress response 320 

system in mycelial pellets. However, gene expression data is not sufficient to fully 321 
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comprehend if the observed upregulation is useful to protect cells against potential 322 

antagonists (both biotic and abiotic) or if it is a result to cells differentiation into mycelial 323 

pellets, or both. Targeted single-gene knockout strategies and/or enzymatic studies in 324 

subcellular fractions will be needed to confirm this point.  325 

Peroxisomes are known to be the organelles where the last hydrocarbon degradation 326 

reactions take place in B. bassiana (Pedrini et al., 2007). The biogenesis of peroxisomes 327 

involves the action of several proteins, named peroxins, which are encoded by pex genes 328 

(Li et al., 2016; Smith and Aitchison, 2013). In this study, Bbpex7, Bbpex14/17, and 329 

Bbpex19 were induced after 3 and/or 7 days of culture. In addition to gene expression 330 

patterns, mycelial pellets staining reaction with DAB gave strongly brown stained cells 331 

inside the pellet structure, but also inside the individual cells, indicating high 332 

catalase/peroxidase activity and peroxisomal proliferation. Moreover, the high number of 333 

small black dots found inside alkane-grown cells and the induction of pex genes are 334 

suggesting that the peroxisome biogenesis pathway is being activated under this growth 335 

condition, as it was reported for alkane-grown yeast (Fukui and Tanaka, 1979; Monosov et 336 

al., 1996; Smith and Aitchison, 2013; Tanaka and Ueda, 1993). 337 

We conclude that two cellular populations are present in fungi grown in liquid 338 

minimal media supplemented with n-hexadecane. Both fungal propagules have different 339 

molecular and physiological characteristics between them and also compared to cells grown 340 

in rich media. In this sense, several unknown direct or indirect responses to hydrocarbon 341 

supplementation might be acting as triggers to initiate pellet formation since they are not 342 

present in rich media in the same incubation conditions. For other filamentous fungi, pellets 343 

formation in liquid cultures are preferred for the non-vicuos rheology of the broth, better 344 
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mass transfer and easier pellet separation than with mycelial cultures (Wucherpfenning et 345 

al., 2010). In alkane-grown fungi, hydrocarbon droplets in liquid media might be acting as 346 

initial nucleation for pellets formation since these structures might assure fungal cells of an 347 

easy access to the hydrophobic carbon source in the interface. However, additional studies 348 

are needed to better understand the relationship between fungal metabolic adaptations in 349 

hydrocarbon-supplemented cultures and pellet formation.  350 

 351 
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Figure legends 451 

Fig. 1. A) Mycelial pellets in aqueous solution in a test tube. B) Phase-contrast microscopy 452 

of an isolated pellet formed by hyphae cumulates (40× magnification). C) Hexadecane 453 

droplets surrounding the mycelial pellet (10× magnification). D) Mycelial pellet stained 454 

with DAB (10× magnification). E) Mycelial pellet stained with DAB (20× magnification).  455 

 456 

Fig. 2. Cell surface hydrophobicity of CM and MM-C16 conidia after 3, 5 and 7 days of 457 

culture. * (p< 0.05), ** (p < 0.01).  458 

 459 

Fig. 3. A) Optical observation of a semi-thin section of a mycelial pellet showing the 460 

hyphal cumulate structure (40× magnification). B) Ultrastructure of mycelial pellets at 461 

50,000× magnification. C) Ultrastructure of MM-C16 biomass at 30,000× magnification. 462 

D) Ultrastructure of CM biomass at 30,000× magnification. E), F) Ultrastructure of 463 

mycelial pellets at 30,000× magnification stained with DAB. The reaction appears as black 464 

dots (white arrow), and several peroxisomes are visible. Hairpin-like structures are found in 465 

the cell surface (black arrow). G), H) Ultrastructure of CM biomass at 30,000× 466 

magnification stained with DAB. The reaction is positive mainly in vacuoles, and fewer or 467 

none peroxisomes are visible. V: vacuole. N: nucleus. M: mitochondrium. P: peroxisome.  468 

  469 
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Fig. 4.  Atomic force microscopy images of MM-C16 conidia (A, C, E) and CM conidia 470 

(B, D, F) obtained in tapping mode.  Images have a resolution of 512 x 512 pixels.  The 471 

height is expressed in color scale (right bar).   472 

 473 

Fig. 5. Gene expression ratios of 3 days and 7 days of s of B. bassiana grown in MM-C16 474 

or CM (control).  A) Oxidative stress marker genes in mycelial pellets. B) Peroxin genes in 475 

mycelial pellets. C) Hydrophobin genes in mycelial pellets (MP) and MM-C16 biomass. 476 

Error bars represent standard errors of four independent assays. Dashed line showed a 477 

relative expression ratio = 1. **(p< 0.01), *** (p < 0.001). 478 
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Table 1. Oligonucleotides used in this study. 

Name Forward primer Reverse primer Effici
ency 
(%) 

R2 Name/Function Reference 

Bbact ATGGAGGAAGAAGTTGCTGC ACACGGAGCTCGTTGTAGAA 112.7 0.992 γ-Actin  Zhou et. al. 
(2012) 

Bbsod1 ACAACACCAACGGCTGCACC ACGGCCAACAACGCTGTGAG 116 0.997 Cu/Zn- superoxide 
dismutase / O2

−  
scavenging 

Forlani et. al. 
(2014) 

Bbsod2 CCAGTGTTTGGCATTGACATG TCAGCCGTCTTCCAGTTGATG 105.6 0.996 Mn-superoxide 
dismutase / O2

−  
scavenging 

Forlani et. al. 
(2014) 

Bbsod3 ACATCAATCACACTCTCTTCTG GCGTTGGTCTGCTTCTTG 103.1 0.992 Mn-superoxide 
dismutase / O2

−  
scavenging 

Forlani et. al. 
(2014) 

Bbgpx CAAGGTCGTCCTCGTCGTCAAC CTTGTCGCCATTGACCTCCACC 122.5 0.994 Glutathione 
peroxidase /  GSH 
protection system 

Forlani et. al. 
(2014) 

Bbgst TCTTGTAGCCAGCCCTCCATCG AGAGATGTGGTCGCGGAACGA 115.5 0.969 Glutathione-S-
transferase /  GSH 
protection system 

Forlani et. al. 
(2014) 

Bbcata GAAAGCCGCGCAAGTGAAAG TCTCTGGCAAAGACATCCAG 107.2 0.993 Spore-specific 
catalase/ H2O2 

scavenging 

Forlani et. al. 
(2014) 

Bbcatb GAAGACGCCCATGTTTGTTCG AAAGTTGCCCTCATCGGTATAGC 117.3 0.987 Secreted catalase/ 
H2O2 scavenging 

Forlani et. al. 
(2014) 

Bbcatc TGCTGGACGATGTGTCTGAC CACGCACCGTATCGCTAGAG 108.6 0.991 Cytoplasmic 
catalase/ H2O2 

scavenging 

Forlani et. al. 
(2014) 

Bbcatd GCGCTCGCAGTGACTGTAC CTAGCACGGCCCTGTATAATGG 113.3 0.998 Secreted 
peroxidase/catalase 
/ H2O2 scavenging 

Forlani et. al. 
(2014) 

Bbcatp TGTACTGGGGCTCCGAACC ATGAGACCTGTGTAGCGTTAGC 105.7 0.967 Peroxisomal 
catalase/ β-

oxidation pathway 

Forlani et. al. 
(2014) 

Bbpex5 AATGCCGGGCCGAATATGC CAGGCTGGCTGTTGAAATCGTG 130.2 0.991 Peroxisomal This study 
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biogenesis factor 5/ 
PTS1 import 

receptor 
 

Bbpex7 TCGCTTCGGCTGCCAATTTC TGCGACAATGAGCTGGTTCTCG 111.1 0.993 Peroxisomal 
biogenesis factor 7/ 

PTS2 import 
receptor 

 

This study 

Bbpex14/
17 

TCGCCAACCTCGTCAGACACTG CCTCGACGCCCTTTGACTTGAG 114.3 0.991 Peroxisomal 
biogenesis factor 
14/17/ Receptor 
docking complex 

This study 

Bbpex19 AAGTTCCCTGTCTGGCTGTCGG CCGGCAAAGGCTTCTTGTGC 114.3 0.993 Peroxisomal 
biogenesis factor 

19/ soluble 
chaperone and 

receptor 

This study 

Bbhyd1 CACCATGGTGGAAAGGATCTGCAC CCGAGAAGGTGGGAAAGAAGACCA 108.5 0.996 Hydrophobin 1 / 
cell surface 

hydrophobicity 

This study 

Bbhyd2 TGTCAAGACTGGCGACATTTGCG TCGATGGGGACAAGCTGGTTGA 117.7 0.985 Hydrophobin 2 / 
cell surface 

hydrophobicity 

This study 
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Table 2. Determination of humid biomass ratio and pH of the remaining media at different 

time periods. For both assays, values in each column followed by different lowercase letters 

and values in each line followed by different uppercase letters indicate significant 

differences (p<0.05).  

Day Biomass ratio pH 

MM-C16 CM MM-C16 CM 

3 1.2 ± 0.2aA 6.1 ± 0.8aB 6.1 ± 0.4aA 3.6 ± 0.1aB 

5 1.2 ± 0.2aA 7.4 ± 1.4aB 5.4 ± 0.7aA 6.5 ± 0.1bA 

7 1.1 ± 0.3aA 5.4 ± 1.9aB 4.9 ± 0.5aA 7.1 ± 0.1cB 
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Table 3.  Pathogenicity bioassay. Cumulative percentage mortality ± SEM of Tribolium 

castaneum and Tenebrio molitor larvae treated with Beauveria bassiana mycelial pellets 

and corrected for control mortality using the Abbott’s formula. For both insects, different 

letters indicate significant differences (p < 0.05). 

Day Mortality (%) 
 Tribolium castaneum Tenebrio molitor  

0 0 ± 0a 0 ± 0a 
2 0 ± 0a 0 ± 0a 
5 70.2 ± 11.9b 53.3 ± 10.7b 
8 67.3 ± 13.1b 96.7 ± 1.9c 
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