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ABSTRACT
Chaotic orbits su†er signiÐcant changes as a result of small perturbations. One can thus wonder

whether the dynamical friction su†ered by a satellite on a regular orbit, and interacting with the stars of
a galaxy, will be di†erent if the bulk of the stars of the galaxy are in regular or chaotic orbits. In order
to check that idea, we investigated the orbital decay (caused by dynamical friction) of a rigid satellite
moving within a larger stellar system (a galaxy) whose potential is nonintegrable. We performed numeri-
cal experiments using two kinds of triaxial galaxy models : (1) the triaxial generalization of DehnenÏs
spherical mass model (Dehnen ; Merritt & Fridman) ; (2) a modiÐed Satoh model (Satoh ; Carpintero,
Muzzio, & Wachlin). The percentages of chaotic orbits present in these models were increased by per-
turbing them. In the Ðrst case, a central compact object (black hole) was introduced ; in the second case,
the perturbation was produced by allowing the galaxy to move on a circular orbit in a logarithmic
potential. The equations of motion were integrated with a nonÈself-consistent code. Our results show
that the presence of chaotic orbits does not a†ect signiÐcantly the orbital decay of the satellite.
Subject headings : galaxies : interactions È galaxies : kinematics and dynamics È methods : numerical

1. INTRODUCTION

Chaotic orbits can appear in stellar systems for several
reasons, such as density gradients in the core, Ñattening, and
rotation. In the case of elliptical galaxies, with an almost
nonrotating Ðgure and where the dynamics is free of gas, the
presence of chaotic orbits is attributed to the galaxyÏs tri-
axial shape and to the central perturbations (e.g., Udry &
Pfenniger 1988 ; Merritt & Fridman 1996). The inclusion of
central singularities, containing a large fraction of galaxy
mass, has a substantial inÑuence on the dynamics and evol-
ution of the surrounding stars, mainly a†ecting the box
orbits present in triaxial systems (Gerhard & Binney 1985).
These models are supported by Hubble Space Telescope
observations (Crane et al. 1993 ; Ja†e et al. 1994 ; Ferrarese
et al. 1994 ; Lauer et al. 1995) that show that elliptical gal-
axies and bulges of spiral galaxies exhibit a variety of cusp
strengths and possible central black holes (Ford et al. 1994 ;
Miyoshi et al. 1995). For the spiral barred galaxies, the
chaotic trajectories may be important owing to the rotation
of the Ðgure and the bar perturbation (Contopoulos &
Papayannopoulos 1980 ; Contopoulos 1983 ; Athanassoula
et al. 1983 ; Pfenniger 1984) and to the e†ects of the gas that
joins the bar and the spiral arms (Contopoulos & Grosbol
1989). Finally, Carpintero, Muzzio, & Wachlin (1999, here-
after CMW), Muzzio, Carpintero, & Wachlin (2000a), and
Muzzio, Wachlin, & Carpintero (2000b) have recently
shown that, inside the stellar system they analyzed, chaotic
stellar orbits are very common, and, in some cases, they
may outnumber the regular orbits.

Given the presence of chaotic orbits in some stellar
systems, one can wonder whether the dynamical friction
(Chandrasekhar 1943) su†ered by a body moving within
such systems di†ers from the one it would be subject to in
the presence of regular orbits only. There is no study on this
subject aside from the interesting, but limited, one by Pfen-
niger (1986). Pfenniger discussed the di†erent responses of
regular and chaotic orbits to perturbations and concluded
that relaxation times in nonintegrable potentials might be

orders of magnitude lower than in integrable potentials. He
referred only brieÑy and tangentially to dynamical friction,
mainly through its relationship to the relaxation time (his
eq. [2]), but he indicated that although irregular orbits
su†er a larger friction, this does not mean that dynamical
friction on the whole system is necessarily stronger. Now, it
is clear that a chaotic orbit may su†er large changes as a
result of interstellar encounters, but it is doubtful whether
that e†ect can be called dynamical friction in the sense used
by Chandrasekhar. As the change in the orbit is mainly due
to the properties of the orbit itself, one cannot indicate a
priori what will happen to the orbit ; for example, there is no
guarantee that a satellite on a chaotic orbit will tend to fall
toward the center of the system, as a satellite on a regular
orbit would do, because the orbital changes due to
chaoticity will probably, as indicated by Pfenniger, be more
important than the general slowing down envisaged by
Chandrasekhar. We are interested, instead, in the dynami-
cal friction experienced by a body moving on a regular orbit
within a stellar system with a large fraction of stars on
chaotic orbits. Let us follow ChandrasekharÏs view and
regard dynamical friction as being due to the accumulation
of the e†ects of successive encounters between the body and
individual stars. We may reason that, if stellar motions are
more signiÐcantly altered when the corresponding orbits
are chaotic, then, by reaction, the motion of the body will be
more a†ected than when the stellar motions are only slight-
ly perturbed because they are on regular orbits. One might
thus expect dynamical friction to increase in the presence of
chaotic orbits.

A popular way to investigate dynamical friction is
through the orbital decay of a galactic satellite. Neverthe-
less, it should be recalled that orbital decay is a very
complex phenomenon in which several physical processes
intervene (dynamical friction, tidal deformations of both the
galaxy and the satellite, mass loss due to the interaction,
etc.). As a result, there are widely di†erent opinions among
di†erent authors (Bontekoe & van Albada 1987 ; Zaritsky &
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White 1988 ; Weinberg 1989 ; Tremaine & Weinberg 1984 ;
& Dupraz 1994, 1996), most of them summarized bySe� guin

Cora, Muzzio, & Vergne (1997, hereafter CMV), who per-
formed their own numerical experiments on orbital decay of
galactic satellites and added some conclusions of their own.
In order to evaluate dynamical friction from the orbital
decay of a satellite, the numerical experiments must be
designed so as to avoid that other e†ects inÑuence the
results. From the start, it is obvious that one must use a
single-body, undeformable, satellite to prevent mass loss
and structural changes from a†ecting the results (Prugniel
& Combes 1992 ; Colpi, Mayer, & Gobernato 1999). Struc-
tural changes in the galaxy are more difficult to avoid, as
the orbital decay of the satellite necessarily injects energy in
the galaxy, but CMV showed that for low-mass satellites
(typically, 1/100 the mass of the galaxy or less), the changes
in the galaxy are small enough to not alter the results.

Another very useful Ðnding of CMV was that essentially
the same orbital decay results are obtained with self-
consistent and nonÈself-consistent codes. This result was
not obtained by Hernquist & Weinberg (1989) because of
their deÐnition of nonÈself-consistency, in which the poten-
tial Ðeld is Ðxed in time and is not allowed to move
spatially. This is the numerical analog of the
nonÈself-consistent analysis performed by Weinberg (1989).
To avoid confusion because of the use of the term self-
consistency, let us emphasize here that, for us, a self-
consistent code is one in which the potential is derived from
the distribution of particles itself, while in a nonÈself-
consistent code, the form of the potential is Ðxed in time (it
does not change as the particle distribution does), although
it is allowed to move spatially around the center of mass of
the galaxy-satellite system. This result of CMV is very useful
for our present work because, on the one hand, nonÈself-
consistent codes are simpler and run much faster in a com-
puter, and, on the other hand, one does not need to generate
initial conditions that correspond to a self-consistent
system. Nevertheless, it is worth recalling that some caution
is needed to avoid undesirable e†ects. For example, it is well
known after White (1983) that both the galaxy and the
satellite should be allowed to rotate around their common
center of gravity, as the seemingly innocent idea of Ðxing the
center of the galaxy and letting the satellite rotate around it
spuriously and dramatically changes the orbital decay times
(in fact, WeinbergÏs di†erent deÐnition of self-consistency is
related to this e†ect). It is worth noting that, with our nonÈ
self-consistent method, the distribution of particles reacts to
the presence of the satellite, thus ensuring that e†ects such
as the formation of a wake are included in the simulation.
Only second-order e†ects, such as the action of the Ðeld of
the wake on its own distribution, are ignored, but these are
negligibly small for satellites of low mass, as indicated. Our
method is similar to the multiple three-body algorithm
(MTBA) of Borne (1984), used by & Dupraz (1994),Se� guin
who also concluded that self-gravity is a minor ingredient of
the global process. The moderate e†ect of self-gravity on
dynamical friction was also noted by Wahde, Donner, &
Sundelius (1996), who also found that the e†ect of velocity
dispersion is small ; it is worth recalling, however, that their
work refers to disk galaxies only.

Thus, we decided to investigate the sensitivity of dynami-
cal friction to the presence of chaotic orbits by means of
nonÈself-consistent numerical simulations of the orbital
decay of a satellite inside a galaxy. The basic idea was to use

pairs of galaxy models such that both members of the pair
have similar density and velocity distributions, but with one
of them (called the ““ basic model ÏÏ) made up of stars mainly
on regular orbits, and the other one (called the ““ chaotic
model ÏÏ) including a large fraction of chaotic orbits.
Although the idea is simple in principle, it turned out to be
very difficult to Ðnd pairs of models with those properties.
Nevertheless, as we are interested in checking the impor-
tance of a particular physical e†ect, there is no need to use
models that mimic real galaxies, but purely theoretical
models are perfectly suitable as well. In fact, one of the
advantages of numerical experiments is that we can add or
suppress at will certain e†ects in order to isolate better the
process we want to study. Taking into account that the
chaotic regions of the phase space of a nonintegrable poten-
tial grow when a perturbation is introduced, we can take as
one member of those pairs a model with a slightly nonin-
tegrable potential (which has few chaotic orbits) and, as the
other member, the same model with a perturbation added
(to increase the number of chaotic orbits).

The central cusp models used by Merritt & Fridman
(1996) are adequate candidates for the present purpose, par-
ticularly considering that our use of nonÈself-consistent
methods prevents any evolution of the system toward
axisymmetry (Merritt & Fridman 1996 ; Valluri & Merritt
1998 ; Merritt & Quinlan 1998) with the possible decrease of
the percentage of chaotic orbits. Another way of perturbing
the system is by means of rotation, which may yield a high
degree of chaoticity (CMW; Muzzio et al. 2000a, 2000b).
These two di†erent types of perturbations a†ect di†erent
orbit families in the models : the central compact object
perturbs box orbits more e†ectively, while the rotation used
by CMW a†ects more strongly the tube orbits. Of course,
the e†ect of the perturbation should be included in the
equations of motion of the particles that make up the
galaxy, but not in those of the satellite. In that way, were it
not for the particle-satellite interactions, the orbit of the
satellite would be the same in the models with and without
perturbation ; any departures can then be attributed to the
di†erent sort of stellar orbits (regular or chaotic) present in
each model.

Section 2 gives the details of the numerical code used to
perform the simulations, as well as the numerical techniques
employed to carry out the orbital classiÐcation in each
model. The properties of the triaxial models considered, and
of the perturbations introduced in each case, are described
in °° 3 and 4, respectively. The results of the orbital classi-
Ðcation performed in each case to determine the percentage
of chaotic orbits present in the models used are also given in
these sections, together with the results of the simulations.
Finally, ° 5 discusses the results obtained in °° 3 and 4.

2. NUMERICAL TECHNIQUES

2.1. Integration Code
We have shown before (CMV) that it is irrelevant for

dynamical friction investigations whether the interactions
among the particles that make up the galaxy are taken into
account or not. Therefore, we adopted a nonÈself-consistent
code in which the galaxy and the satellite are represented
with rigid potentials ; the particles that make up the galaxy
interact with these two rigid potentials, but not among
themselves, while the motion of the satellite is governed
exclusively by its interactions with those particles. Thus, the
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equations of motion are
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The Ðrst equation is valid for the N particles that make up
the galaxy (i\ 1, . . . , N), each one of mass (4 M/N, Mm

ibeing the total mass of the galaxy), and ' is the potential
that represents the galaxy. The second equation corre-
sponds to the satellite, of mass and softening parameterm

sand G is the gravitational constant. The vectors ande
s
, r

i
r
sgive the positions of the particles and of the satellite, respec-

tively, which are referred to the center of mass of the galaxy-
satellite system. The equations of motions were inte-
grated using a seventh-/eighth-order Runge-Kutta-Fehlberg
routine.

Our equations of motion do not guarantee that the sum
of all the internal forces on the particles at positions r

i
,

equals zero. Since this may cause a nonphysical$'(r
i
),

acceleration of the galaxy, small corrections to the acceler-
ations were introduced at each integration step for all par-
ticles. These corrections coincide with the mean internal
acceleration of the galaxy for the x coor-([£
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dinate ; similar expressions are valid for the other ones). In
this way, the sum of the internal forces is cancelled.

This procedure yielded a good conservation of the total
linear momentum and energy of the galaxy-satellite system;
the fractional energy variations were kept below o*E o /
oE oD 5 ] 10~6 for time intervals of 20 crossing times.

2.2. Orbital ClassiÐcation
After choosing the ““ basic model ÏÏ (to represent the

galaxy) and the perturbation (that was introduced to obtain
the ““ chaotic model ÏÏ) we had to classify the orbits in each
model in order to determine whether they behaved regular-
ly or chaotically and to make sure that the latter model had
a substantially larger number of chaotic orbits than the
former.

A standard way of detecting and quantifying chaoticity is
through the computation of the Liapunov characteristic
exponents (e.g., Lichtenberg & Lieberman 1992), which give
the mean exponential rates of divergence from a given tra-
jectory. They are deÐned as limiting values over an inÐnite
time interval, being nonzero for chaotic orbits. Numerical
approximations, computed over a Ðnite time interval, are
sometimes called ““ Liapunov characteristic indicators ÏÏ and
can be computed using the Gram-Schmidt orthog-
onalization technique, described by Benettin et al. (1980)
and implemented by Udry & Pfenniger (1988) who kindly
let us use their LIAMAG routine.

Accurate determination of the Liapunov characteristic
indicators calls for integrations that extend over many
orbital periods, which demands extremely long computa-
tion times, particularly when the galactic potential has a
complex expression as in the Ðrst model we investigated.
This fact led us to consider another technique of orbital
classiÐcation that can be used both in two- and three-
dimensional arbitrary potentials. It is based on the concept
of spectral dynamics, introduced by Binney & Spergel
(1982, 1984), using the Fourier transform of the time series
of each coordinate of an orbit. Irregular orbits yield essen-
tially a continuous spectrum, but regular orbits have basic

frequencies (i.e., the frequencies of their angular variables in
an action-angle representation) that can be extracted from
the Fourier spectra and used to classify the regular orbit as
a box, a tube, and so on. Carpintero & Aguilar (1997) pre-
pared a code based in the method of spectral classiÐcation
that allows one to classify automatically large numbers of
orbits within reasonable computing times (full details can
be found in their paper). A copy of their code was kindly
made available to us by D. D. Carpintero.

Before going on, it is worthwhile to emphasize that, in
theory, irregular and chaotic orbits are not necessarily the
same. Irregular orbits have a number of isolating integrals
smaller than the dimension of their conÐguration space and,
if represented in action-angle space, they would not have a
closed representation there, while chaotic orbits exhibit
extreme sensitivity to initial conditions. The former can be
identiÐed by their continuous spectrum in the spectral clas-
siÐcation method, while the latter are recognized by their
nonzero Liapunov exponents. Although it can be shown
that a regular orbit has vanishingly small Liapunov expo-
nents, it has not been proved that an irregular orbit will
necessarily have at least one nonzero Liapunov exponent,
i.e., that it is a chaotic orbit. The generally accepted conjec-
ture is that irregular and chaotic orbits are the same, and we
will follow that trend, but it should be kept in mind that
such a conjecture is not proved and that each one of the
methods we used characterizes di†erent aspects of the
irregular-chaotic phenomenon. The percentages of chaotic
orbits in the di†erent models considered were obtained fol-
lowing a two-step approach. First, the orbits were classiÐed
as regular and irregular using the program developed by
Carpintero & Aguilar (1997) ; in the second, and last, step,
the LIAMAG routine was used to calculate the character-
istic Liapunov indicators of the orbits that the spectral clas-
siÐcation method had identiÐed as irregular or could not
classify. This procedure allowed us to make sure that these
orbits were e†ectively chaotic and, at the same time, to
estimate their characteristic Liapunov times, that is, the
time needed for their chaotic nature to become apparent.

3. TRIAXIAL MODEL WITH CENTRAL PERTURBATION

To Ðnd pairs of galaxy models, comparable in density
and velocity distributions but with di†erent percentages of
chaotic orbits, is not an easy task. One possibility is o†ered
by triaxial systems, where the lack of isolating global inte-
grals of the motion favors the presence of chaotic orbits.
The abundance of this type of orbits is strongly dependent
on the central density of the model, mainly because the box
orbits are sensibly dependent on the form of the potential
near the center (Gerhard & Binney 1985 ; Merritt &
Fridman 1996). Thus, the percentage of chaotic orbits is
very low when the model presents a smooth core (Goodman
& Schwarzschild 1981), while it increases considerably in
the presence of a central perturbation, such as a cusp or a
black hole (Merritt & Fridman 1996 ; Valluri & Merritt
1998). The fact that a large part of the phase space of a
triaxial potential is chaotic, particularly in models in which
the gravitational force grows rapidly toward the center, and
the increasing observational evidence of elliptical galaxies
with central cusps or black holes (Ferrarese et al. 1994 ;
Lauer et al. 1995), make this type of model specially attrac-
tive for the study of the e†ect of chaotic orbits on dynamical
friction.
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3.1. Galaxy
3.1.1. Characteristics of the Model

Following the studies on chaos in elliptical galaxies of
Merritt & Fridman (1996) and Valluri & Merritt (1998), the
galaxy inside which the satellite moves was represented by
the mass model corresponding to the triaxial generalization
of the spherical models of Dehnen (Dehnen 1993), which
was also discussed by Tremaine et al. (1994). These models
have a mass density

o(m)\ (3[ c)M
4nabc

m~c(1] m)~(4~c) , 0¹ c\ 3 , (2)

with the ellipsoidal radius m deÐned by

m2\ x2
a2 ] y2

b2 ] z2
c2 , a º b º cº 0 , (3)

and M is the total mass of the galaxy. The mass is stratiÐed
on ellipsoids with axial ratios a :b :c, where x is the long axis
and z the short one. The parameter c determines the slope of
the central density cusp. For c\ 0, the model has a Ðnite-
density core ; for c[ 0, the central density is inÐnite. These
models are called c-models, and the density behavior is
o P m~4 at large radii. As was mentioned in the Intro-
duction, Hubble Space Telescope observations demon-
strated that elliptical galaxies and bulges exhibit a variety of
cusp strengths, c¹ 2. Even though few if any galaxies are
observed to have cD 0, we decided to use a c\ 0 model as
our ““ basic model ÏÏ to assure that the box regular('(c/0)),orbits do not turn chaotic owing to the central singularity
(Gerhard & Binney 1985). Our ““ chaotic model ÏÏ was
obtained adding a central perturbation produced by a
compact object (say, a black hole) to the basic model.

To represent the black hole we used a Plummer potential

'
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and being the mass and the softening parameter of them
h

e
hblack hole, respectively.

The values of the total mass M, the gravitational constant
G, and the x-axis scale length a were taken as unity, and
those of the semiaxial ratios as c/a \ 0.5 and b/a \ 0.79.
The expressions of the gravitational potential and the com-
ponents of the force corresponding to the c-models with
c\ 0 (Merritt & Fridman 1996) were evaluated numerically
using the Gaussian integration (Press et al. 1992). Following
Merritt & Quinlan (1998), we adopted the maximum pos-
sible value for the black hole mass, When them

h
\ 0.02M.

mass of a central black hole exceeds roughly 2% of the mass
of the host galaxy, there is a transition to global chaoticity
(the boxlike orbits lose their characteristic shapes) and the
galaxy responds by rapidly becoming axisymmetric. This
rapid evolution may provide a negative feedback mecha-
nism that limits the mass of nuclear black holes. The chosen
value allowed us to obtain a considerable percentage of
chaotic orbits with short di†usion times. It was not possible
to adopt a softening parameter, as small as the ones usede

h
,

by Merritt & Quinlan (1998, Table 1), however, because it
would have demanded the use of extremely small integra-
tion time steps and, consequently, prohibitively long inte-
gration times, so that we adopted e

h
\ 0.08.

3.1.2. Initial Conditions

The distribution function of the triaxial system con-

sidered is not known, but, as we do not need to have a
self-consistent system, the initial positions and velocities of
the particles that make up the galaxy were obtained from
the distribution function corresponding to the spherical
c-model with c\ 0 (Dehnen 1993) and eliminating those
particles that fell outside the limiting radius that contained
90% of the total mass or that were not bounded in the
corresponding triaxial potential.

We used 10,000 particles in each numerical experiment.
Each set of 10,000 particles was obtained from 1250 initial
conditions. These conditions, following the distribution
function proposed above, were generated in the whole con-
Ðguration space (including the eight octants). Then the posi-
tion of each particles was projected in the seven remaining
octants of the space (the octants that do not host the par-
ticles initially), obtaining seven new particles from each of
the original 1250 ones. The velocities of these new seven
particles were chosen so as to have moduli equal to the one
of the original particle and with their Cartesian components
assigned so as to have the same orbit for all the eight par-
ticles but with opposite directions. This procedure presents
two advantages. On the one hand, it guarantees that, ini-
tially, the center of mass of the galaxy is at the origin of the
potential and that the system has no net angular momen-
tum. On the other hand, it allows us to estimate the percent-
age of chaotic orbits present in the models considered from
the analysis of one-eighth of the particles that make up the
galaxy only, saving computing time. Using di†erent seed
numbers, we created three pairs of models, each one
having the basic model and the chaotic model('(c/0)),('(c/0)] '

h
).

Starting with those initial conditions, the equations of
motion of the particles were integrated, for a few orbital
periods, in the potentials and allowing'(c/0) '(c/0)] '

h
,

them to mix in the potential that represents the galaxy in
each case. The density and velocity distributions were
obtained in order to check whether there were any signiÐ-
cant di†erences between the basic and perturbed models.
Both distributions were derived considering the masses con-
tained in spherical shells with equal numbers of particles,
and, although this method ignores the triaxiality of the
models, it is enough for comparing them. The density dis-
tribution turned out to be very similar for both models, and
the anisotropy parameter b(r) (Binney & Tremaine 1987) is
^0, so that the velocity distribution is in both cases iso-
tropic. Another quantity that can modify the e†ect of the
dynamical friction is the velocity dispersion. This topic was
studied by Wahde et al. (1996) for disk galaxies, using nonÈ
self-consistent simulations. They found that the velocity
dispersion has a very small inÑuence on this process.
Analyzing the velocity dispersion in our case, we observed
that it does not change during the evolution of the system
and that its distribution is very similar in nonperturbed and
perturbed models, Ðnding a good agreement between two-
and three-dimensional results. Therefore, we can safely
assume that any di†erences that might arise between the
satellite orbital decays in each model can be attributed to
the di†erence in the percentages of chaotic orbits.

3.1.3. Results of the Orbital ClassiÐcation

Our next step, following the scheme of orbital classi-
Ðcation described in ° 2, was to use the program of spectral
analysis to classify the orbits of the particles in the three
pairs of models we had created. The results of the analysis
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TABLE 1

RESULTS OF THE SPECTRAL ANALYSIS OF THE TRIAXIAL GENERALIZATION OF THE c-MODEL WITH c\ 0
WITHOUT AND WITH CENTRAL PERTURBATION (IN PERCENT)

GALAXY 1 GALAXY 2 GALAXY 3

TYPE OF ORBITS ('c/0) ('c/0] '
h
) ('c/0) ('c/0] '

h
) ('c/0) ('c/0] '

h
)

Box . . . . . . . . . . . . . 16.9 7.0 16.9 7.0 17.3 6.9
x-tube . . . . . . . . . . . 25.4 26.5 27.6 29.0 25.9 27.0
y-tube . . . . . . . . . . . 0.1 0.0 0.1 0.0 0.0 0.0
z-tube . . . . . . . . . . . 46.6 47.4 44.3 46.6 44.6 45.5
Irregular . . . . . . . . 11.0 19.1 11.1 17.4 12.2 20.6

for each component of the three pairs of models (dubbed
galaxy 1, galaxy 2, and galaxy 3, respectively) are given in
Table 1, as the percentages of regular orbits (discriminating
between box and tube orbits) and the percentages of irregu-
lar orbits (including those that could not be classiÐed,
because our previous experience with this method indicates
that most of them turn out to be irregular).

As expected, the percentages of irregular orbits in the
chaotic models grow at the expense of the box orbits of the
corresponding regular model in all three cases, in agreement
with previous results (Gerhard & Binney 1985 ; Merritt &
Fridman 1996).

The orbital classiÐcation was completed computing the
Liapunov characteristic exponents of the orbits revealed as
irregular in the previous step for galaxy 1. We took advan-
tage of the knowledge of the periods obtained from the
spectral analysis to integrate the orbits for about 103 orbital
periods, an interval long enough for the computed Liapu-
nov characteristic indicators to level close to their true
value (for an inÐnite time interval). It turned out that the
greatest Liapunov indicator, ranged betweenp1, p1 ^ 9
] 10~5 and 1.5 ] 10~2 in the basic model and between

and 5 ] 10~2 in the chaotic model, asp1^ 2 ] 10~4
shown in Figure 1.

The timescale required by the chaotic orbits to experience
an exponential divergence is given by the Liapunov time,
which is deÐned as the inverse of the greatest Liapunov
exponent. For very low values of the Liapunov times arep1,so large that the corresponding chaotic orbit behaves as

regular during timescales of astronomical interest
(Goodman & Schwarzschild 1981). In the present study, it is
crucial to have orbits with Liapunov times well below the
time that the satellite needs to reach the center of the galaxy,
which we refer to as the ““ decay time.ÏÏ This is necessary to
ensure that chaotic orbits behave as such during the orbital
decay of the satellite, in order to estimate the e†ect of
chaotic orbits on dynamical friction. The time when the
satellite starts to show a marked energy loss, as a conse-
quence of its interaction with the particles of the galaxy, is
referred to as the ““ critical time ÏÏ and can be obtained from
the results of the numerical experiments on satellite decay
that will be described later. We assumed that the chaotic
orbits that a†ected the orbital decay of the satellite were
those orbits that had Liapunov times shorter than this criti-
cal time.

3.2. Satellite
The satellite was modeled as an extended object rep-

resented by a softened point mass. We adopted a satellite
mass larger than the masses of the particlesm

s
\ 0.01M,

that made up the galaxy, and a scale length parameter e
sgiven by the expression (CMV)

e
s
\ eJm

s
, (5)

where e is the scale length parameter of the galaxy, that in
this case coincides with the x-axis scale length a(\1).

The initial conditions were chosen so as to get orbital
decay times larger than the Liapunov times of most of the

FIG. 1.ÈLargest Liapunov characteristic indicators, of each orbit as a function of its energy for the triaxial generalization of the c-model with c\ 0p1,(galaxy 1) without and with central perturbation : basic model (left), and chaotic model (right). The circles identify the orbits classiÐed as irregular by the
spectral analysis method, and the triangles identify the nonclassiÐed orbits.
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FIG. 2.ÈEvolution of the energy of the satellite with respect to the
galaxy (represented by the triaxial generalization of the c-model with
c\ 0) for the basic models (empty symbols) and the chaotic models ( Ðlled
symbols). Each pair of models is identiÐed by a di†erent type of symbol :
circle for galaxy 1, square for galaxy 2, and upward-pointing triangle for
galaxy 3.

orbits classiÐed as chaotic in the perturbed model. From
Figure 1 (right-hand plot), it seems reasonable to discard
those orbits with values of smaller than 2.5 ] 10~3,p1which means that the bulk of the Liapunov times are
shorter than 400 time units. The selected initial position of
the satellite corresponds to a distance of approximately 1.6
times the half-mass radius of the galaxy. Its initial velocity
was chosen so as to have a circular orbit in DehnenÏs spher-
ical model with c\ 0, the simplest one we could consider to
analyze the process under investigation.

3.3. Numerical Experiments
The numerical integrations were performed with a nonÈ

self-consistent code, with the equations of motion given by
equation (1), where the potential ' is or'c/0 'c/0] '

h
.

The e†ect of the compact object at the center of the
galaxy was included in the equations of motion of the par-
ticles that make up the galaxy, but not in those of the satel-
lite. In that way, were it not for the particle-satellite
interactions, the orbit of the satellite would be the same in
the basic and the chaotic models ; any departure can then be
attributed to the di†erent sort of orbits (regular or chaotic)
used in each model.

3.4. Orbital Decay
The time used by the satellite to reach the center of the

galaxy ranged from 375 to 450 time units, approximately,
and the Ðnal integration time (500 time units) was chosen so
as to allow the orbit of the satellite to decay completely.

TABLE 2

RESULTS OF THE ORBITAL CLASSIFICATION CORRESPONDING TO A PAIR

OF TRIAXIAL c-MODELS OBTAINED FROM GALAXY 1 (IN PERCENT)

Type of Orbits ('c/0) ('c/0] '
h
)

Chaotic (TLia ¹ 300 t.u.) . . . . . . . . . . . . . . . . . . 3.7 13.7
Chaotic (300 t.u. \ TLia \ 400 t.u.) . . . . . . 1.2 1.1
Chaotic (TLia º 400 t.u.) ] regular . . . . . . 95.1 85.2

These values are long enough to allow the chaotic orbits
with Liapunov times shorter than 400 time units, which are
the majority, to show exponential divergence during the
orbital decay of the satellite. The percentages of chaotic
orbits that a†ect the satellite are given in ° 3.5.

The orbital decay of the satellite was followed through
the time evolution of the total energy of the satellite with
respect to the galaxy. Figure 2 compares the energy loss of
the satellite in the basic and chaotic models. It has to be
noted that from the evolution of the Lagrangian radius, as
the satellite decays, we also observed that there is not a
structural change for the basic model. The chaotic model
does show a slight expansion with respect to the regular
model (more pronounced in the outer shells), but it occurs
only after the satellite reaches the galactic center, not a†ect-
ing the orbital decay.

Taking as the decay time the time needed for the satellite
to reach an energy of [0.5, we obtained the mean values

and for the basic and chaotic models, respectively,StT
b

StT
cwith their corresponding standard deviations

StT
b
\ 407.53^ 24.6 and StT

c
\ 423.2^ 1.78 .

These quantities indicate that the di†erence between these
values is not signiÐcant and that it is well below the com-
bined 3 p level. The large di†erence between the standard
deviations obtained for the basic and chaotic models is
probably not signiÐcant and due to the small samples used.

3.5. Chaotic Orbits that Might A†ect the Orbital Decay
From the analysis of the 1250 orbits initially generated

for galaxy 1, we obtained, for the basic and chaotic models,
the percentage of orbits considered chaotic with Liapunov
times shorter than the critical time. This time, estimated as
300 time units, corresponds to the time when the satellite
begins to experiment the greatest energy loss. We also deter-
mined the percentage of chaotic orbits with Liapunov times
longer than the critical time, but shorter than the orbital
decay time (400 time units, on average ; see Fig. 2). These
values are shown in Table 2.

We see from the table that the percentage of chaotic
orbits with time units in the chaotic model isTLia[ 300
almost 4 times larger than the corresponding percentage in
the basic model, while the equivalent ratio for irregular
orbits from Table 1 is less than 2. Nevertheless, all those
percentages are small, and the similarity between the decay
times of both models may be attributed to the lack of a large
number of chaotic orbits in the chaotic model. Therefore, in
the next section we examine another kind of model that
yields larger fractions of chaotic orbits than the case con-
sidered here.

4. TRIAXIAL MODEL WITH ROTATION

Another way of perturbing a slightly nonintegrable tri-
axial model so as to increase the chaoticity is to place the
system on a circular orbit in a background potential ; the
perturbed model will be referred to as the ““ rotating model.ÏÏ
The motivation for using such a model comes from the
work of CMV, who classiÐed the orbits found in a modiÐed
Satoh potential (see Satoh 1980 for the original Satoh
model) that, in turn, moved on a circular orbit in a logarith-
mic potential. Even though CMW analyzed only the orbits
in a model with rotation, Ðnding that it has a large number
of chaotic orbits, it is reasonable to expect that the orbits in
the static modiÐed Satoh potential are mostly regular,
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owing to the close resemblance of this potential to the
Plummer potential. This assumption was corroborated in
the present study ; the results are described in ° 4.1.3.

4.1. Galaxy
4.1.1. Characteristics of the Model

Following CMW, we represented the galaxy in our new
basic model with a modiÐed Satoh potential

'S(x, y, z)\

[ GM

Jx2] y2] z2] gMg ] 2[y2] (z/b)2] h2]1@2N
, (6)

where G is the gravitational constant and M is the total
mass of the galaxy, both taken as unity. The values assigned
to the form parameters are b \ 0.8, h \ 0.5, and g \ 0.05
(according to CMW), which yield moderately triaxial equi-
potential curves. The proÐles along the x-, y- and z-axes of
the modiÐed Satoh potential are shown in Figure 3 (left-
hand plot).

The rotating model was obtained letting the galaxy move
on a circular orbit around the center of a background
potential (logarithmic potential)

'
L
(x, y, z)\ 12u2R2 ln [(R] x)2] y2] z2] , (7)

u being the angular velocity of the rotating system, and R
the radius of its orbit ; following CMW, their values were
taken as 0.5 and 100, respectively.

As the galaxy moves on the circular orbit, the x-axis
points in the direction opposite to the center of the logarith-
mic potential, the y-axis lies in the direction of the orbital
motion, and the z-axis is perpendicular to the orbital plane.
The equations of motion are given by CMW. The e†ective
potential of the rotating model is

'ef(x, y, z)\ '(x, y, z)[ 12u2[(R] x)2] y2[ R2] , (8)

where the second term corresponds to the contribution of
the centrifugal energy, and the Ðrst term is the sum of the
galaxy potential, and the background potential,'

S
, '

L
.

Figure 3 (right-hand plot) shows the corresponding e†ective
potential proÐles along x-, y-, and z-axes (notice that the
e†ective potential is not exactly symmetric in the x-
direction). We notice that rotation enhances considerably
the triaxiality of the equipotentials.

4.1.2. Initial Conditions

Since the distribution function corresponding to the
chosen potential is unknown, we generated the initial condi-
tions in a way similar to the one we used for the triaxial
generalization of DehnenÏs spherical model. We started
with the Plummer potential (Binney & Tremaine 1987)

'(r) \ [ GM

Je2] r2
, (9)

whose distribution function is known. The scale factor e was
chosen so that the values of the Plummer and the modiÐed
Satoh potentials coincided at the origin (e \ 0.229, for the
adopted values of the constants g and h).

To have all the particles bounded, we truncated the mass
distribution at the limiting radius that comprises 94% of the
total mass of the galaxy in this way, all the(r

l
\ 1.1165) ;

generated particles had energies lower than E
l
\ [1.1878,

and the half-mass radius turned out to be r1@2^ 0.3.
The equations of motion are easier to integrate than in

the triaxial generalization of DehnenÏs spherical model, and
we were able to consider galaxies with a larger number of
particles. Following the process described in ° 3.1.2, we
obtained two sets of galaxies with isotropic velocity dis-
tribution, one consisting of Ðve galaxies of 50,000 particles
each, and another with three galaxies of 10,000 particles
each. For each galaxy, in turn, we had a pair of models : the
basic and the rotating models. The density and('

S
), ('ef)velocity distributions (and, thus, the velocity dispersion)

were essentially the same in both types of models, so that
any di†erences that might arise between the orbital decay
times of the satellite can be safely attributed to the e†ect of
the di†erent percentages of chaotic orbits present in each
model.

FIG. 3.ÈPotential proÐles along the x-axis ( full line), y-axis (dashed line), and z-axis (dotted line) of the modiÐed Satoh potential without rotation (basic
model [left]) and with rotation (chaotic model [right]).
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4.1.3. Orbital ClassiÐcation

The orbital classiÐcation was performed as indicated in
° 2, analyzing only one-eighth of the particles contained in
the galaxies made up of 50,000 particles.

Our results of the spectral analysis are given in Table 3
where, as in Table 1, orbits grouped under the name of
““ irregular ÏÏ include those classiÐed as irregular as well as
those that could not be classiÐed by the automatic code.

The mild triaxiality of the basic model gives rise to a very
small percentage of chaotic orbits. When rotation is intro-
duced, the percentage of box orbits is only slightly a†ected,
but the percentages of tube orbits are signiÐcantly altered
and the number of chaotic orbits increases at their expense.
Table 3 shows that the x-tube orbits practically disappear
in the rotating model, while the number of z-tube orbits
increases about 10% and the amount of y-tube orbits is
negligibly small throughout.

Muzzio et al. (2000a, 2000b) have discussed the origin of
chaoticity in these rotating models. Suffice it here to say
that it seems to be due to an interplay of three forces : the
attractive force of the galaxy, the di†erential centripetal-
centrifugal force, and the Coriolis force ; the triaxiality of the
model, although causing little chaoticity on its own, sub-
stantially increases it when combined with rotation.

We computed the Liapunov characteristic indicators for
the irregular and nonclassiÐed orbits of galaxy 1. These
orbits were integrated for longer times (104 orbital periods)
than those we had used for the c-model with central pertur-
bation. The results showed that the values of the greatest

Liapunov indicator, ranged between 3 ] 10~4 andp1,5 ] 10~2 for the basic model and between 3] 10~4 and
1.8] 10~1 for the chaotic model, approximately. Figure 4
shows the values corresponding to galaxy 1 as a function of
the energy of each particle for the two models.

While the Liapunov indicators conÐrm that the bulk of
these orbits is chaotic, we will return to them later to discuss
how long does it take to these orbits to exhibit their expo-
nential divergence.

4.2. Satellite
The larger number of particles that make up these gal-

axies allowed us to use less massive satellites, thus obtaining
more realistic conditions. Therefore, we simulated our satel-
lites with Plummer models having the following parameters

e
s
\ 0.01 for ms \ 0.002 ,

e
s
\ 0.0229 for ms \ 0.01 .

The initial positions of the satellite were chosen so as to
obtain decay times longer than the Liapunov times of the
bulk of the chaotic orbits of the particles in the galaxy. Since
dynamical friction is proportional to the mass of the satel-
lite, the less massive satellite should start closer to the galac-
tic center than the more massive one. Therefore, we adopted
as initial positions for the satellites with and 0.01m

s
\ 0.002

the radii that contained 85% and 88% of the total mass of
the Plummer model with e \ 0.229, respectively. These
values are inside the x-axis potential turnover, and a slight

TABLE 3

RESULTS OF THE SPECTRAL ANALYSIS OF THE MODIFIED SATOH MODEL WITHOUT AND WITH ROTATION

(IN PERCENT)

GALAXY 1 GALAXY 2 GALAXY 3 GALAXY 4 GALAXY 5

TYPE OF ORBITS ('
S
) ('ef) ('

S
) ('ef) ('

S
) ('ef) ('

S
) ('ef) ('

S
) ('ef)

Box . . . . . . . . . . . . . 15.6 13.8 15.9 13.6 15.5 12.2 15.5 13.4 15.3 13.6
x-tube . . . . . . . . . . . 46.4 0.8 46.6 0.8 47.9 0.5 47.0 0.7 47.2 0.3
y-tube . . . . . . . . . . . 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.1
z-tube . . . . . . . . . . . 37.2 46.6 36.3 46.9 35.6 48.1 36.5 47.2 36.3 47.8
Irregular . . . . . . . . 0.8 38.7 1.2 38.6 1.0 39.1 1.0 38.7 1.1 38.2

FIG. 4.ÈLiapunov greatest indicator, for each particle as a function of the particle energy for the modiÐed Satoh model (galaxy 1) without and withp1,rotation : basic model ( left), and chaotic model (right). The circles identify the orbits classiÐed as irregular by the method of spectral analysis, and the triangles
identify the nonclassiÐed orbits.
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FIG. 5.ÈTotal energy of the satellite with respect to the galaxy
(represented by the modiÐed Satoh model) as a function of the integration
time corresponding to the simulations with N \ 50,000 and m

s
\ 0.002.

The empty and Ðlled symbols identify the orbital decays corresponding to
the basic models and the chaotic models, respectively. Each pair of model
is distinguished by di†erent symbols : circle for galaxy 1, downward-
pointing triangle down for galaxy 2, diamond for galaxy 3, upward-
pointing triangle up for galaxy 4, and square for galaxy 5.

TABLE 4

MEAN VALUES OF THE ORBITAL DECAY TIMES FOR THE THREE

GROUPS OF SIMULATIONS WITH THE SATOH MODIFIED

GALAXY MODEL

Type of Orbits ('
S
) ('ef)

Group I :
N \ 50,000 StT

r
\ 61.79^ 2.7 StT

c
\ 59.84^ 4.05

m
s
\ 0.002

Group II :
N \ 50,000 StT

r
\ 26.63^ 0.99 StT

c
\ 26.0^ 1.5

m
s
\ 0.01

Group III :
N \ 10,000 StT

r
\ 28.45^ 2.28 StT

c
\ 24.75^ 1.84

m
s
\ 0.01

TABLE 5

RESULTS OF THE ORBITAL CLASSIFICATION CORRESPONDING

TO A PAIR OF MODIFIED SATOH MODELS OF

GROUP I (IN PERCENT)

Type of Orbits ('
S
) ('ef)

Chaotic (TLia ¹ 20 t.u.) . . . . . . . . . . . . . . . . . . . . 0.1 30.9
Chaotic (20 t.u. \ TLia \ 60 t.u.) . . . . . . . . . . 0.3 3.7
Chaotic (TLia º 60 t.u.) ] regular . . . . . . . . . 99.6 65.4

di†erence in the initial radius makes a great di†erence in the
decay times.

In order that the satellite gets an approximately circular
orbit, we gave to it a purely tangential velocity equal to that
needed to obtain a circular orbit in the Plummer model that
mimics the central part of the Satoh potential (i.e.,
e \ 0.229).

4.3. Numerical Experiments
We performed three sets of numerical experiments,

changing the number of particles in the galaxy and the mass
of the satellite. Each set consisted of pairs of numerical
simulations with equal initial conditions for the galaxy, but
the galaxy was represented in one case by the basic model,

and in the other by the chaotic model, The equa-'
S
, 'ef.tions of motion of the satellite were the same in both cases,

so that the satellite did not feel the e†ect of the rotation and
any change in its orbital decay can be attributed to the
e†ect of the chaotic orbits only.

In group I, which includes Ðve pairs of simulations, we
considered a galaxy made up of 50,000 particles and the
least massive satellite Groups II and III(m

s
\ 0.002).

include three pairs of numerical experiments, which simu-
late the orbital decay of the most massive satellite (m

s
\

0.01) within galaxies made up of 50,000 and 10,000 particles,
respectively.

The satellites reach the center of the galaxy in less than
100 time units for the group I models and in less than 50
time units for the groups II and III models, so that those
intervals were chosen for the corresponding total integra-
tion times. Figure 4 shows that there are few orbits with p1

FIG. 6.ÈTotal energy of the satellite with respect to the galaxy (represented by the modiÐed Satoh model) as a function of the integration time
corresponding to the simulations with N \ 50,000 and (left) and N \ 10,000 and (right). Each pair of model is distinguished by di†erentm

s
\ 0.01 m

s
\ 0.01

symbols. The empty and Ðlled symbols identify the orbital decays corresponding to the basic models and the chaotic models, respectively.
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values smaller than 0.02 (i.e., Liapunov times longer than 50
time units), and, consequently, most of the particles have
timescales of exponential divergence shorter than the
orbital decay times.

4.4. Results
Figures 5 and 6 show the orbital decay of the satellite for

each group of simulations.
Although the basic and chaotic models have similar

density and velocity distributions, the perturbation caused
by the rotation might alter the structure of the chaotic
model. Therefore, in order to ensure that di†erences in the
decay times arose only from the di†erent chaoticity, we
followed the evolution of the radii that contained di†erent
percentages of the mass of the galaxy for the two types of
models. Again, our results showed that the global structure
of the galaxy for the basic and chaotic models remained
una†ected during the orbital decay of the satellite.

The satellite decay time was adopted as the time when the
satellite reaches an energy Table 4 gives theEsat \[3.5.
mean values of these times and for the basic(StT

b
StT

cmodels and the chaotic models, respectively, with their cor-
responding standard deviations).

Figures 5 and 6 and the values of Table 4 strongly suggest
that chaoticity has no signiÐcant e†ect on the orbital decay
of the satellites. Nevertheless, before reaching conclusions, it
seems advisable to check the numbers of chaotic orbits that
behave as such in timescales shorter than the satellite decay
times.

4.5. Chaotic Orbits that Might A†ect the Orbital Decay
Repeating the analysis performed in ° 3.5, Table 5 shows

the percentages of orbits with regular and chaotic behavior,
obtained from the 6250 particles initially analyzed in the
basic and chaotic models of group I.

The chaoticity of the modiÐed Satoh model is greatly
enhanced by rotation, as can be seen from Table 5. This
table also shows that the bulk of the orbits manifest their
exponential divergence in timescales shorter than about 20
time units, i.e., an interval after which the satellite begins to
su†er an important energy loss. These results, plus the fact
that it does not exist any signiÐcant di†erence between the
orbital decay times in the basic and the chaotic models, let
us conclude that dynamical friction is not a†ected by the
presence of chaotic orbits.

5. DISCUSSION

The need to investigate the e†ect of chaotic orbits on
dynamical friction arose, on the one hand, from the increas-
ing recognition of the relevance of chaos in many stellar
systems and, on the other hand, from the very interesting,
but limited, suggestion of Pfenniger (1986).

The results obtained with the triaxial Dehnen model were
not conclusive because, even in the cases with a central
compact object, the percentages of chaotic orbits were low.
Nevertheless, those experiments are signiÐcant because, if
chaoticity a†ected relaxation times by orders of magnitude,
as Pfenniger had suggested, and dynamical friction were
similarly altered, even with that low chaoticity, they should
have shown some di†erence in the orbital decay rates.

The difficulty in Ðnding a pair of models with similar
density and velocity distributions, but with di†erent per-
centages of chaotic orbits, had not been recognized by us
initially and proved to be quite a challenge. The investiga-

tion of CMW was extremely useful in solving this problem,
and, although the resulting system may be rather artiÐcial,
it turned out to be very adequate to isolate the e†ect we
were interested in. In this case, the di†erence in chaoticity
between the models with and without rotation is very
important, and, moreover, as the bulk of the orbits have
Liapunov times shorter than the satellite decay times, the
exponential sensitivity of the dynamics has enough time to
manifest itself. Therefore, the results obtained from those
models allow us to safely decide that there is no signiÐcant
e†ect of the chaoticity on dynamical friction.

Let us conclude with some speculation on how our
results can be reconciled with those of Pfenniger. We recall,
Ðrst of all, that Pfenniger centered his discussion on the
relaxation time and that he referred to the possible change
in dynamical friction only as a consequence of the change in
the relaxation time that he thought could be induced by the
chaoticity. We will center, instead, on dynamical friction,
which is a local phenomenon (Cora et al. 1997) and, as
assumed by Chandrasekhar (1943), can be regarded as the
result of the sum of the small e†ects of numerous individual
two-body interactions (the satellite and the stars of the
galaxy that the satellite encounters in its way). Now, the
exponential divergence of the chaotic orbits means that
small departures from initial positions or velocities lead to
di†erences in the coordinates and velocities that grow expo-
nentially with time, so that a tiny initial di†erence will
remain small at Ðrst and will grow appreciably only after an
interval of time of the order of the Liapunov time. The
encounter of the satellite with an star moving on a chaotic
orbit may be considered, as Chandrasekhar did, as an iso-
lated two-body problem: the interaction is important only
while the distance between the satellite and the star is short
so that, on the one hand, the tidal e†ects are negligible and,
on the other hand, the encounter lasts a very short time
(some orders of magnitude less than the orbital period).
Therefore, what happens during the encounter has nothing
to do with the orbits of both the satellite and the star
because, in the center of mass of the system they make up,
everything happens as an interaction of two bodies gov-
erned by NewtonÏs law. The changes su†ered by the satellite
will depend only on the positions and velocities that the
satellite and the stars have when they enter the ““ region of
encounter ÏÏ ; consequently, as long as the density and veloc-
ity distributions in the galaxy are the same, there is no
reason for the dynamical friction to experience any varia-
tion, just as the results of our experiments show. Of course,
the dynamics of the star will be very di†erent after an
encounter with the satellite, depending on whether it moves
on a regular or chaotic orbit ; while the former will not be
greatly a†ected, the latter will depart considerably from the
original orbit. In other words, even though we checked
carefully that chaotic orbits had Liapunov times compara-
ble with the satellite decay time, we can see now that this
time is not the most important one : for dynamical friction
to be a†ected by the presence of chaotic orbits, Liapunov
times should be of the order of the time over which an
encounter extends, that is, orders of magnitude shorter than
the orbital period. Such possibility seems to be well beyond,
not only of the reality of stellar systems but also from its
control through numerical experiments (even if they were
extremely artiÐcial).

Chandrasekhar (1943) found the relationship between
dynamical friction and relaxation time (also included in
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Pfenniger 1986 as his formula [2]), so that the previous
discussion could, in principle, be equally done in terms of
the relaxation time rather than in terms of the dynamical
friction. The problem is that, from the point of view of the
relaxation time (adopted by Pfenniger), the situation is
much less clear than from the point of view of the dynamical
friction (adopted above). The relaxation time is generally
deÐned as the time that a system takes to return to equi-
librium after it was taken out of it. In stellar dynamics it is
usually understood as the time a star needs to alter signiÐ-
cantly its velocity as a result of encounters with other stars.
In this sense, it is clear that the result will be very di†erent
depending on whether the star moves on a regular orbit or
on a chaotic one. In the Ðrst case, the departures from the
original orbit will be produced only by the cumulative
e†ects of the encounters, while, in the second one, to the
foregoing e†ect the exponential divergence of the orbits
should be added. Obviously, the Ðrst e†ect is related to the
star-star interactions, while the second one depends only on
the characteristics of the potential. Let us imagine an ideal
case in which a star moving on a chaotic orbit su†ers an
encounter with another star at intervals of time of the order
of the Liapunov time of its orbit. With such long-spaced
encounters, the collisional relaxation time will be very much
longer than the corresponding Liapunov time, but the orbit
would su†er appreciable changes in its velocity in intervals
of the order of the Liapunov time, which will then become
the relaxation time, according to the deÐnition. The impor-
tant point to stress here is that this relaxation time would

have nothing to do with the collisional process : there would
be a wide range in which the density and velocity distribu-
tions of the stars could change, without altering this relax-
ation time ; furthermore, the appreciable changes in the
velocity of the star on the chaotic orbit could result from
other, noncollisional, phenomena (such as slight Ñuctua-
tions in the potential, for example). In our opinion, the
problem of PfennigerÏs work is that it does not distinguish
between these two processes, one related to the stellar
encounters and the other to the characteristics of the poten-
tial, concentrating only on the changes su†ered by the orbit.

For a long time, consciously or unconsciously, the ideas
of linearity and regularity have dominated the thoughts of
the stellar dynamicists. If chaos turns out to be important in
some stellar systems, as recent investigations are suggesting,
many concepts (such as relaxation time), which are precise
and clear in a context of regularity, will need to be redeÐned
to be applicable to chaotic situations.
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