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Abstract: We considerer partial differential equations of second order, for example the Klein-Gordon equation, the Poisson equation,
on aregion E =(a,,b)x(a,,b,)x(a,,b,). We will see that with a common procedure in all cases, we can write the equation in
partial derivatives as an Fredholm integral equation of first kind and will solve this latter with the techniques of inverse problem
moments. We will find an approximated solution and bounds for the error of the estimated solution using the techniques on problem
of moments.
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1. Introduction S=0E and f, f,, f;, h, and r are known
. . . functions.
We considerer three-dimensional second order fietions .
. ) . ) A lot of work has been done about the numerical
partial differential equations (PDE) of the general . o . .
p solution of second order partial differential equations
orms:

(fio0w,) +[ 00w, ] +(£00w,),

using diverse specific techniques mainly directed
towards particular cases. We cite a few books that can

1
—h(w)—r(x, v,£) =0 M be taken as representative of the subject [7],[12], [3],
[14], [6].
( Si(w)w, )x+( f2(w)wyj - We will show that, following in all the cases a
Y () common procedure, the partial differential equation

(/s (w)w, ), = h(w) = r(x, y,) =0

can be transformed into a three-dimensional integral

equation and that this one can be numerically solved

w, —(fww,) —| fz(w)wyjy —r(x,3,0)=0 (3)

where the unknown function w(x, y,¢) is defined in

using techniques normally employed with generalized

moment problems. This approach was already

suggested by Anget. al.[4] in relation with the heat

E:[al,bl)x[az’bz)x(a&@). In all cases we will

considerer Cauchy conditions on the boundary
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conduction equation and we have applied to the
nonlinear Klein-Gordon equation [10].

Next Section is devoted to show how the
differential equations (1), (2) and (3) are transformed
into integral equations of the first kind that can be
seen as generalized moment problems as is shown in
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Section 3. There we also proof a theorem that
guarantees under certain conditions the stability and

convergence of the finite generalized moment problem.

Finally in Section 4 we exemplify the general method
by applying it to some PDEs which are particular
cases of Egs. (1), (2) and (3).

The d-dimensional generalized moment problem
can be posed as follows: find a function # on a
domain Qc R

satisfying the sequence of

equations
IQ u(x)g,(x)dx=pu, neN 4)

where( gn) is a given sequence of functions lying in
(@)

Many inverse problems can be formulated as an
integral equation of the first kind, namely,

fb K(x, yyu(y)dy = f(x) x & (a,b)

K(x,y)and f(x) are given functions and u(y)
is a solution to be determined, f(x) is a result of
experimental measurements and hence is given only at
finite set of points. It follows that the above integral
equation is equivalent to the following moment
problem

Ib K(x,,yu(y)dy=f(x,) n=12,...

Also we considerer the multidimensional moment
problems

[ K pudy = £(x,)

n=12,.. QcR’

Moment problem are usually ill-posed. There are
various methods of constructing regularized solutions,
that is, approximate solutions stable with respect to
the given data. One of them is the method of truncated
expansion.

The method of truncated expansion consists in

approximating (4) by finite moment problems
.L: u(x)g,(x)dx=p, i=12,..,n (5)

Solved in the subspace <gl,g 250 8 ,,> generated

by £,4,,----&, (5) is stable. Considering the case

where the data ﬂ:(ﬂl,ﬂza-“a/’ln] are inexact,
convergence theorems and error estimates for the

regularized solutions they are applied.

2. PDEs as Integral Equations of the First
Kind
Let F(w(x,y,t))=0 be a partial differential

equations such as (1), (2) o (3). The solution
w(x,y,t) is  defined on  the

E= (al’b1 ] X (az,bz X [03’173 J] and verifies Cauchy
conditiones on the boundary S =OF :

region

W(al’yat)zs1(y>t) W(bpyvt)zsz(y:t)

w(x,a,,t)=s,(x,t) w(x,b,,t) =s,(x,t)

w(x, y,a;) = 85(X, ) w(x, y,b,) =s4(x,y)

Wx(alsyat):S7(yot) Wx(blvy:t)zsg(yat)

w,(x,a,,t) = 55(x,1) w,(x,by,1) = 5,,(x,1)

w,(x, y,a;) = s,,(x, ) w,(x, y,by) = s,(x, )

Let F"=(F(w),F,(w),F,(w)) be a vectorial
field such that w verifies div(F")=h"(w) with
h* aknown function and, reciprocally, if w verifies
div(F")=h"(w) then F(w(x,y,t))=0

Let u(x,y,t,7,5,7) be the auxiliary function
such that

Viu=u_ ‘U tu, =
ug, (x, y,4,7,6,7) +
ugz(x,y,t,r,g,y)+ug3(x,y,t,z',§,7/)
Since
udiv(F") = uh*(w)
we have

j j IE udiv(F*)dV = j j jE uh®™ (wydV

Moreover, as
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udiv(F") =div(uF")—F" -Vu

and

[[[ udiv(Eyav =
(vt~ ], s
we obtain by the divergence theorem
J..”E uh™(w)dV = ”S (uF")-nds— ”LF NudV
(6)

whereVuz[uT,ug,uyj

If F(w) , F;(W) and F;(W) are non linear
functions of W then (6) gives:

I, 0 -3 £ e sy -
G(xayat)_A(xayat)_B(x’yat)_C(X,yat) (7

[ uCe. vt e pdédedy

where

Gy = [ [ (e =B)F 0wz =b)
~u(r = a)F(w(r = @))d&dy
[ wE=p)Rm(E =)
“u(¢ =a)F(w(€ = a ))drdy
] =) F vy =b,)
—uly = a)F,(wly =a, ))drdé

u(r =b,) reads u(x, y,t,b, £, )
Gyt = [ [ (e = b (wlr =)

~u,(r=a)F(w(r =a)))dédy

Bleyt) = [ (& =b)FY (w(E=b,)

—uy (& = a) F (W& = a,)))dydr

Clevan) = [ [, (r =b)F! (wly = by))

—u, (y = a) ' Wy = a;)))drdg

also
F(w) = | F(wydr
Ef (w) = [ Fy(w)dé
! (w) = [ F(wdy
If F(w), F,(w) and F,(w) are linear

functions of W and we also assume that
Vu= (ukl (x9y7t9 7, 53 7)’
ukz (x’yat’ Ta gﬂ 7/)’
uky(x,,t,7,&,7))
then (6) gives:
3
jbl J‘bz jbs u [h*(w) + Z F;(W)k’Jdng
4 vay Ja3 i=1 ®)
b by by
= G(X, y’t) _.[al J:b J‘az ur(r’ 55 7)d§drd}/

2.1 Elliptic Partial Differential Equation

If
Ew(x, y,1) =

00w,), +(fww,), +
(f;)(w)wt)t —]’l(W) —I"(X, y,f) =0
We write

(fiowpw, ), +(£,00w, |+
(LW, | =h(w)+r(z.8.7)

We take
F =(f,(ww, s S, Ww,, f3(w)w,)

%/_/
F(w) Fy(w) Fy(w)

SO

div(F") = (f(w)w,), + (L (W)w,),
HLEMWW,), =h(w)+r(x, y,1)
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and

h(w) = h(w)+r(7,8,7)

besides

Fr (W)= [ Fi(widz = [ fiw)w,dr = [ f;(w)dw
Ef (w) = [ FOndE = [ fL(ww.dé = [ f,(widw
Er(w) = [ F(wdy = [ fiwyw,dy = [ f,(w)dw

Functions Fj(w), F,(W) and F,(W) are not
linear of w then(6) reads:

NN Ifu(h(w)—iE’”(w)g,«]dédrdy%,
R i=1

where

;nyt = G(x,y,t)—A(x,y,t) _B(x’yvt)
b by by
~Cly.n=|'["[ ur@.é.dydéde

Next we will considerer particular cases according
with the values taken by A(w), F”(w) and
F(w)

2.1.1. Linear Poisson Equation

If h(wy=w F’(w)=w F/(W)=w then

(w, ), +(we ), 4w, ] =wer@ e

We choose
u(x, y,t,7,E,7)=e e e
then
Vu = (—xu,—yu,—tu)
y
Vu=xu +y2u +tu
$0
gyl y)=x
&y t1.8,7)=y’
& (X.Y.1,7.8,7)=
Then

Lb' Lbz Jj uw(l—x> —y* —t")dydEdr = U,

Thus
Ihl Ibz J.b3 e e e " wdydédr
a Ja, Ja;
_ Hy
C(A-xt -yt =)
2.1.2. Non Linear Poisson Equation
If F'(w)=F'(w)=F'(w)=w we have the

nonlinear Poisson equation or Hemlhotz equation
(”ﬁ1+ﬁ%k+(WJy=hﬁﬂ+V@3é7)

We choose

u(x, y,t,7,6,7)=

= /leyl

e e cos(ty) =>Viu=xu+y’ —t'u
gl(x5y3tar’§9}/):x2 g2(x’y7taz-:§,}/):y2
g3(x:yvtofaé:a7):_t2
Therefore
bipby by 2 2 2
J.u L L’ u(h(w)y—wx™ —wy” +wt")dyd&dr
= /Ll)g’t
If 2 =x’ +y2 then

[ el

= ;xy
Now we estimate #(w)with P, (7,&,7). Then the
approximate solution for w s h (pn (7,87 ))
assuming that ! is Lipschitz in R’

2.2 Hyperbolic Partial Differential Equation

For the Klein-Gordon equation we can use the
general form deduced for elliptic equations.
If FPwy=w , Ff(W=w and F/(w)=-w

we have:
(w,),+(w:],=(w, ] =hw)+rz.57)

Take

B

ult,x,t,&,7)=e e e

=Vu=x"u+ yzu +17u
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Then with
bl bz b} 2
jal .[12 ja3 u(h(W)_Wx ’u«‘fyf = G(X, y’t)_A(x’ Y t)_
b by b
—wy? +wi')dydédr = p,, Bx,y.0)=[ [ [ ur(z.&,y)dydéds
If £=x"+ y2 then
- 2.3.1
J' J‘ 2 J‘ 3 e—xre—yieﬂ/x +y 7h(W)d}/dé:dT — ;xy If EP(W) — F’ZP(W) =W then
Now we estimate A(w)with p,(7, &,7). Then (Wr)r + (Wé j; W, = h(w)+r(z,8,7)
the approximate solution for w is h (Pn (7,87 )) We take again
. 1 it .. 3
assuming that 2~! is Lipschitzin R°. u ( 1 X7, f, 7/) _ eixref’“fefw —

2.3 Parabolic Partial Differential Equation Vu = (—=xu,—yu,~tu) y Vu=xu+yu+tu

heref
(i) +( 00w, | =w, —h(w)=r(x,y,n=0 B0
L R
We write [ [0 eere thow -
(fl(W)WT )T + (fz(W)Wg L —w, =h(w)+r(7,8,7) xX’w—yw+mw)dydédr = Moy
) If t=x"+y" then
Take bopby pbs —y& —(x*+y*)r -
F* =(E(W)5F;(W)aF;(W)) J.‘11 'Lz I”s ¢ ¢ ¢ (h(W))d}/dé:dT - luxy
_ h(w)is estimated by using p,(7,&,7). Then the
=AW, f(Ww.,-w) 1
approximate solution for y is /A~ ( p.(t. 8,y ))
Then . I - 3
. assuming that /' 1is Lipschitzin R
Loow, ) —w, =0 +r(egy) A0V =0 and FEOO=EICD = then
3
and .[ ' .[ : .[ : e e e (_XZW
h*(w)=h(w)+
i (W) (W) r(T’ 55 7/) _y2W+ tw)d]/dgdz_ — ﬂxy[

J.: J':: J': e—xre—yfe—zrw(_xz _yz i) dydédr =

Frow = Fwdr =] foowar =] fonaw
Moy

(_xZ _yZ +t) _ﬂxyt

=[1 [ [ wwdyagdr =
Eron =] Ewae=] foowae=] fonaw =L L L owdrdsde =
In thi F. i li functi f .

n this case F5(w) is a linear function of w 3. Solution of Generalized Moment Problems

F,(w) and F,(W) are not linear function of w then
(6) gives: If (7) and (8) can be written in the form:

Ib Ib Ib u(h(w)— F? (w)g, — j”l j” jb F(W(z,&, y)K(x,y,t,7,&,y)drdédy

B (W)g, + EWk)dydsdr = u,,, = ¢(x,3,1)
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with  @(x,y,t)e [’(E) , then taking a basis
{w, (.30}, of I*(E) this Fredholm integral
equation of the first kind can be transformed into a
three-dimensional generalized moment problem

117 [ Fove. &K, (2.6 dedcdy

=u, m=0,1,2,...
(10)
where
Km (T’ é’ }/) =
bl b2 h3
J 1. ), K@yt (x.y.0dedydr
(11

and the moments 4, are

o= [ ] #Ce s, (e dsdvar (12)

If the functions {Km (@, )}m are linearly
independent then the generalized moment problem
defined by equations (10), (11) and (12) can be solved
considering the correspondent finite problem

Ib Ib Ib FW(7,8,7)K,, (7,8, y)drdédy =

u, m=0,12,...n neN
(13)
whose solution we denote

(0., = B(7.E,7) = F(w(r,&,7))

If F(w) has inverse, then

Fﬁl(pn(faf’ﬂ/)): w,(7,&,7) is an estimation of
w(7,8,7).

To reach this result let considerer the basis
{o.(z.8.0))
{Km(faég# )};:0 by Gram-Schmidt method and

addition of the necessary functions in order to have an

continuous

obtained from the sequence

orthonormal basis.

We then approximate the solution /A (T, 4 )
=F(wW(r,&,y)) de (13) with

PALEN=Y A0 0.67)

with

A =Zolcl.juj i=0,1,...,n
J=

where the coefficients Ci]. verifies

G =
i-1 K.(z,&, (7, &, o
Z(_1)< (7,809, (725 7/)> ij .||§0,-(T,§,}/)”
k=j ”(pk (T’ é:a 7/)"
l<i<ml<j<i (14)

C=lp@éan|" i=0La,n  (5)

We extend to the tridimensional case the arguments
of reference [8] to proof the

Theorem Let { ll’lm}n:() be a set of real numbers

andlet & and E be two positive nembers such that
n by by b 2 5
Y[ K@ enB.é drdédy —p, <&
m=p |v% T2 Ta

(16)

y
b b, ¢b
L1 -ay 8+, -a,) B
+(b, _a3)2ﬁ;]d7d§d7/ <E’
then

1" [C18.eparazdy <

min {CCT H2.92 +E—22; m= 0,1,...,n}
Z 12(m+1)

a7
where C is the triangular matriz with elements C[j
(I<i<ml<j<i).

and
Ib fb J b P (T.E )= B(r.&.y) drdédy
2 (18)
e
i oF (x) s Lipschizin R’ , e

”F_l(x)—F_l(y)”Sﬂ”x—y” for some A and
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Vx,y€R’ then
J-bl J~b2 J-bl

< A[CCT [+

= (19)
12(n+ 1)2}

Dem.) The demonstration is similar to that we have
done for the unidimensional generalized moment
problem [8], which is based in results of Talenti [13]
for the Hausdorff moment problem. Here we simply
introduce the necessary modification for the
three-dimensional case.

Without loss of generality we take {,Um = O}:,:O
in (16).

We write

B(T.6.7)=h,(7,6,7)+1,(7,5,7)

where 1, (7,&,7) is the orthogonal projection of
Bz, S,7) on the
{Km (7.8 )}:1:0 generates and
tn(Tsf’J/):,B(Tafﬂ)—hn(f,f,}/) is the
of p(r,&,7) on the

In terms of the basis

linear space that the set

orthogonal projection
orthogonal complement.

{(pi(r, ¢, 7/)}?;0 the functions hn(T, $,7) and
t (7,&,7) reads

h(5.6.7) =Y 20,5.E.7)

L= Y Ap(r.Ey)

i=n+l
with
A= Z(; Cyu; i=0,1,...
=

and the matrix elements C[j given by (14) and (15).

In matricial notation:

4 ty

Besides

=[] Al pdrdsdy
w=I [ pa.enk .cpdedzdy

Therefore
LI
ay Ya; Yaq

=(C'cu,p)<|c |4 <|c"c|e’

h[drdédy =(2,2) =

To estimate the norm of £, (7,&£,7) we observe

that each element of the orthonormal basis

{(pi(r, ¢, }/)}ZO can be written as a function of the

elements of another orthonormal basis, in particular

the set { (7,8, 7)}k I con
‘B{lr (z,8,7)= le (T)Lzz (é)Lsr ) Wlth le (7)

Legendre polynomial in (al,bl), L,/ (&) Legendre

polynomial in [az,sz R L3,(§) Legendre

polynomial in [a3wb3 j

0 @EN =33 1 Pu(r.E7)

k=0 [=0 r=0

The Legendre polynomials L,, (7) verify

di[(al )b~ 1)Ly (2)] =
T

k(k+1)L, () k=0,1,2,..

and analogous property for the polynomials L, (&)
and Ly, ()
Deﬁnlng ﬂ’ljll = Z[:nﬂ ﬂ’[yklr,i we can

demonstrate that
< i i i k(k+ l)ﬂ,:,f

by 2
l, I J.
“ k=0 =0 r=0

J.b3J‘ I \—a,) B, &, y)drdédy

n+l

and
jb j "M, [aracay < S S+ <
3 50 T4 k=0 1=0 r=0
el L

S B (5, &,y)drdédy

~

n+1
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by by b 2 Z = %2
[T [ e fdedzdy <35> rr+1)A5 <
s S0 T4 k=0 =0 r=0
__J__EI%I%IMﬂ%—aﬁaf(nggddfdédy
An+1) o Sa e ’

From these equations we deduce that
by by by

swlﬂ)z f f f [(by — a)2B2(x,€,7)

az az ax

~

+ (bZ - aZ)Zﬁfz(T' E! y)
+ (b; — a3)*B7 (z,§,y)] drdédy

2 E?
ZLn (T: é:o 7/)| de(.j:d]/ S

by phy b
I 1T z

% v% T4 l2(n+1)
Adding the expressions for the two standards

h@EN| y

An analogous demonstration proves inequality (19).

4. Examples

In each case we choose u(x,y,t,7,&,7) such
that  A(x,y,t) , B(x,y,t) , C(x,y,t) and
G(x, y,t) are well defined.

4.1. Klein-Gordon Equation

We apply the method to the equation
4.1.1.

W, + W, —w, =0

in the domain E:[O’O'S]X[OQO'S]X[OJO‘S] and

boundary condition on OF given by
1

(+y7+&)
1
(+y+&)
b
(1+7)’
1
(1.5+7/)2

1
W(O,§,y)=ln[(l+7/)2}+ln

+In

w(0.5,&,y)=In

1
(l.5+;/)2

+In

w(z,0,7) =In

(I+y+7)

+In

w(7,0.5,y)=In

(I+y+7)°

t(7,¢&, ]/)”2 result (18) is reached.

Partial Differential Equations as Three-Dimensional Inverse Problem of Moments

1 1
,6,0)=1 +1
w©¢,0) 4a+n2 "arey
1 1
w(7,5,0.5)=In > (+in 5
(1.5+7) 1.54+¢)
2
WT(O,QC,]/)=——
1+y
2
w (05,¢&y)=——
(0.5,8,7) 54,
2
505 e
w:(7,0,7) Ty
2
,0.5,7)=—
#(7.05.7) 1.5+
2 2
s 90 S —
" (7.6.0) l+7 1+&
2 2
,6,0.5)=— —
" (7:6.05) 1.5+7 1.5+¢

We take

—(14x)7=0.6(1+y)E-2(1+1)y

u(x,y,t,r,&,y)=e

We compare our numerical solution, obtained with

n =12 moments with the known exact solution

+In

(I+y+8)

In this case the accuracy of the approximate

solution W, (7,&,7) is

0.5 £0.5 005 5
W, —Wwl dt =0.
Io .[0 J‘o | 12 | drd&dy =0.0369106

W(T’g’y):ln[(l+y+r)2

4.1.2.
Now we apply the method to the equation

W, W, —w, =—e " Sin($)

in the domain £ = [O,I]X[O,I]X[O,l] and boundary
condition on OE given by
and boundary condition on OE given by

w(0,&,7) = e Sin(&)
w(l,&,y)=e"7Sin(§)
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w(7,0,7)=0
w(t,l,y)=e ""Sin(l)
w(7,&£,0) =e "Sin(&)
w(r,E,1)=e "' Sin(&)
w,(0,8,7) = —e "Sin(&)
w (1,§,7) =—e7"'Sin($)
w:(7,0,7)=e"""
w(7,1,7) =7 Cos(1)
w,(7,8,0) =—e""Sin(¢)
w,(7,8,1) = —e 7 Sin(&)
We take

—(+x)z—(1+p)E-(1+t)y

u(x,y,t,r,f,}/):e

We compare our numerical solution, obtained with

n =12 moments with the known exact solution

w(z,&,7)=e "7 Sin($)

In this case the accuracy of the approximate
solution W,,(7,&,7) is

[ 1 [ o —wldededy =0.096371

4.2. Non linear parabolic equation

Let consider the non linear hyperbolic equation
a2 +&+y —2(t+&+y)
W, +We =W, =W +(3e —1e

in the domain £ =[0,1]x[0,1]x[0,1] and boundary
condition on OF given by

w(0,E,0)=e*7  wl,&y)=e 7

w(z,0,y)=¢e " w(t,L,y)=e "7
w(r,&,0)=e "¢
Wz’ (O: 53 7/) = _e—7—§

we(7,0,7)=—€""

w(r,&,1) = e !
Wr (13 ga 7/) = _e—}’—l—'f
w,(z,Ly)=—e"""

W}/ (Ta é:: O) = _672-75 Wy (T: Vs 1) = _6717775

We take

—(1+x)(1+7)—(1+ ) E+D)-(1+0)(A+y)

u(x’y’t’z-’§77/):e

We compare our numerical solution, obtained

with #=4 moments with the known exact

solution

w(r,&,y)=e "7

In this case the accuracy of the approximate
solution W,(7,&,7) is

fol Iol Iol lw, —w[drdédy = 0.0420354

5. Conclusions

Let F(w(r,&,7))=0 be a partial differential
equations. The solution W(7,&,y) is defined on the
region £ :(ﬂl,bljx[az,bzx(%,bs)] and verifies Cauchy
conditiones on the boundary §=0F . Let
F* =(F,(w),F,(w),F;(w)) be a vectorial field
such that w verifies div(F")=h"(w) with * a
known function and, reciprocally, if w verifies
div(F*)=h"(w) then F(W(7,&,7)=0 Let
u(x,y,t,7,&,7)  be the
u(x,y,t,7,&,7) such that

auxiliary  function

Viu=u,_ +u., +u, =ug(x,y1,7,¢,7)

+ug, (X, 3,4,7,6, ) +ugy(x, ¥,1,7,6,7)

Then we can write the equation in partial
derivatives as an Fredholm integral equation of first
kind. Can solve the partial differential equation as a
generalized inverse moment problem if the integral

equation is of the form
b by b
[ [" Foue. DK (et m, £ p)dydéde

=P(x,y,1)
where K (x, y,¢,7,&,7) is such that

K, (7,6,7)=
by pby by
J 1, ], KGeyz. gy, (x.y.0)didydx

m=0,L2,...
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are linearly independent with y, (x,,f) a basis of
L*(E)
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