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Critical phenomena in the spreading of opinion consensus and
disagreement

A. Chacoma,1 D. H. Zanette1,2∗

We consider a class of models of opinion formation where the dissemination of individual
opinions occurs through the spreading of local consensus and disagreement. We study
the emergence of full collective consensus or maximal disagreement in one- and two-
dimensional arrays. In both cases, the probability of reaching full consensus exhibits
well-defined scaling properties as a function of the system size. Two-dimensional systems,
in particular, possess nontrivial exponents and critical points. The dynamical rules of
our models, which emphasize the interaction between small groups of agents, should be
considered as complementary to the imitation mechanisms of traditional opinion dynamics.

I. Introduction

The remarkable regularities observed in many hu-
man social phenomena —which, in spite of the
disparate behavior of individual human beings,
emerge as a consequence of their interactions—
have since long attracted the attention of physicists
and applied mathematicians. Collective manifes-
tations of human behavior have been mathemat-
ically modeled in a variety of socioeconomic pro-
cesses, such as opinion formation, decision making,
resource allocation, cultural and linguistic evolu-
tion, among many others, often using the tools pro-
vided by statistical physics [1]. The stylized nature
of these models emphasizes the identification of the
generic mechanisms at work in human interactions,
as well as the detection of broadly significant fea-
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tures in their macroscopic outcomes. They provide
the key to a deep insight into the common elements
that underlie those processes.

Models of opinion formation constitute a central
paradigm in the mathematical description of social
processes from the viewpoint of statistical physics.
Starting in the seventies and eighties [2–5], much
work —which we cannot aim at inventorying here,
but which has been comprehensibly reviewed in re-
cent literature [1]— has exploited the formal re-
semblance between opinion spreading and spin dy-
namics in order to apply well-developed statistical
techniques to the analysis of such models.

The key mechanism driving most agent-based
models of opinion formation is imitation. For in-
stance, in the voter model —to which we refer sev-
eral times in the present paper— the basic interac-
tion event consists in an agent copying the opinion
of another agent chosen at random from a speci-
fied neighborhood. At any given time, the opin-
ion of each agent adopts one of two values, typi-
cally denoted as ±1. The voter model can be ex-
actly solved for populations of agents distributed
over regular (hyper)cubic arrays in any dimension

060003-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CONICET Digital

https://core.ac.uk/display/159291674?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Papers in Physics, vol. 6, art. 060003 (2014) / A. Chacoma et al.

[6]. For infinitely large populations, it is character-
ized by the conservation of the average opinion. In
one dimension, a finite population always reaches
an absorbing state of full collective consensus, all
agents sharing the same opinion. The probability
of final consensus on either opinion coincides with
the initial fraction of agents with that opinion, and
the time needed to reach the absorbing state is of
the order of the population size squared [1].

In this paper, we present an introductory anal-
ysis of a class of models where opinion dynamics
is driven by the spreading of consensus and dis-
agreement, rather than by the dissemination of in-
dividual opinions. The basic concept behind these
models is that agreement of individual opinions in
a localized portion of the population may promote
the emergence of consensus in the neighborhood
while, in contrast, local disagreement may inhibit
the growth of, or even decrease, the degree of con-
sensus in the surrounding region. In real social
systems, the mechanism of consensus and disagree-
ment spreading should be complementary to the
direct transmission of opinions between individual
agents. In our models, however, we disregard the
latter to focus on the dynamical effects of the for-
mer.

Since the degree of consensus can only be defined
for two or more agents, the spreading of consensus
and disagreement engages groups of agents rather
than individuals. Such groups are, thus, the ele-
mentary entities involved in the social interactions
[7–11]. We stress that several other social phenom-
ena — related, notably, to decision making [10] and
resource allocation [12]— are also based on group
interactions that cannot be reduced to two-agent
events. In the class of models analyzed here, each
interaction event is conceived to occur between two
groups: an active group G and a reference group
G′. As a result of the interaction, the agents in
G change their individual opinions in such a way
that the level of consensus in G approaches that
of G′. This generic mechanism extends dynamical
rules where the opinion of each single agent changes
in response to the collective state of a reference
group [1, 8, 13, 14]. The size and internal structure
of the interacting groups, as well as the precise
way in which opinions are modified in the active
group with respect to the reference group, defines
each model in this class. For the sake of concrete-
ness, we limit the analysis to systems where, as in

the voter model, individual opinions can adopt two
values (±1). In the next section, we analyze the
case where both the active group and the reference
group are formed by two agents, and the popula-
tion is structured as a one-dimensional array. In
this case, the system admits stationary absorbing
states of full consensus and maximal disagreement,
with simple scaling laws with the population size.
In Section III., we study a two-dimensional version
of the same kind of model with larger groups, where
nontrivial critical phenomena —not present in the
one-dimensional case— emerge. Results and per-
spectives are summarized in the final section.

II. Two-agent groups on one-
dimensional arrays

We begin by considering the simple situation where
each of the two groups involved in each interaction
event is formed by just two agents. The situation
within each group, thus, is one of either full con-
sensus (when the two agents bear the same opinion,
either +1 or −1) or full disagreement (when their
opinions are different). We take a population where
agents are distributed on a one-dimensional array,
and consecutively labeled from 1 to N . Periodic
boundary conditions are applied at the ends. At
each time step, we choose four contiguous agents,
say, i−1 to i+2. The central pair i, i+1 acts as the
reference group G′. If they are in disagreement, the
agents i−1 and i+2 respectively adopt the opinions
opposite to those of i and i+1 with probability pD,
while with the complementary probability 1 − pD
nothing happens. If, on the other hand, i and i+ 1
agree with each other, i − 1 and i + 2 copy the
common opinion in G′ with probability pC , while
with probability 1 − pC nothing happens. In this
way, both consensus and disagreement spread from
G′ outwards, to the left and right. The probabili-
ties pC and pD control the relative frequency with
which consensus and disagreement are effectively
transmitted. The left panel of Fig. 1 illustrates
the states of the four consecutive agents in the two
possible outcomes of the interaction (up to opinion
inversions).

It is not difficult to realize that, for pD = pC = 1,
our one-dimensional array is equivalent to two in-
tercalated subpopulations —respectively occupying
even and odd sites— each of them evolving accord-
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Figure 1: Left: The two possible outcomes of the
interaction, up to opinion inversions, for four con-
secutive agents along the one-dimensional array.
The active and the reference groups, G and G′, are
respectively formed by the outermost and inner-
most agents. Right: Time evolution of a 200-agent
array with n+(0) = 0.5 and pD = pC = 1. Black
and white dots correspond, respectively, to opin-
ions +1 and −1. At time t = 1534, an absorbing
state of maximal disagreement is reached.

ing to the voter model. The dynamical rules are
reduced in this case to binary interactions between
agents. In fact, whatever the opinions in group G′

at each interaction event, agent i− 1 and i + 2 re-
spectively copy the opinions of i + 1 and i. Now,
since the voter model always leads a finite popu-
lation to an absorbing state of full consensus, the
final state of our system can be one of full consen-
sus on either opinion, or a state of maximal dis-
agreement where opposite opinions alternate over
the sites of the one-dimensional array. In the lat-
ter, the two neighbors of each agent with opinion
+1 have opinion −1 and vice versa. The right panel
of Fig. 1 shows the evolution of a 200-agent array
for n+(0) = 0.5 and pD = pC = 1, black and white
dots respectively corresponding to opinions +1 and
−1. At any given time, the population is divided
into well-defined domains either of consensus in one
of the opinions or disagreement. Note that the do-
main boundaries show the typical diffusive motion
found in stochastic coarsening processes [1, 15].

Taking into account that, in the voter model, the
probability of ending with full consensus on opin-
ion +1 is given by the initial fraction of agents with
that opinion, n+(0), and assuming that the ini-
tial distribution of opinions is homogeneous over
the array, the probability that our system ends
in a state of full consensus on either opinion is
Pcons = n2

+(0)+n2
−(0) = 1−2n+(0)+2n2

+(0). Note
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Figure 2: Numerical results for consensus and dis-
agreement spreading on a one-dimensional array
with pD = pC = 1, obtained from 103 realizations
for each parameter set (see text for details). Upper
panel: Probability of reaching full consensus, Pcons,
as a function of the initial fraction of agents with
opinion +1, n+(0), for four values of the popula-
tion size N . Lower panel: Total time T needed to
reach the final absorbing state, normalized by the
squared population size N2. Since both Pcons and
N−2T are symmetric with respect to n+(0) = 1/2,
only the lower half of the horizontal axis is shown.

that this coincides with the probability that, in the
initial state, any two contiguous agents are in con-
sensus. Moreover, we know that the time needed
to reach an absorbing state in the one-dimensional
voter model is proportional to N2, a result that
should also hold in our case.

The upper panel of Fig. 2 shows numerical results
for the probability of final full consensus Pcons, de-
termined as the fraction of realizations that ended
in full consensus out of 103 runs, as a function
of n+(0) and for several population sizes N . The
curve is the analytic prediction given above. The
result is analogous to the probability of final con-
sensus found in Sznajd-type models [13]. The lower
panel shows the total time T needed to reach the fi-
nal absorbing state (of either consensus or disagree-
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Figure 3: Probability of reaching full consensus,
Pcons, as a function of the probability pD, with
pC = 1 and for four values of the system size N .
Results were obtained averaging over 103 realiza-
tions for each parameter set. Insert: Width of the
variation range of Pcons as a function of N . The
straight line has slope −1.

ment), averaged over 103 realizations and normal-
ized by N2. As expected, both Pcons and N−2T are
independent of the population size.

When pD 6= pC , the two intercalated subpopu-
lations cannot be considered independent of each
other any more. If pD < pC , for instance, an opin-
ion prevailing in one of the subpopulations will in-
vade the other subpopulation faster than the op-
posite opinion, thus favoring the establishment of
collective consensus. To analyze this asymmetric
situation, we first fix pC = 1 and let pD vary in
(0, 1), so that the spreading of consensus is more
probable than that of disagreement. The main
plot in Fig. 3 shows numerical results for Pcons,
measured as explained above, as a function of pD
and for four values of N . In all the realizations,
n+(0) = 0.5, and the two opinions are homoge-
neously distributed over the population. As pD
decreases below 1, the probability of reaching full
consensus grows rapidly, approaching Pcons = 1.
As N grows, moreover, the change in Pcons is more
abrupt. Fitting of a sigmoidal function to the data
of Pcons vs. pD near pD = 1 makes it possible to
assign a width to the range where Pcons changes
between 1 and 0.5. The insert of Fig. 3 shows this
width as a function of the system size N in a log-log
plot. The slope of the linear fitting is −1.00±0.02.
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Figure 4: Probability of reaching full consensus,
Pcons, as a function of N(1− pD) when varying pD
with pC = 1, and as a function of N(1− pC) when
varying pC with pD = 1.

Therefore, the width is inversely proportional to N .

The facts that Pcons = 0.5 for pD = 1 and
for all N , and that the width of the range where
Pcons changes decreases as N−1, make it possible
to conjecture the existence of a function Φ(u), with
Φ(0) = 0.5 and Φ(u) → 1 for large u, such that
Pcons = Φ[N(1 − pD)]. To test this hypothesis, we
have plotted our numerical data for Pcons against
N(1−pD) in Fig. 4. The results are those in the up-
per half of the plot (“varying pD”). The collapse of
the data for different N on the same curve confirms
the conjecture.

Analogous results were obtained when fixing
pD = 1 and pC was varied. Now, Pcons drops to
0 in a narrow interval for pC just below 1, indi-
cating the prevalence of disagreement. Again, the
width of the interval is proportional to N−1. The
results in the lower half of Fig. 4 (“varying pC”)
illustrate the collapse of the corresponding values
of Pcons when plotted against N(1− pC).

In our numerical realizations with pD 6= pC , we
have also recorded the average time T needed to
reach the final absorbing state. Figure 5 shows re-
sults for N−2T in the case where pC = 1 and pD
changes (cf. lower panel of Fig. 2). In contrast with
the case with pD = pC = 1, rescaling of the time T
with N2 leaves a remnant discrepancy between re-
sults for different population sizes N . Specifically,
for pD < 1, T grows faster than N2. Moreover, T
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Figure 5: Total time T needed to reach the final
absorbing state, normalized by the squared popu-
lation size N2, as a function of the probability pD
(pC = 1). Bézier curves have been plotted as a
guide to the eye.

is nonmonotonic as a function of pD, exhibiting a
minimum which shifts towards pD = 1 as N grows.
The same dependence with N and pC is observed
when we fix pD = 1 and let pC vary.

Summarizing our results for a one-dimensional
population with two-agent groups, we can say that
the possibility that both consensus and disagree-
ment spread over the system makes it possible to
find absorbing collective states of either full con-
sensus, with all the agents having the same opin-
ion, or maximal disagreement, where opposite opin-
ions alternate between consecutive neighbor agents.
For large populations, the relative prevalence of
collective consensus and disagreement is controlled
by how the probabilities pD and pC compare with
each other. Our results suggest that, in the limit
N → ∞, the condition pC > pD univocally leads
to full consensus and vice versa. For smaller sizes,
however, the system can approach full consensus
even when pD > pC , and vice versa —presumably
due to finite-size fluctuations.

III. Larger groups on two-
dimensional arrays

A two-dimensional version of the above model,
where agents occupy the N = L × L sites of a
regular square lattice with periodic boundary con-

ditions, can be defined as follows. The reference
group G′ at each interaction event is a randomly
chosen 2×2-agent block. The corresponding active
group G is formed by the eight nearest neighbors
to the agents in G′ which are not in turn mem-
bers of the reference group. The active group, thus,
surrounds G′. Of the sixteen possible opinion con-
figurations of the reference group, two correspond
to full consensus —with the four agents sharing the
same opinion— and six correspond to maximal dis-
agreement —with two agents in each opinion. The
remaining eight configurations correspond to par-
tial consensus, with only one agent disagreeing with
the other three. The dynamical rules are the fol-
lowing: (1) if G′ is in full consensus, all the agents
in G copy the common opinion in G′; (2) if G′ is
in maximal disagreement, each agent in G adopts
the opinion opposite to that of the nearest neigh-
bor in G′; (3) otherwise, nothing happens. Hence,
both consensus and disagreement spread outwards
from the reference group. Probabilities pD and pC
for the spreading of disagreement and consensus
are introduced exactly as above. The left part of
Fig. 6 shows, up to rotations and opinion inversions,
the three possible outcomes of a single interaction
event.

The states of full collective consensus —with
all the agents in the population having the same
opinion— and of maximal collective disagreement
—with the two opinions alternating site by site
along each direction over the lattice— are ab-
sorbing states, in correspondence with the one-
dimensional case. However, for pD = pC = 1, the
system cannot be reduced anymore to a collection
of sublattices governed by the voter model. The
definition of G and G′ establish now correlations
between the opinion changes in the active group
at each interaction event. Moreover, some opinion
configurations in the reference group induce evolu-
tion in the active group, while others do not. Figure
6 shows, to its right, four snapshots of a 120× 120-
agent population, along a realization starting with
n+(0) = 0.35 and pD = pC = 1. Note the for-
mation of consensus clusters at rather early stages,
and the final prevalence of disagreement. The line
boundaries between disagreement regions are also
worth noticing.

Following the same lines as for the one-
dimensional array, we study first the probability
Pcons of reaching full collective consensus as a func-
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Figure 6: Left: The three possible outcomes of the
interaction, up to ±90◦ rotations and opinion in-
versions, on the two-dimensional lattice. The ac-
tive and the reference groups, G and G′, are re-
spectively formed by the outermost and innermost
agents. Right: Four snapshots of a population with
L = 120, for n+(0) = 0.35 and pD = pC = 1, in-
cluding the initial condition and two intermediate
states. At time t = 3207, an absorbing state of
maximal disagreement has been reached. Black and
white dots correspond, respectively, to opinions +1
and −1.

tion of the initial fraction of agents with opinion
+1, n+(0), in the case pD = pC = 1. Opinions
are homogeneously distributed all over the popu-
lation. For very small n+(0), as expected, we find
Pcons ≈ 1. However, in sharp contrast with the one-
dimensional case (see Fig. 3), Pcons remains close
to its maximal value until n+(0) ≈ 0.35, where it
drops abruptly to Pcons ≈ 0. The width of the tran-
sition zone decreases as a nontrivial power of the
system size, ∼ L0.83±0.04, as illustrated in the insert
of Fig. 7. Our best estimate for the critical value of
n+(0) at which Pcons drops is ncrit

+ = 0.353±0.001.
The main plot in the figure shows the collapse of
numerical measurements of Pcons as a function of
n+(0) for different sizes L, averaged over 100 real-
izations, when plotted against the rescaled shifted
variable L0.83[n+(0)− 0.353].

These results suggest that, for very large pop-
ulations, the probability of reaching full consen-
sus jumps discontinuously from Pcons = 1 to 0 at
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Figure 7: Numerical results for the probability of
reaching full consensus, Pcons, on a two-dimensional
lattice with pD = pC = 1, obtained from 100 real-
izations for each parameter set. Collapse for several
system sizes L is obtained plotting Pcons against
L0.83[n+(0) − 0.353]. Insert: Scaling of the width
of the transition zone of Pcons, determined from fit-
ting a sigmoidal function, as a function of the size
L. The straight line has slope −0.83.

n+(0) = ncrit
+ . Compare this with the smooth, size-

independent behavior of the one-dimensional case.
Note also that ncrit

+ is close to, but does not coin-
cide with, n+(0) = 1/3. At this latter value, in the
initial condition with homogeneously distributed
opinions, the probability of finding a 2 × 2-agent
block in full consensus becomes lower than that of
maximal disagreement as n+(0) grows.

In the above simulations, we have also measured
the average total time T needed to reach the fi-
nal absorbing state. Results are shown in Fig. 8.
Again in contrast with the one-dimensional case, T
exhibits a remarkable change in its scaling with the
system size as n+(0) overcomes the critical value
ncrit
+ .

Going now to the dependence of Pcons on the
probability of disagreement spreading pD —with
pC = 1 and n+(0) = 0.5— it qualitatively mir-
rors that of the one-dimensional case, shown in
Fig. 3. Namely, as pD decreases from 1, Pcons

grows from 0 to 1 in an interval whose width
decreases with the population size. In the two-
dimensional system, however, the transition takes
place at a critical probability pcritD that can be
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Figure 8: Total time T needed to reach the final
absorbing state in a two-dimensional lattice, as a
function of n+(0), for different sizes L.

clearly discerned from pD = 1. Our estimate is
pcritD = 0.984 ± 0.002. Moreover, the scaling of the
transition width with the population size exhibits
a nontrivial exponent, decreasing as L−0.93±0.05.
Collapse of the rescaled numerical results for var-
ious sizes, obtained from averages of 100 realiza-
tions, are shown in Fig. 9, where we plot Pcons as a
function of L0.93(0.984−pD) (cf. Fig. 4). The insert
displays the power-law dependence of the width
on the size L. Analogous results are obtained if
the probability of consensus spreading pC is varied,
with pD = 1.

Finally, we have found that the transition in
Pcons as a function of the disagreement probability
pD shows a dependence on the initial fraction of
agents with opinion +1. To characterize this effect
in a way that highlights the relative prevalence of
disagreement and consensus, we have measured the
value of pD at which the probability of getting full
collective consensus reaches Pcons = 0.5, as a func-
tion of n+(0). The parameter plane (n+(0), pD),
thus, becomes divided into regions where a final
state of full consensus is more probable than that
of maximal disagreement, and vice versa. Results
for a 120 × 120-agent population are presented in
Fig. 10.

In summary, while spreading of consensus and
disagreement on a two-dimensional lattice bears
superficial qualitative similarity with the one-
dimensional case, the probability that the popula-
tion reaches full collective consensus in two dimen-
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Figure 9: Collapse of numerical results for the prob-
ability of reaching full consensus, Pcons, on a two-
dimensional lattice with pC = 1 and n+(0) = 0.5,
for several system sizes L when plotted against
L0.93(0.984 − pD). Insert: Scaling of the width of
the transition zone of Pcons as a function of the size
L. The straight line has slope −0.93.
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numerical results, and the curve serves as a guide
to the eye.
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sions exhibits a quite different dependence on the
system size, on the initial conditions, and on the
spreading probabilities. In particular, our results
reveal the existence of critical phenomena involv-
ing scaling laws with nontrivial exponents.

IV. Conclusion

In this paper, we have considered the emergence
of collective opinion in a population of interacting
agents where, instead of imitation between individ-
ual agents, opinions are transmitted through the
spreading of local consensus and disagreement to-
ward their neighborhoods. The basic interacting
units in this mechanism are not individual agents
but rather small groups of agents which mutually
compare their internal degrees of consensus and
modify their opinions accordingly. In this sense, it
extends the basic mechanism underlying such mod-
els as the majority-rule and Sznajd-like dynam-
ics [1, 8, 13], where the opinion of each individual
agent changes in response to the collective state of
a reference group. It is expected that in real so-
cial systems the dissemination of individual opin-
ions through agent-to-agent imitation on one side,
and the spreading of consensus and disagreement
by group interaction on the other, are complemen-
tary mechanisms simultaneously shaping the over-
all opinion distribution. Here, in order to gain in-
sight on the specific effects of the second class, we
have focused on models solely driven by the spread-
ing of consensus and disagreement. The combined
effects of the two mechanisms is a problem open to
future work.

Our numerical simulations concentrated on
two-opinion models evolving on one- and two-
dimensional arrays [14]. In both cases, absorbing
states with all the population bearing the same
opinion (full consensus) and with half of the popu-
lation in each opinion (maximal disagreement) are
possible final states for the system. Maximal dis-
agreement states are characterized by alternating
opinions between neighbor sites along the arrays.

A relevant quantity to characterize the behav-
ior is the probability of reaching full consensus, as
a function of the initial condition —i.e., the ini-
tial fraction of the population with each opinion—
and of the relative probabilities of consensus and
disagreement spreading. The total time needed to

reach the final absorbing state, averaged over re-
alizations, has also been measured as a character-
ization of the dynamics. We have found that, in
several cases, these quantities display critical phe-
nomena when the control parameters are changed,
with power-law scaling laws as functions of the sys-
tem size, pointing to the presence of discontinuities
in the limit of infinitely large populations. It is in-
teresting to remark that the scaling laws are rather
simple for one-dimensional arrays, but involve non-
trivial exponents and critical points in the case of
two-dimensional systems.

Within the same one- and two-dimensional mod-
els analyzed here, an aspect that deserves further
exploration is the dynamics and mutual interaction
of the opinion domains that develop since the first
stages of evolution (Figs. 1 and 6). However, the
most interesting extension of the present analysis
should progress along the direction of considering
more complex social structures. The interplay be-
tween the dynamical rules of consensus and dis-
agreement spreading and the topology of the in-
teraction pattern underlying the population might
bring about the emergence of new kinds of collec-
tive self-organization phenomena.
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