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Nichols algebras over groups
with finite root system of rank two II

István Heckenberger and Leandro Vendramin

Communicated by Gunter Malle

Abstract. We classify all non-abelian groups G for which there exists a pair .V;W / of
absolutely simple Yetter–Drinfeld modules over G such that the Nichols algebra of the
direct sum of V and W is finite-dimensional, under two assumptions: the square of the
braiding between V and W is not the identity, and G is generated by the support of V
and W . As a corollary, we prove that the dimensions of such V and W are at most six.
As a tool we use the Weyl groupoid of .V;W /.

Introduction

In the theory of Hopf algebras, deep structure results have been achieved since the
introduction of the Lifting Method of Andruskiewitsch and Schneider [5]. The aim
of the method is to classify (finite-dimensional) pointed Hopf algebras. The idea
of it is to generalize Lusztig’s approach to quantum groups [21].

The Lifting Method is based on the understanding of the structure theory of
certain braided Hopf algebras which are known as Nichols algebras. In Lusztig’s
setting this is the algebra f, also known as Uq.nC/. Motivated by the first clas-
sification results of finite-dimensional Nichols algebras of diagonal type [6, 23],
a complete solution was obtained by the first author [14]. The tool for the latter
classification was the Weyl groupoid and the root system of a Nichols algebra of
diagonal type, which was discovered in [13] using the theory of Lyndon words
and PBW bases [20]. The Weyl groupoid was also used by Angiono to determine
the defining relations of finite-dimensional Nichols algebras of diagonal type [8].
These results have far reaching consequences in the theory of Hopf algebras such
as the classification of finite-dimensional pointed Hopf algebras with abelian
coradical of order coprime to 210 (see [7]), and the proof of the Andruskiewitsch–
Schneider conjecture for pointed Hopf algebras with abelian coradical [9].

In order to understand the structure of Nichols algebras of non-diagonal type,
the Weyl groupoid of a Nichols algebra of diagonal type was generalized further
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2 I. Heckenberger and L. Vendramin

in several successive papers such as [4], [19], [16] and [15]. The first applications
of this generalization were powerful enough to study pointed Hopf algebras in
some cases where the coradical is a finite simple group [1, 2]. The difficulties in
extending these results, and scientific curiosity, ask for a better understanding of
finite-dimensional Nichols algebras of semisimple Yetter–Drinfeld modules over
arbitrary groups.

In [15] H.-J. Schneider and the first author introduced a method to study the
Weyl groupoid of a Nichols algebra over a Hopf algebra with invertible antipode.
The main achievement of the paper was a description of .adV /n.W /, for two
Yetter–Drinfeld modules V;W , in terms of the braiding. Also, a family .�n/n�2
of groups was introduced as candidates admitting finite-dimensional Nichols
algebras, and the finite-dimensional Nichols algebras over �2 with finite root
system of rank two were determined.

Roughly speaking, in this paper we prove that any non-abelian group G

having a finite-dimensional Nichols algebra with an irreducible finite root system
of rank two has to be an epimorphic image of �2, �3, �4 or another group T . As
a corollary, we obtain that the dimension of the subspace of primitive elements of
such a Nichols algebra has dimension at most 12. For the precise statement we
refer to Theorem 4.5 and Corollary 4.6. These claims are expected to become very
useful in different ways. For example, the study of Nichols algebras of tuples of
irreducible Yetter–Drinfeld modules usually requires a good understanding of the
rank two case. Further, our results combined with the methods in [1, 2] can be
used to obtain strong restrictions on the support of an irreducible Yetter–Drinfeld
module with finite-dimensional Nichols algebra over a group.

In order to obtain more precise claims on Nichols algebras over G, one has
to perform detailed calculations about .adV /m.W / and .adW /m.V /, m � 1, as
in [15, Section 4]. These calculations lead then to the classification of finite-
dimensional Nichols algebras with finite root system of rank two, see [17, 18].

Our method is based on the Weyl groupoid. Let V;W be absolutely simple
Yetter–Drinfeld modules over G such that the pair .V;W / admits all reflections
and the Weyl groupoid W.V;W / is finite. By [4, Theorem 3.12, Proposition 3.23],
this is the case if the Nichols algebra of V ˚W is finite-dimensional. We prove
that there exists an object of W.V;W / which has a Cartan matrix of finite type.
Thus we have to analyze the consequences of .adV /2.W / D 0, .adW /4.V / D 0.
We obtain restrictions regarding decomposability, size and further information
on suppV and suppW . In particular, Theorem 4.4 tells that for a pair .V;W /
of Yetter–Drinfeld modules over G such that .adV /.W / 6D 0, .adV /2.W / D 0
and .adW /4.V / D 0, it must be the case that suppV [ suppW is isomorphic
to one of five quandles, all of size at most six. Our results are based on Propo-
sition 5.5 claiming the non-vanishing of .adV /mC1.W / under some assumptions
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Nichols algebras with finite root system of rank two 3

on the structure of suppV and suppW . It is an interesting fact that for this
proposition and for many of its consequences we do not need to assume that V
and W have finite support or that their supports are conjugacy classes. There-
fore Proposition 5.5 and its consequences can also be used to deal with Nichols
algebras of arbitrary tuples of irreducible Yetter–Drinfeld modules over groups.

The structure of the paper is as follows. First we recall some facts on groups
with abelian centralizers, quandles and their enveloping groups in Sections 1 and 2.
In Section 3 we prove with Corollary 3.2 that connected Weyl groupoids of rank
two admitting a finite irreducible root system have an object with a Cartan matrix
of finite type. Section 4 is devoted to the study of Nichols algebras over groups.
After discussing some technicalities, we formulate our main results, Theorem 4.5
and Corollary 4.6. In Section 5 we give a step-by-step proof of Theorem 4.4.

1 Preliminaries

1.1 Groups with abelian centralizers

Recall from [22] that a group has abelian centralizers if the centralizer of every
non-central element is abelian. The following definition goes back to Hall [12].

Definition 1.1. Let G and H be two groups. We say that G is isoclinic to H
if there exist isomorphisms � W G=Z.G/! H=Z.H/ and � W ŒG;G�! ŒH;H�

such that if g1; g2 2 G, h1; h2 2 H , and �.giZ.G// D hiZ.H/ for i D 1; 2,
then �Œg1; g2� D Œh1; h2�. In this case we write G � H .

It is clear that the relation of isoclinism is an equivalence relation. The following
lemma is due to Hall [12, p. 134].

Lemma 1.2. Let G be a group and K C G. The following hold:

(1) G=K � G=.K \ ŒG;G�/.

(2) If K � ŒG;G� and G � H for some group H via the maps � and �, then
�.K/ C H and G=K � H=�.K/.

The following lemma was proved in [22, Lemma 3.4]. For completeness we
give a proof in the context of this paper.

Lemma 1.3. Let G and H be groups and assume that G � H . If G has abelian
centralizers, then H has abelian centralizers.

Proof. Let h 2 H nZ.H/ and let h1; h2 2 Hh. Since G � H , there exist ele-
ments g; g1; g2 2 G such that �.gZ.G// D hZ.H/ and �.giZ.G// D hiZ.H/
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4 I. Heckenberger and L. Vendramin

for i D 1; 2. Further g 62 Z.G/ since h 62 Z.H/. Then

1 D Œh; hi � D �Œg; gi �

and hence gi 2 Gg . Therefore

1 D �Œg1; g2� D Œh1; h2�

and Hh is abelian.

1.2 Quandles

Recall that a quandle is a non-empty set X with a binary operation F such that

� the map 'i W X ! X , j 7! i F j , is bijective for all i 2 X ,

� i F .j F k/ D .i F j / F .i F k/ for all i; j; k 2 X ,

� i F i D i for all i 2 X .

The bijectivity of 'i can be expressed by the existence of a map G W X �X ! X

such that .i F j / G i D j D i F .j G i/ for all i; j 2 X . Then

k F .i G j / D .k F i/ G .k F j /; .i G j / G k D .i G k/ G .j G k/ (1.1)

for all i; j; k 2 X . A crossed set is a quandleX such that for all i; j 2 X , iFj D j
implies j F i D i . Unions of conjugacy classes of a group with the binary opera-
tion of conjugation are examples of crossed sets.

Notation 1.4. In what follows, we use the following notation.

(1) To describe a finite quandle X we may assume that X D ¹1; : : : ; nº for some
n 2 N and then write X W '1 '2 � � � 'n to denote the quandle structure on X
given by '1; : : : ; 'n.

(2) Let G be a group and g 2 G. The quandle structure on the conjugacy class
of g in G will be denoted by gG .

The inner group of a quandle X is the group Inn.X/ D h'i W i 2 Xi. We say
that a quandle X is indecomposable if the inner group Inn.X/ acts transitively
on X . Also, X is decomposable if it is not indecomposable.

Remark 1.5. Crossed sets of size at most three are well known. If X is a crossed
set and 1 � jX j � 2, then X is trivial (or commutative), that is, i F j D j for
all i; j 2 X . If jX j D 3 and X is non-trivial, then i F j D k for all pairwise
different elements i; j; k 2 X . Hence X ' .12/S3 .
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Nichols algebras with finite root system of rank two 5

Remark 1.6. Using the classification of transitive groups of small degree, inde-
composable quandles of small size were classified (up to isomorphism) in [24].
The list of indecomposable quandles of size � 6 is

¹1º W id;

.12/S3 W .23/ .13/ .12/;

.123/A4 W .243/ .134/ .142/ .123/;

Aff.5; 2/ W .2354/ .1534/ .1452/ .1325/ .1243/;

Aff.5; 3/ W .2453/ .1435/ .1254/ .1523/ .1342/;

Aff.5; 4/ W .25/.34/ .13/.45/ .15/.24/ .12/.35/ .14/.23/;

.12/S4 W .23/.56/ .13/.45/ .12/.46/ .25/.36/ .16/.24/ .15/.34/;

.1234/S4 W .2436/ .1654/ .1456/ .1253/ .2634/ .1352/:

Let X be a quandle and let GX denote its enveloping group

GX D hxi W i 2 Xi=.xixj D xiFjxi for all i; j 2 X/:

This group is Z-graded with deg.xi / D 1 for all i 2 X .

Remark 1.7 (Universal property). For any group G and any map f W X ! G

satisfying f .x F y/ D f .x/f .y/f .x/�1 there exists a unique group homomor-
phism g W GX ! G such that f D g ı @, where @ W X ! GX , i 7! xi , see for
example [3, Lemma 1.6].

Let X be a finite indecomposable quandle. By [11, Lemmas 2.17 and 2.18],

x
j'i j

i D x
j'j j

j

for all i; j 2 X . This implies that the subgroup

K D hx
j'i j

i W i 2 Xi

is cyclic and central. The finite enveloping group is the finite group GX D GX=K,
see [11, Lemma 2.19]. Let � W GX ! GX be the canonical surjection.

A quandle X is said to be injective if the map @ W X ! GX , i 7! xi , is injec-
tive. For example, the group GX can be used to test indecomposable quandles
for injectivity.

Lemma 1.8. Let X be a finite indecomposable quandle and let u 2 GX . Then the
following hold:

(1) The restriction of � to the class uGX is a quandle isomorphism.

(2) X is injective if and only if X
@
�! GX

�
�! GX is injective.
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6 I. Heckenberger and L. Vendramin

Proof. Let v 2 GX and assume that u and v are conjugate. Then u and v have
the same Z-degree in GX . Now, if �u D �v, then u D vxmj'1j

1 for some m 2 Z.
The Z-graduation of GX implies thatm D 0 and hence u D v. Thus (1) is proved.
Now (2) follows from (1).

Corollary 1.9. Let X be a finite indecomposable quandle and

M D max¹jOj W O is a conjugacy class of GXº:

Then every conjugacy class of GX has at most M elements.

Lemma 1.10. Let X be a finite indecomposable quandle. Then GX � GX .

Proof. Let � W GX ! GX be the canonical surjection. Since the elements of the
group ŒGX ; GX � have degree zero,

ker� \ ŒGX ; GX � D hx
j'1j

1 i \ ŒGX ; GX � D 1:

Then the claim follows from Lemma 1.2 (1) with G D GX , K D ker� .

We conclude the subsection on quandles with two technical lemmas needed for
the proof of our main result.

Lemma 1.11. Let X be a crossed set, Y � X be a subset, and

C.Y / D ¹i 2 X W i F j D j for all j 2 Y º:

Assume that Y [ C.Y / D X . Then X F Y D Y .

Proof. Let p; q 2 C.Y / and i 2 Y . Then

.p F q/ F i D p F .q F i/ D p F i D i

and hence
C.Y / F C.Y / � C.Y /:

Since Y F C.Y / D C.Y / by the definition of C.Y / and sinceX D Y [ C.Y /, we
conclude that

X F C.Y / � C.Y /:

Since i G p D i G q D i , we obtain similarly that

C.Y / G C.Y / � C.Y / and C.Y / GX � C.Y /:

Hence X F C.Y / D C.Y / and X F .X n C.Y // D X n C.Y /.
Let k 2 Y \ C.Y /. Then we have i F k D k for all i 2 Y since k 2 C.Y /,

and i F k D k for all i 2 C.Y / since k 2 Y . Since Y [ C.Y / D X , we conclude
that X F ¹kº D ¹kº for all k 2 Y \ C.Y /. This and the first paragraph imply
that X F Y D Y .
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Nichols algebras with finite root system of rank two 7

Lemma 1.12. Let X D Y1 [ Y2 be a finite quandle, where Y1 and Y2 are disjoint
Inn.X/-orbits. Assume that there exists an isomorphism of quandles g W Y1 ! Y2
and that Y1 is commutative. Then the quandle X is isomorphic to the quandle
structure on ¹1; : : : ; 2nº given by

'i D

´
.nC 1 � � � 2n/ if 1 � i � n,
.1 � � � n/ if nC 1 � i � 2n.

(1.2)

Proof. Without loss of generality we may assume that Y1 D ¹1; : : : ; nº and that
Y2 D ¹nC 1; : : : ; 2nº. For all i 2 Y1 and j 2 Y2 the permutations 'i and 'j com-
mute, since supp'i � Y2 and supp'j � Y1. Further,

'jFi D 'j'i'
�1
j D 'i :

As 'kFi D 'i for all k 2 Y1 by the commutativity of Y1, we conclude that 'i D 'l
for all i; l 2 Y1 since Y1 is an Inn.X/-orbit.

Since Y1 and Y2 are isomorphic, we have 'i D 'l for all i; l 2 Y2. Since Y1 is
an Inn.X/-orbit, it is a 'nC1-orbit and hence for all j 2 Y2 the permutation 'j is
a cycle of length jY1j. This implies the claim.

2 Groups with finite-dimensional Nichols algebras

Here we introduce the groups that realize the examples of decomposable quandles
which are essential for our classification. These quandles are

Z
4;1
T W .243/ .134/ .142/ .123/ id;

Z
2;2
2 W .24/ .13/ .24/ .13/;

Z
3;1
3 W .23/ .13/ .12/ id;

Z
3;2
3 W .23/.45/ .13/.45/ .12/.45/ .123/ .132/;

Z
4;2
4 W .24/.56/ .13/.56/ .24/.56/ .13/.56/ .1234/ .1432/:

First we study the dimension of group representations.

Lemma 2.1. LetG be a group, x 2 G, and d 2 N. Suppose that ŒG W Gx� is finite.
If dimK V � d for any finite-dimensional absolutely simple KGx-module V , then

dimK U � dŒG W G
x�

for any finite-dimensional absolutely simple KG-module U . In particular,

dimK U � ŒG W G
x�

if Gx is abelian.

Authenticated | lvendramin@dm.uba.ar author's copy
Download Date | 6/3/14 1:28 PM



8 I. Heckenberger and L. Vendramin

Proof. We may assume that the field K is algebraically closed. Let U be a simple
KG-module with dimK U <1 and let V be a simple KGx-submodule of U .
Then U D KGV is an epimorphic image of KG ˝KGx V and dimK V � d , and
hence dimK U � dŒG W G

x�. Now the second claim follows, as finite-dimensional
absolutely simple modules of abelian groups are one-dimensional.

2.1 The group T

Let us consider the group

T D hzi � hx1; x2; x3; x4 W xixj D x'i .j /xi ; i; j 2 ¹1; 2; 3; 4ºi;

where ¹'i W 1 � i � 4º is the set of permutations that defines .123/A4 . This group
is not nearly abelian, see [15, Definition 3.1], since the commutator subgroup
ŒT; T � is not cyclic. For example Œx1; x2� and Œx1; x3� do not commute. (One can
prove that ŒT; T � ' Q8, the quaternion group of eight elements.)

Example 2.2. Let Z4;1T D xT1 [ z
T , see Notation 1.4 (2). Then the group T is

isomorphic to the enveloping group of Z4;1T .

Lemma 2.3. Let G be an epimorphic image of T . Then the following hold:

(1) G has abelian centralizers.

(2) Every conjugacy class of G has at most six elements.

(3) Every finite-dimensional absolutely simple KG-module has dimension at
most four.

Proof. By Lemma 1.3, we may replace G by a group which is isoclinic to G.
Let K C T with G D T=K. By Lemma 1.2 (1) we may assume that K � ŒT; T �.
Let X D .123/A4 . Since T � GX and GX � GX by Lemma 1.10, T=K � GX=L
for someL C GX by Lemma 1.2 (2). NowGX ' SL.2; 3/ and the only non-trivial
normal subgroups of SL.2; 3/ are its commutator subgroup and its center. Since
all quotients of SL.2; 3/ have abelian centralizers, claim (1) holds.

To prove (2) we use Corollary 1.9, as every conjugacy class of SL.2; 3/ has at
most six elements. Then Lemma 2.1 and (1) and jX j D 4 imply (3).

2.2 The groups �n

Let n 2 N�2. Recall from [15] that

�n D hg; h; � W hg D �gh; g� D �
�1g; h� D �h; �n D 1i:

(These groups were denoted by Gn in [15].) Any element of �n can be written
uniquely as �ihjgk , where 0 � i � n � 1 and j; k 2 Z. By [15, Section 3], the

Authenticated | lvendramin@dm.uba.ar author's copy
Download Date | 6/3/14 1:28 PM



Nichols algebras with finite root system of rank two 9

conjugacy classes of �n are

z�n D ¹zº; .gz/�n D ¹�mgz W 0 � m � n � 1º;

.hj z/
�n
D ¹hj z; ��jhj zº; .hgz/�n D ¹�mhgz W 0 � m � n � 1º;

where z 2 Z.�n/ D h��1h2; hn; g2i and 1 � j � n
2

. The centralizers

.�n/
gz
D h��1h2; g; hni; .�n/

hgz
D h��1h2; hg; hni; .�n/

hj z
D h�; h; g2i

are abelian. The commutator subgroup is Œ�n; �n� D h�i.
Now we show four examples of decomposable quandles.

Example 2.4. Let Z2;22 D h�2 [ g�2 . Then Z2;22 ' D4, the dihedral quandle of
four elements. The enveloping group of Z2;22 is

hx1; x2; x3; x4 W xixj D x2i�j .mod4/xi ; i; j 2 ¹1; 2; 3; 4ºº ' �2:

The isomorphism is given by x1 7! g, x2 7! h.

Example 2.5. Let Z3;13 D g�3 [ ¹�hº. Note that �h 2 Z.�3/. The enveloping
group of Z3;13 is isomorphic to

hzi � hx1; x2; x3 W xixj D x2i�j .mod3/xi ; i; j 2 ¹1; 2; 3ºº ' �3:

The latter isomorphism is given by z 7! �h, x1 7! g, x2 7! �g and x3 7! �2g.

Example 2.6. LetZ3;23 D g�3 [ h�3 . The enveloping group ofZ3;23 is isomorphic
to �3.

Example 2.7. LetZ4;24 D g�4 [ h�4 . The enveloping group ofZ4;24 is isomorphic
to �4.

Lemma 2.8. Let G be an epimorphic image of �n for some n � 2. Then the
following hold:

(1) G has abelian centralizers.

(2) Every conjugacy class of G has at most n elements.

(3) Every finite-dimensional absolutely simple KG-module has dimension at
most two.

Proof. Let p W �n ! G be the canonical map. If �k 2 kerp for some k > 0,
then G is also an epimorphic image of �k . Since Œ�n; �n� D h�i, we may assume
that kerp \ Œ�n; �n� D 1. Hence �n � G by Lemma 1.2 (1). Therefore claim (1)
follows from Lemma 1.3, since �n has abelian centralizers.

Claim (2) follows from the description of conjugacy classes of �n. Finally (3)
follows from Lemma 2.1 since hG has two elements.
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10 I. Heckenberger and L. Vendramin

3 Weyl groupoids of rank two

Let us consider the map

� W Z! SL.2;Z/; �.c/ D

 
c �1

1 0

!
:

A finite sequence .c1; c2; : : : ; cn/, n 2 N, of positive integers is a characteristic
sequence if �.c1/ � � � �.cn/ D �id, and the entries of the first column of the
matrix �.c1/ � � � �.ci / are non-negative integers for all i < n. We denote by AC

the set of characteristic sequences. By [10, Lemma 5.2],

.c1; c2; : : : ; cn/ 2 AC; c2 D 1; n � 4

” .c1 � 1; c3 � 1; c4; : : : ; cn/ 2 AC:
(3.1)

Lemma 3.1. Let .c1; c2; : : : ; cn/ 2 AC. Then n � 3 and there exists an index i
with i 2 ¹1; : : : ; nº such that

� ci D 1 and ciC1 2 ¹1; 2; 3º,

or

� ci D 1 and ci�1 2 ¹1; 2; 3º,

where c0 D cn and cnC1 D c1.

Proof. Let .c1; c2; : : : ; cn/ 2 AC. If n � 3, then we have .c1; : : : ; cn/ D .1; 1; 1/
by [10, Proposition 5.3 (4)]. Hence we may assume that n > 3. By [10, Corol-
lary 4.2], there exists an i 2 ¹1; : : : ; nº such that ci D 1. Further,

.cj ; cjC1; : : : ; cn; c1; : : : ; cj�1/ 2 AC for all j 2 ¹1; : : : ; nº

by [10, Proposition 5.3 (2)]. Also, ci D 1 implies that ci�1; ciC1 > 1 by (3.1).
Therefore, without loss of generality we may assume that c D .b1; b2; : : : ; br/,
where bi D .ci1; 1; ci2; 1; : : : ; cimi

; 1; cimiC1/ and cij � 2 for all 1 � i � r and
1 � j � mi C 1, or c D .d1; 1; : : : ; dm; 1/ with n D 2m, d1; : : : ; dm � 2.

Assume first that c D .b1; b2; : : : ; br/. Then mi � 2 for at least one i . By
applying (3.1) several times we obtain that .b01; b

0
2; : : : ; b

0
r/ 2 AC , where

b0i D .ci1 � 1; ci2 � 2; ci3 � 2; : : : ; cimi
� 2; cimiC1 � 1/ for all 1 � i � r .

Since .b01; b
0
2; : : : ; b

0
r/ 2 AC, by [10, Corollary 4.2] there exists an i 2 ¹1; : : : ; rº

such that ci1 � 1 D 1 or cimiC1 � 1 D 1 or cij � 2 D 1 for some j 2 ¹2; : : : ; miº.
Then the lemma holds.
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Nichols algebras with finite root system of rank two 11

Now assume that c D .d1; 1; d2; 1; : : : ; dm; 1/, n D 2m. If di D 2 for some
1 � i � m, then we are done. Otherwise, after applying (3.1) m times we obtain
that .d1 � 2; d2 � 2; : : : ; dm � 2/ 2 AC. Hence there exists an i 2 ¹1; : : : ; mº

such that di � 2 D 1. This implies the lemma.

Cartan schemes of rank two, their Weyl groupoids and their root systems were
studied in [10]. An indecomposable Cartan matrix C 2 Z2�2 of finite type is
a matrix of the form

�
2 �c1

�c2 2

�
, where c1; c2 2 N, 1 � c1c2 � 3.

Corollary 3.2. Let C D C.¹1; 2º; A; .�i /i2¹1;2º; .C
a/a2A/ be a connected Cartan

scheme admitting a finite irreducible root system .Ra/a2A. Then there exists an
element a 2 A such that C a 2 Z2�2 is an indecomposable Cartan matrix of
finite type.

Proof. Let a 2 A, n D jRa
C
j, a1; : : : ; a2n 2 A, c1; : : : ; c2n 2 N such that

a2r�1 D.�2�1/
r�1.a/; a2r D�1.�2�1/

r�1.a/;

c2r�1 D� c
a2r�1

12 ; c2r D� c
a2r

21

for all r 2 ¹1; 2; : : : ; nº. Then .c1; : : : ; cn/ 2 AC by [10, Proposition 6.5]. By
Lemma 3.1, there exists an i such that ci D 1 and ciC1 2 ¹1; 2; 3º, or ci D 1
and ci�1 2 ¹1; 2; 3º. This implies the corollary.

4 Nichols algebras over groups

Recall that a Yetter–Drinfeld module over a group G is a KG-module

V D
M
g2G

Vg

such that hVg � Vhgh�1 for all g; h 2 G.

Lemma 4.1. Let G be an epimorphic image of one of the groups �2, �3, �4 or T .
Then every finite-dimensional absolutely simple Yetter–Drinfeld module over G
has dimension at most six.

Proof. Any simple Yetter–Drinfeld module over G is uniquely given by a con-
jugacy class O of G and an irreducible representation � of the centralizer of
an element of O. In this case, dimV D jOjdeg �. Hence the claim follows from
Lemmas 2.8 and 2.3.

For the study of Nichols algebras over groups the Weyl groupoid of a tuple
of simple Yetter–Drinfeld modules plays an important role. For the definition we
refer to [15].
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12 I. Heckenberger and L. Vendramin

Theorem 4.2. Let � 2 N, let H be a Hopf algebra with bijective antipode and
let M D .M1; : : : ;M� /, where each Mi is a simple Yetter–Drinfeld module
overH . Assume thatM admits all reflections and that the Weyl groupoid W.M/ is
finite. Then B.M/ is decomposable and admits a finite root system of type C.M/.

Proof. By [15, Corollary 2.4], B.M/ is decomposable. Then the theorem be-
comes precisely [15, Theorem 2.3].

For any Yetter–Drinfeld module V over a Hopf algebra H with bijective
antipode let ŒV � denote the isomorphism class of V . The first step in the proof
of Theorem 4.5 will be the following claim.

Proposition 4.3. Let H be a Hopf algebra with bijective antipode. Further, let
M D .M1;M2/ be a pair of simple Yetter–Drinfeld modules over H . Assume
that M admits all reflections and W.M/ is finite. If .id � cM2;M1

cM1;M2
/ 6D 0,

then there exists a pair N D .N1; N2/ of simple Yetter–Drinfeld modules over H ,
such that ŒN � D .ŒN1�; ŒN2�/ 2 W.M/ and 1 � aŒN �12 a

ŒN �
21 � 3.

Proof. Since the pair M admits all reflections and .id � cM2;M1
cM1;M2

/ 6D 0,
the set of real roots of W.M/ is irreducible. Therefore the proposition follows
from Corollary 3.2.

Theorem 4.4. Let K be a field, G be a non-abelian group, and V and W be
two Yetter–Drinfeld modules over G. Assume that G is generated as a group by
supp.V ˚W /, suppV and suppW are conjugacy classes of G, .adV /2.W / D 0
and .adW /4.V / D 0. If .id � cW;V cV;W /.V ˝W / ¤ 0, then supp.V ˚W / is
isomorphic to one of the quandles

Z
4;1
T ; Z

2;2
2 ; Z

3;1
3 ; Z

3;2
3 and Z4;24 ;

and G is isomorphic to an epimorphic image of the corresponding enveloping
groups T , �2, �3, �3 and �4, respectively.

Before proving Theorem 4.4 we turn our attention to some consequences.

Theorem 4.5. Let K be a field, let G be a non-abelian group, and let V and W
be finite-dimensional absolutely simple Yetter–Drinfeld modules over G. Assume
that G is generated by supp.V ˚W /, the pair .V;W / admits all reflections, and
the Weyl groupoid of .V;W / is finite. If .id � cW;V cV;W /.V ˝W / ¤ 0, then G is
isomorphic to an epimorphic image of �n for some n 2 ¹2; 3; 4º or T . Moreover,
dimV � 6 and dimW � 6.
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Proof. Proposition 4.3 implies that after changing the object of W.V;W /, and
possibly interchanging the roles of V andW , we may assume that .adV /.W / 6D 0,
.adV /2.W / D 0 and .adW /4.V / D 0. Theorem 4.4 implies that the group G
is an epimorphic image of �n for n 2 ¹2; 3; 4º or an epimorphic image of T .
After applying reflections to the pair .V;W / we obtain new pairs .V 0; W 0/ of
absolutely simple Yetter–Drinfeld modules over G. Thus the claim follows from
Lemma 4.1.

Corollary 4.6. Let K be a field, let G be a non-abelian group, and let V and W
be finite-dimensional absolutely simple Yetter–Drinfeld modules over G. Assume
that G is generated by supp.V ˚W / and that B.V ˚W / is finite-dimensional.
If .id � cW;V cV;W /.V ˝W / ¤ 0, then dimV � 6 and dimW � 6.

Proof. Assume that B.V ˚W / is finite-dimensional. Then .V;W / admits all
reflections by [4, Corollary 3.18] and the Weyl groupoid is finite by [4, Propo-
sition 3.23]. So Theorem 4.5 applies.

5 Proof of Theorem 4.4

The key of our proof is Proposition 5.5 which allows us to construct non-zero
elements of .adV /m.W / for any two Yetter–Drinfeld modules V and W over
a group G and for any m 2 N under some assumption on G. Then we split our
analysis into two parts depending on the question whether suppV and suppW
commute. Finally, we prove Theorem 4.4 in Section 5.4.

In the whole section, let G be a non-abelian group and let V D
L
s2G Vs

and W D
L
t2G Wt be Yetter–Drinfeld modules over G.

5.1 General considerations

Lemma 5.1. Let G be a group, and g; h 2 G. Assume that G is generated by gG

and hG . Then G D AB , where A D hgGi, B D hhGi, and

AB D ¹ab W a 2 A; b 2 Bº:

Proof. Let r 2 gG and s 2 hG . Writing sr D r.r�1sr/ we conclude that

gGhG D hGgG :

From this the claim follows.

Recall that Sn 2 End.V ˝n/, where n 2 N, denotes the quantum symmetrizer.
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14 I. Heckenberger and L. Vendramin

Lemma 5.2 ([16, Proposition 6.5]). Let n 2 N. Then

.adV /n.W / ' .Sn ˝ id/Tn.V ˝n ˝W /;

where Tn 2 End.V ˝n ˝W / is defined by

Tn D .id � c2n;nC1cn�1;n � � � c1;2/ � � � .id � c
2
n;nC1cn�1;n/.id � c

2
n;nC1/:

Lemma 5.3 ([15, Theorem 1.1]). Let '0 D 0, XV;W0 D W , and

'm D id � cV˝.m�1/˝W;V cV;V˝.m�1/˝W C .id˝ 'm�1/c1;2;

XV;Wm D 'm.V ˝Xm�1/

for all m � 1. Then

.SnC1 ˝ idW /TnC1 D 'nC1.idV ˝ Sn ˝ idW /.idV ˝ Tn/

and .adV /n.W / ' XV;Wn for all n 2 N0.

Let m 2 N0. Recall that an element of V ˝m ˝W has degree .r1; : : : ; rm; s/,
where r1; : : : ; rm; s 2 G, if it is contained in Vr1

˝ � � �Vrm
˝Ws .

Let r1; r2; : : : ; rm 2 suppV and s 2 suppW , and write

Qm.r1; : : : ; rm; s/ D .Sm ˝ id/Tm.Vr1
˝ � � � ˝ Vrm

˝Ws/ � V
˝m
˝W:

Although the vector space V ˝m ˝W is graded by .suppV /m � suppW , the sub-
spaceQm.r1; : : : ; rm; s/ is usually not graded. For t 2 V ˝m ˝W we write supp t
for the set of d 2 .suppV /m � suppW , such that the homogeneous component
of t of degree d is non-zero. We let

suppQ D ¹supp t W t 2 Qº

for all subspaces Q � V ˝m ˝W .

Remark 5.4. Let m 2 N. By Lemma 5.2, we have .adV /m.W / D 0 if and only
if suppQm.r1; : : : ; rm; s/ D 0 for all r1; : : : ; rm 2 suppV , s 2 suppW .

Proposition 5.5. Let m 2 N0. Further, let p1; : : : ; pm; r1; : : : ; rm 2 suppV and
pmC1, s 2 suppW such that

.p1; : : : ; pm; pmC1/ 2 suppQm.r1; : : : ; rm; s/:

Let p 2 suppV and i 2 ¹1; : : : ; mC 1º and assume that

pi F p 6D p; pj F p D p for all j with i < j � mC 1, (5.1)

p 62 ¹pj W 1 � j � mº [ ¹.pjC1pjC2 � � �pmC1/
�1
F pj W 1 � j < iº: (5.2)

Then .pFp1; : : : ; pFpi�1; p; pi ; : : : ; pm; pmC1/ 2 suppQmC1.p; r1; : : : ; rm; s/.
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Proof. Let t 2 Qm.r1; : : : ; rm; s/ and let p 2 suppV . By Lemma 5.3, we have
'mC1.v ˝ t / 2 QmC1.p; r1; : : : ; rm; s/ for all v 2 Vp. Moreover, 'mC1.v ˝ t /
is a sum of non-zero homogeneous tensors of degrees

.p F p01; : : : ; p F p
0
j�1; p; p

0
j ; : : : ; p

0
m; p

0
mC1/;

.p F p01; : : : ; p F p
0
j�1; pp

0
j � � �p

0
mC1 F p; p F p

0
j ; : : : ; p F p

0
m; p F p

0
mC1/

(5.3)

with 1 � j � mC 1, where .p01; : : : ; p
0
m; p

0
mC1/ 2 supp t . By the assumption

on p1; : : : ; pm; pmC1, the tuple

.p F p1; : : : ; p F pi�1; p; pi ; piC1; : : : ; pm; pmC1/ (5.4)

appears among the degrees in (5.3). It suffices to show that it appears exactly once.
We split the proof into several cases.

Assume first that (5.4) is equal to .pFp01; : : : ; pFp
0
j�1; p; p

0
j ; : : : ; p

0
m; p

0
mC1/

for some j 2 ¹1; : : : ; mC 1º. There are three cases to consider. First, if j < i ,
then p F pj D p and hence p D pj , a contradiction to (5.2). If j D i , then we
obtain pl D p0l for all l 2 ¹1; : : : ; mC 1º which gives us just the tuple we are
looking at. Finally, if j > i , then p D pj�1, again a contradiction to (5.2).

Now assume that (5.4) is equal to

.p F p01; : : : ; p F p
0
j�1; pp

0
j � � �p

0
mC1 F p; p F p

0
j ; : : : ; p F p

0
m; p F p

0
mC1/ (5.5)

for some j 2 ¹1; : : : ; mC 1º. Again there are three cases to consider.
If j > i , then

p F p0k D pk for all k 2 ¹j; j C 1; : : : ; mC 1º, pp0j � � �p
0
mC1 F p D pj�1:

By (5.1) we conclude that p0
k
D pk for all k 2 ¹j; jC1; : : : ; mC1º and p D pj�1.

If j D i , then

p F p0k D pk for all k 2 ¹i; i C 1; : : : ; mC 1º, pp0i � � �p
0
mC1 F p D p:

We conclude from (5.1) that p0
k
D pk for all k 2 ¹i C 1; : : : ; mC 1º, p Fp0i D pi

and pp0i F p D p. This implies that

pi F p D .p F p
0
i / F p D pp

0
ip
�1
F p D pp0i F p D p;

a contradiction to (5.1).
Finally, assume that 1 � j < i . Then pp0j � � �p

0
mC1 F p D p F pj , or

.p F p0j /.p F p
0
jC1/ � � � .p F p

0
mC1/ F p D p F pj :

We conclude from this and the equality of (5.4) and (5.5) that

.p F pjC1/ � � � .p F pi�1/ppi � � �pmC1 F p D p F pj :
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16 I. Heckenberger and L. Vendramin

The latter is equivalent to

ppjC1 � � �pi�1pi � � �pmC1 F p D p F pj ;

which after cancelling p F gives a contradiction to (5.2).

Remark 5.6. If m D 0, then Proposition 5.5 reads as follows. Let s 2 suppW
and p 2 suppV and assume that s F p 6D p. Then .p; s/ 2 suppQ1.p; s/.

Corollary 5.7. Let m � 1. Assume that the following hold:

(1) the quandle suppV is indecomposable or suppV D Y1[Y2 is a decomposition
into Inn.suppV /-orbits, and x F Y1 D Y2, x F Y2 D Y1 for all x 2 suppW .

(2) .adV /m.W / ¤ 0, .adV /mC1.W / D 0.

Then

jsuppV j �

´
2m � 1 if suppV and suppW commute,
2m otherwise.

Proof. By (2), there exist r1; : : : ; rm; p1 : : : ; pm 2 suppV , s0; pmC1 2 suppW
and t 2 Qm.r1; : : : ; rm; s0/ such that

.p1; : : : ; pmC1/ 2 supp t and 'mC1.v ˝ t / D 0

for all p 2 suppV , v 2 Vp. Let

Y D ¹pj W 1 � j � mº [ ¹.pjC1pjC2 � � �pmC1/
�1
F pj W 1 � j � mº:

Then jY j � 2m. Moreover, if r F s D s for all r 2 suppV , s 2 suppW , then we
have p�1mC1 F pm D pm and hence jY j � 2m � 1. Therefore it suffices to prove
that Y D suppV .

By Proposition 5.5, any element p 2 suppV with p … Y satisfies pj F p D p
for all j 2 ¹1; : : : ; mC 1º and hence suppV D Y [ C.Y /. By Lemma 1.11, Y is
Inn.suppV /-invariant. Thus Y D suppV if suppV is indecomposable. If suppV
is decomposable as in (1), then pm and p�1mC1 F pm are in different components
of suppV by (1). Therefore the Inn.suppV /-invariance of Y implies again
that Y D suppV .

Corollary 5.8. Let r1; r2; r3; r4 2 suppV and s 2 suppW . Assume that suppV
and suppW commute, .r3; r4; s/ 2 suppQ2.r3; r4; s/, and

r2 62 ¹r3; r4; r
�1
4 F r3º; r2 F r4 ¤ r4; (5.6)

r1 62 ¹r2 F r3; r2; r4; r
�1
4 F r2; r

�1
4 F r3º; r1 F r4 ¤ r4: (5.7)

Then .adV /4.W / ¤ 0.
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Proof. Let .p1; p2; p3/ D .r3; r4; s/ 2 suppQ2.r3; r4; s/. By assumption, condi-
tions (5.1), (5.2) with m D i D 2, p D r2 are fulfilled:

� r4 F r2 6D r2,
� s F r2 D r2,
� r2 62 ¹r3; r4; r

�1
4 F r3º.

Hence .r2 F r3; r2; r4; s/ 2 suppQ3.r2; r3; r4; s/ by Proposition 5.5.
Now let .p1; p2; p3; p4/ D .r2 F r3; r2; r4; s/ 2 suppQ3.r2; r3; r4; s/. Then

.p3p4/
�1
F p2 D r

�1
4 F r2; .p2p3p4/

�1
F p1 D r

�1
4 F r3:

By assumption, conditions (5.1), (5.2) with m D i D 3, p D r1 are fulfilled:

� p3 F p 6D p,
� p4 F p D p,
� p 62 ¹p1; p2; p3; .p3p4/

�1 F p2; .p2p3p4/
�1 F p1º.

Hence .r1r2 F r3; r1 F r2; r1; r4; s/ 2 suppQ4.r1; r2; r3; r4; s/ and therefore we
have .adV /4.W / 6D 0 by Remark 5.4.

Corollary 5.9. Assume that

� jsuppV j � 5,
� suppV and suppW commute,
� .adV /.W / 6D 0,
� x F y 6D y for all x; y 2 suppV .

Then .adV /4.W / 6D 0.

Proof. Since .adV /.W / 6D 0, there exist elements r4 2 suppV and s 2 suppW
such that Q1.r4; s/ 6D 0. Then .r4; s/ D suppQ1.r4; s/. Let r3 2 suppV n ¹r4º.
Then r3 F r4 6D r4 and hence .r3; r4; s/ 2 suppQ2.r3; r4; s/ by Proposition 5.5.
Since jsuppV j � 5, there exists an r2 2 suppV with r2 … ¹r3; r4; r�14 Fr3; r4Fr3º.
By assumption, r2 F r4 6D r4. By construction,

r3 … ¹r2 F r3; r2; r4; r
�1
4 F r2; r

�1
4 F r3º; r3 F r4 6D r4:

Thus Corollary 5.8 with r1 D r3 implies that .adV /4.W / 6D 0.

Corollary 5.10. Let r1; r2; r3 2 suppV and s 2 suppW . Assume that the follow-
ing hold:

(1) r2 F r3 6D r3,

(2) r1 62 ¹r3r2 F r3; r3 F r2; r3; s�1 F r3; s�1 F r2º,
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(3) s F r2; s F r3 62 ¹r2; r3º,

(4) r1 F s 6D s or r1 F r3 6D r3.

Then .adV /4.W / ¤ 0.

Proof. Let .p1; p2/ D .r3; s/. Then .p1; p2/ 2 suppQ1.r3; s/ since s F r3 6D r3.
Conditions (5.1), (5.2) with m D 1, i D 2 and p D r2 are fulfilled: p2 F p ¤ p
and p D r2 … ¹r3; s�1 F r3º. Thus we have .r2 F r3; r2; s/ 2 suppQ2.r2; r3; s/
by Proposition 5.5.

Let .p1; p2; p3/ D .r2 F r3; r2; s/ 2 suppQ2.r2; r3; s/. Then conditions (5.1)
and (5.2) with m D 2, i D 3 and p D r3 are fulfilled: s F p ¤ p,

r3 62 ¹p1; p2; p
�1
3 F p2; .p2p3/

�1
F p1º D ¹r2 F r3; r2; s

�1
F r2; s

�1
F r3º:

Hence .r3r2 F r3; r3 F r2; r3; s/ 2 suppQ3.r3; r2; r3; s/ by Proposition 5.5.
Finally, let .p1; p2; p3; p4/ D .r3r2F r3; r3F r2; r3; s/ 2 suppQ3.r3; r2; r3; s/

and let p D r1. Then

p�14 F p3 D s
�1
F r3;

.p3p4/
�1
F p2 D s

�1
F r2;

.p2p3p4/
�1
F p1 D s

�1
F r3

and hence

p … ¹p1; p2; p3; p
�1
4 F p3; .p3p4/

�1
F p2; .p2p3p4/

�1
F p1º:

Since p4 F p 6D p or p3 F p 6D p by (4), Proposition 5.5 with m D 3 implies
that Q4.r1; r3; r2; r3; s/ 6D 0. Hence .adV /4.W / ¤ 0 by Lemma 5.2.

Corollary 5.11. Assume that

� suppV is an indecomposable quandle,
� .adV /.W / 6D 0, .adV /4.W / D 0.

Then suppV is isomorphic to one of the following quandles:

¹1º; .12/S3 ; .12/S4 ; .123/A4 ; Aff.5; 2/; Aff.5; 3/; Aff.5; 4/; .1234/S4 : (5.8)

Proof. Corollary 5.7 yields that jsuppV j � 6 and Remark 1.6 applies.

5.2 Commuting supports

Let g; h 2 G. Assume that suppV D gG , suppW D hG , G D hgG [ hGi and
that gG and hG commute. We conclude an implication of .adV /2.W / D 0 and
.adW /4.V / D 0 on V and W .
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Lemma 5.12. The quandles gG and hG are indecomposable.

Proof. It is sufficient to prove the claim on hG . By Lemma 5.1 and since gG

and hG commute, we obtain that

hG D G F h D hhGihgGi F h D hhGi F h D Inn.hG/ F h:

Thus hG is indecomposable.

Lemma 5.13. Assume that .adV /.W / 6D 0 and .adV /2.W /D 0. Then gG D ¹gº.

Proof. This follows from Corollary 5.7 with m D 1 using Lemma 5.12.

Proposition 5.14. Assume that

.adV /.W / 6D 0; .adV /2.W / D 0 and .adW /4.V / D 0:

Then gG [ hG is isomorphic to Z3;13 or Z4;1T .

Proof. First, we have gG D ¹gº by Lemma 5.13. Further, hG is indecomposable
by Lemma 5.12. and jhG j � 2 sinceG D hgG [ hGi is non-abelian. Corollary 5.7
implies that jhG j � 5. Thus, by Corollary 5.11, hG is isomorphic to one of the
quandles .12/S3 , .123/A4 , Aff.5; 2/, Aff.5; 3/, Aff.5; 4/. Assume that hG is one
of the quandles Aff.5; 2/, Aff.5; 3/, Aff.5; 4/. Then jhG j D 5 and x F y 6D y for
any x; y 2 hG with x 6D y. Thus .adW /4.V / 6D 0 by Corollary 5.9 and the propo-
sition follows.

5.3 Non-commuting supports

In this subsection let g; h 2G. Assume that gh 6D hg, suppV D gG , suppW D hG

and G D hgG [ hGi. Then for all s 2 hG there exists an element r 2 gG such
that rs 6D sr . We determine some consequences of the equations .adV /2.W / D 0
and .adW /4.V / D 0.

Lemma 5.15. Assume that .adV /2.W / D 0. Then the following hold:

(1) gG is commutative.

(2) gG ¤ hG .

(3) gG D hhGi F g.

(4) Let s 2 hG . Then there exist r1; r2 2 gG such that 'sjgG D .r1 r2/.

(5) h2 F g D g and .gh/2 D .hg/2.

(6) For all m 2 Z, ¹x 2 gG W x F .gm F h/ 6D gm F hº D ¹g; h F gº.
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Proof. (4) and (1) First, jgG j � 2 and jhG j � 2 since gh 6D hg. Let r1 2 gG

and s 2 hG such that s F r1 6D r1. Then .r1; s/ 2 suppQ1.r1; s/ by Remark 5.6.
Let p 2 gG . Assume that p … ¹r1; s�1 F r1º. Since Q2.p; r1; s/ D 0 because
of .adV /2.W / D 0, Proposition 5.5 implies that s F p D p D r1 F p. Then

'sjgG D .r1 s
�1
F r1/

which is the claim in (4). The equation r1 F p D p implies that r1 F r2 D r2 for
all r2 2 gG . Thus (1) holds.

(2) If gG D hG , then G D hgGi is commutative by (1), a contradiction.
(3) Lemma 5.1 and (1) yield that

gG D G F g D hhGihgGi F g D hhGi F g:

(5) From (1) we know that g F .h F g/ D h F g and hence

hgh F g D h2 F g D g;

where the second equation follows from (4). This implies (5).
(6) By (1), gG is commutative. Thus it suffices to prove the claim for m D 0.

The latter follows from (4) with s D h since gh 6D hg.

Lemma 5.16. Assume that .adV /2.W / D 0 and that h commutes with g F h. Then
the following hold:

(1) For all m 2 Z, .h F g/ F .gm F h/ D gmC1 F h.

(2) hgGi F h D hgi F h.

Proof. First we prove (1). By Lemma 5.15 (1), gG is commutative. Thus it suffices
to consider the case m D 0. Now .h F g/ F h D hg F h D g F h by assumption.

Now we prove (2). Lemma 5.15 (4) and (1) with m 2 ¹�1; 0º, imply that

.gG/˙1 F h � ¹hº [ ¹g; g�1; h F g; .h F g/�1º F h � ¹h; g F h; g�1 F hº:

Now write hgGi D
S
m2N0

Am, whereAm D ¹x˙11 � � � x
˙1
m W xi 2 g

Gº. It suffices
to show that Am F h � hgi F h for all m 2 N0. We proceed by induction on m.
The case m D 0 is trivial and the case m D 1 was just proven. Let now m 2 N
and assume that Am F h � hgi F h. Using the induction hypothesis and the fact
that gG is commutative, see Lemma 5.15 (1), we obtain that

AmC1 F h D .g
G/˙1 F .Am F h/

� .gG/˙1 F .hgi F h/ D hgi F ..gG/˙1 F h/ � hgi F h:

This implies (2).
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Lemma 5.17. Assume that .adV /2.W /D 0 and hG is commutative. Then gG[hG

is isomorphic to Z2;22 .

Proof. Lemma 5.15 (4) implies that ghg F h D h. Since hG is commutative, we
have hg F h D g F h and hence h D ghg F h D g2 F h. Therefore

hG D hgGihhGi F h D hgGi F h D ¹h; g F hº

by Lemmas 5.1 and 5.16 (2) and since hG is commutative. Recall that gG is
commutative by Lemma 5.15 (1) and that h2 F g D g by Lemma 5.15 (5). From
Lemma 5.1 we obtain

gG D hhGihgGi F g D hhGi F g D hh; g F hi F g � hg; hi F g D ¹h F g; gº:

Therefore gG D ¹h F g; gº and gG [ hG ' Z2;22 as quandles.

Lemma 5.18. Let x; y 2 hG such that x F y D y. Assume that

� y F z 6D z for all z 2 hG n ¹x; yº,

� 'xjgG D .r s/ for some r; s 2 gG , r 6D s.

Then 'y jgG D .r s/.

Proof. Since x; y 2 hG and 'xjgG D .r s/, there exist elements a; b 2 gG such
that 'y jgG D .a b/. Assume that .a b/ 6D .r s/. Then j¹r; s; a; bºj D 4 since 'xjgG

and 'y jgG commute. Let z D r F x. First, z D r F x 6D x since x F r 6D r . Sec-
ond, r F x 6D y since 'zjgG D .r r F s/ 6D .a b/. Hence y F z 6D z by assumption,
a contradiction to y F .r F x/ D .y F r/ F .y F x/ D r F x.

Lemma 5.19. Let x; y 2 hG be elements such that x D 'xjgG and y D 'y jgG .
Assume that .adV /2.W / D 0 and that x; y generate the quandle hG . If  x D  y ,
then jgG j D 2. Otherwise jgG j D 3 and  x y 6D  y x .

Proof. By Lemma 5.15 (1) and (4), gG is commutative and there exist g1; g2 2 gG

such that  x D .g1 x F g1/ and  y D .g2 y F g2/. Assume now that

j¹g1; x F g1; g2; y F g2ºj D 4:

Then jgG j � 4. On the other hand, Lemma 5.1 and the commutativity of gG imply
that

gG D GFg1 D hh
G
ihgGiFg1 D hh

G
iFg1 D hx; yiFg1 D ¹g1; xFg1º; (5.9)

a contradiction to jgG j � 4. Hence j¹g1; x F g1; g2; y F g2ºj � 3 and the lemma
follows by two calculations similar to (5.9).
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Lemma 5.20. Assume that .adV /2.W / D 0 and that hG is decomposable. Let
hG D Y1 [ � � � [ Yk be the decomposition of hG into orbits of the inner group
of hG . Then k D 2 and x F Y1 D Y2, x F Y2 D Y1 for all x 2 gG .

Proof. First, hG D g F hG D .g F Y1/ [ � � � [ .g F Yk/ is a decomposition into
Inn.hG/-orbits:

.g F y/ F .g F Yi / D g F .y F Yi / D g F Yi for all y 2 hG , 1 � i � k.

Thus 'g permutes the orbits Y1; : : : ; Yk . Since gG D hhGiFg by Lemma 5.15 (3),
each x 2 gG permutes the Inn.hG/-orbits Y1; : : : ; Yk in the same way as g does.
Let Y � hG be the Inn.hG/-orbit of h. As G is generated by gG [ hG and hG is
a conjugacy class of G, we conclude that

hG D Y [ .g F Y / [ � � � [ .gk�1 F Y /:

By Lemma 5.15 (5), ghg F h D h and hence h 2 Y \ .g2 F Y /. Thus g2 F Y D Y
and hence hG D Y [ .g F Y / since hG is decomposable.

Lemma 5.21. Assume that .adV /2.W / D 0 and .adW /4.V / D 0 and that hG is
decomposable. Then gG [ hG is isomorphic to Z2;22 or to Z4;24 .

Proof. By Lemma 5.20, hG D Y1 [ Y2, where Y1 and Y2 are the Inn.hG/-orbits
of hG . Moreover, xFY1 D Y2 and xFY2 D Y1 for all x 2 gG . Thus Corollary 5.7
implies that jhG j � 6. There are two cases to consider.

Assume first that Y1 is non-commutative. Then we have Y1 ' Y2 ' .12/S3

by Remark 1.5. Let r3 2 Y1, r2 2 Y1 n ¹r3º and r1 2 Y2 n ¹g�1 F r3; g�1 F r2º.
By Corollary 5.10 with s D g, .adW /4.V / ¤ 0, a contradiction.

Assume now that Y1 is commutative. By Lemma 1.12, the permutations 'i
defining hG are given by (1.2). Further, x F y 6D y and hence y F x 6D x for all
x 2 gG , y 2 hG . But 'y jgG is a transposition for all y 2 hG by Lemma 5.15 (4),
and hence jgG j D 2.

If jY1j D 1, then hG is commutative and gG [ hG ' Z2;22 by Lemma 5.17.
Suppose next that jY1j D 2. Then we have hG 'Z2;22 by Lemma 1.12. Let h0 2 Y1
with h0 6D h. Since ghg F h D h by Lemma 5.15 (5) and since hg F h 6D g F h,
we conclude that g2 F h 6D h, 'g D .h g F h h0 g F h0/, and 'hFg D '�1g . There-
fore gG [ hG ' Z4;24 .

Finally, assume that jY1j D 3. Let r2 2 Y1. Then r2 F x ¤ x for all x 2 Y2, by
Lemma 1.12. Take r3 2 Y2 n ¹g F r2; g�1 F r2º and r1 2 Y1 n ¹r3 F r2; g�1 F r3º.
Then .adW /4.V / ¤ 0 by Corollary 5.10 with s D g, a contradiction.

Lemma 5.22. Assume that h2 F g D g. Then h2 F .g F h/ D g F h. In particular,
hG is not isomorphic to any of .123/A4 , Aff.5; 2/ and Aff.5; 3/.
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Proof. The first claim follows from the definition of a quandle. Since h and g F h
are fixed points of '2

h
jhG , the second claim follows from Remark 1.6.

Lemma 5.23. Assume that .adV /2.W / D 0 and .adW /4.V / D 0. Then hG is not
isomorphic to Aff.5; 4/.

Proof. Assume that hG ' Aff.5; 4/. Then hG can be generated by two elements x
and y with x ¤ y. By Lemma 5.15 (4), 'xjgG and 'y jgG are transpositions. By
Lemma 5.19, either jgG j D 2 or jgG j D 3, 'xjgG 6D 'y jgG . Assume the second
case. Let z 2 gG such that x F z 6D z, y F z 6D z. Then

x F z 6D y F z; x F .y F z/ D y F z; y F .x F z/ D x F z:

Therefore
xyxyx F z D y F z 6D x F z D yxyxy F z;

a contradiction to xyxyx D yxyxy in G. Hence jgG j D 2.
Now g F z 6D z for all z 2 hG and therefore we may assume that g3 F h ¤ h.

Moreover, for all z1; z2 2 hG there exists an element z 2 hG such that zFz1 D z2.
So let r2 2 hG such that r2 F h D g F h and let r3 D h. Since ghgh D hghg by
Lemma 5.15 (5), we conclude that r2 F r3 ¤ r3, g F r2 6D r2, g F r2 6D r3 since

.g F r2/ F .g F h/ D g F .r2 F h/ D g
2
F h ¤ g�1 F h D h F .g F h/

and g F r3 62 ¹r2; r3º. Moreover, r3r2 F r3 D hg F h D g�1 F r3, and hence there
exists an r1 2 hG n ¹r3r2 F r3; r3 F r2; r3; g�1 F r2; g�1 F r3º. Since r1 F g 6D g,
Corollary 5.10 with s D g implies that .adW /4.V / ¤ 0. This is a contradiction
and hence hG 6' Aff.5; 4/.

Lemma 5.24. Assume that .adV /2.W / D 0 and .adW /4.V / D 0. Then hG is
neither isomorphic to .1234/S4 nor to .12/S4 .

Proof. Assume that hG ' .1234/S4 or hG ' .12/S4 . Let r3 2 hG and s 2 gG

with s F r3 6D r3, and let x 2 hG n ¹r3º with r3 F x D x. It suffices to show that
s F r3 D x, s F x D r3, and 'sjhG 6D .x r3/. Indeed, let r2 2 hG n ¹r3; xº with
s F r2 6D r2 and let r1 2 hG n ¹r3r2 F r3; r3 F r2; r3; s�1 F r3; s�1 F r2º. Then we
have r1 F r3 6D r3 since r1 6D r3 and r1 6D s�1 F r3 D x, and hence Corollary 5.10
contradicts to .adW /4.V / D 0.

Now we show that s F r3 D x and s F x D r3. First, 'r3
jgG and 'xjgG are

transpositions by Lemma 5.15 (4). If hG ' .1234/S4 , then r23 F .s F r3/ D s F r3
and '2r3

jhG has only r3 and x as fixed points. Hence we obtain s F r3 D x and simi-
larly s F x D r3. If hG ' .12/S4 , then Lemma 5.18 implies that 'r3

jgG D 'xjgG .
Hence r3x F .s F r3/ D s F r3. Since 'r3

'xjhG has only r3 and x as fixed points,
we conclude that s F r3 D x and similarly s F x D r3.
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Now we show that there exists an element y 2 hG n ¹r3; xº such that s F y 6D y.
If hG ' .1234/S4 , then Lemma 5.19 implies that jgG j � 3 and the claim holds. If
hG ' .12/S4 , then let z 2 hG n ¹r3; xº. Then r3; x and z generate hG as a quan-
dle. Recall that

'r3
jgG D 'xjgG D .s x F s/:

If 'zjgG D .a b/with j¹s; x F s; a; bºj D 4, then jgG j D 2 by a calculation similar
to (5.9) of Lemma 5.19, a contradiction. Otherwise jgG j � 3 as in the proof of
Lemma 5.19. Then again y F s 6D s for four or six elements y 2 hG .

Proposition 5.25. Assume that .adV /2.W / D 0, .adW /4.V / D 0. Then gG[hG

is isomorphic to Z2;22 , Z3;23 or Z4;24 .

Proof. First, gG 6D hG by Lemma 5.15 (2).
If hG is commutative, then

gG [ hG ' Z
2;2
2

by Lemma 5.17.
If hG is decomposable, then

gG [ hG ' Z
2;2
2 or gG [ hG ' Z

4;2
4

by Lemma 5.21.
Finally, suppose that hG is non-commutative and indecomposable. In this case

Corollary 5.11 implies that hG is isomorphic to one of the non-commutative
quandles of (5.8). Since h2 F g D g by Lemma 5.15 (5), Lemmas 5.22–5.24 imply
that hG ' .12/S3 . Then jgG j D 2 or jgG j D 3 by Lemma 5.19 and gG is commu-
tative by Lemma 5.15 (1). If jgG j D 2, then gFx 6D x for all x 2 hG and hence 'g
is a three-cycle and 'hFg D 'h'g'�1h D '

�1
g . Thus

gG [ hG ' Z
3;2
3 :

If jgG j D 3, then .g F h/ F g D g F .h F g/ D h F g. Then Lemma 5.15 (4) im-
plies that

'gFhjgG D 'hjgG D .g h F g/;

a contradiction to Lemma 5.19 and jgG j D 3.

5.4 The proof of Theorem 4.4

Let g 2 suppV , h 2 suppW . Then suppV D gG , suppW D hG by assumption.
Let X D gG [ hG . If gG and hG commute, then

X ' Z
3;1
3 or X ' Z

4;1
T
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by Proposition 5.14. Otherwise, gG and hG do not commute and

X ' Z
2;2
2 or X ' Z

4;2
4 or X ' Z

3;2
3

by Proposition 5.25. The enveloping groups of the quandles Z4;1T , Z2;22 , Z3;13 ,
Z
3;2
3 and Z4;24 were computed in Section 2. Hence the theorem follows from the

universal property of the enveloping group, see Remark 1.7.
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