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We present a systematic investigation of the special twist method introduced by Rajagopal et al.
[Phys. Rev. B 51, 10591 (1995)] for reducing finite-size effects in correlated calculations of periodic
extended systems with Coulomb interactions and Fermi statistics. We propose a procedure for
finding special twist values which, at variance with previous applications of this method, reproduce
the energy of the mean-field infinite-size limit solution within an adjustable (arbitrarily small)
numerical error. This choice of the special twist is shown to be the most accurate single-twist
solution for curing one-body finite-size effects in correlated calculations. For these reasons we dubbed
our procedure “exact special twist” (EST). EST only needs a fully converged independent-particles
or mean-field calculation within the primitive cell and a simple fit to find the special twist along
a specific direction in the Brillouin zone. We first assess the performances of EST in a simple
correlated model such as the 3D electron gas. Afterwards, we test its efficiency within ab initio
quantum Monte Carlo simulations of metallic elements of increasing complexity. We show that EST
displays an overall good performance in reducing finite-size errors comparable to the widely used
twist average technique but at a much lower computational cost, since it involves the evaluation of
just one wavefunction. We also demonstrate that the EST method shows similar performances in
the calculation of correlation functions, such as the ionic forces for structural relaxation and the
pair radial distribution function in liquid hydrogen. Our conclusions point to the usefulness of EST
for correlated supercell calculations; our method will be particularly relevant when the physical
problem under consideration requires large periodic cells.

I. INTRODUCTION

The systematic error arising from finite-size (FS) ef-
fects is a long-standing issue in computer simulations of
materials. It is well established that a poor treatment
of FS errors can lead to inaccurate and unreliable re-
sults when probing basic quantities such as total ener-
gies, structural parameters or investigating related phe-
nomena like phase transitions.
Among ab initio techniques, effectively independent-

electron frameworks such as Hartree-Fock (HF) or den-
sity functional theory (DFT) can exploit the Bloch the-
orem for reducing FS errors. Within a periodic system,
their computational cost only depends on the size of the
primitive cell and FS effects can be controlled by averag-
ing over a set of different boundary conditions (usually
called k-points) spanning the irreducible Brillouin zone
of the reciprocal lattice. It is in general feasible to use
a large sets of k-points and hence FS errors can be sys-
tematically reduced below the desired accuracy.
Despite its great success, there is a vast amount of sys-

tems where DFT has been proven insufficient. For exam-
ple, it gives unreliable predictions on strongly correlated
systems such as high-temperature superconductors, but
also on moderately correlated materials requiring very
accurate treatment of chemical bonds. Phenomena de-

veloping on tiny energy scales such as the adsorption of
molecules on surfaces or proton transfer reactions in bio-
logical systems often need to go beyond the independent-
particle framework imposed by the DFT approach.
One of the most promising many-body methods is the

set of techniques based on continuum quantum Monte
Carlo (QMC)1,2, a correlated many-body wavefunction
framework. Due to its statistical nature, one can sys-
tematically improve the QMC precision by increasing the
size of the statistical sample. QMC methods provide a
truly first-principles approach to molecular as well as ex-
tended systems. These features, along with the negligi-
ble parallel overhead of the main QMC algorithms, allow
an unprecedented level of accuracy on a wide range of
systems ranging from small/medium size molecules3–5 to
strongly correlated materials as cerium6 and iron7 and,
recently, several high-temperature superconductors8–11.
Numerous studies have also been carried out on sys-
tems dominated by weak intermolecular forces such
as Van der Waals interactions12–15 and on adsorption
phenomena16,17. More recently, improvements in ionic
forces evaluation has led to the first successful attempt
of fully QMC-based molecular dynamics simulations of
liquid water18,19.
While the statistical error can be systematically de-

creased down to the desired accuracy, the FS effects in
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a correlated framework such as QMC are considerably
more delicate to deal with. Since the electron-electron
interaction is explicitly included in the ab initio Hamilto-
nian solved by QMC, calculations must be performed on
larger simulation cells (supercells) in order to accurately
take into correlations beyond nearest-neighbors interac-
tions. However, even a large supercell simulation does
not ensure the complete elimination of FS effects which
can persist due to the long-range nature of the Coulomb
interaction. FS effects represent therefore one of the main
source of errors in QMC methods, often larger than the
achievable statistical accuracy.
To widen its application range, a reliable and relatively

cheap method to control FS effects in QMC is certainly
welcome. Several solutions have been proposed over the
past years, which can be divided into two main cate-
gories. The first one deals with the non-interacting part
of FS errors, i.e. related to the kinetic energy term of
the Hamiltonian and shell effects in orbital filling; this is
in general the most important contribution to the total
FS error. The second one addresses two/many-body ef-
fects deriving from the potential energy term and from
the long-range contributions to the kinetic energy. Exam-
ples of the first category are the twist averaged boundary
conditions (TABC)20 method and the special k-points
methods21,22 (see Sec.II B for more details); the sec-
ond category includes model Coulomb potential23, KZK
exchange-correlation functional24 and corrections based
on the random phase approximation of the electron struc-
ture factor25.
In this paper, we will focus on one-body FS errors.

TABC is certainly the most successful and widely used
technique for tackling them within QMC simulations. In-
spired by lattice calculations26,27, it allows the many-
body wavefunction to pick up a phase θ = (θx, θy, θz)
when reaching the supercell boundaries:

Ψ(r1 +Rs, . . . , rN ) = eiθ·RsΨ(r1, . . . , rN ), (1)

where N is the number of electrons and {Rs} denotes
the supercell lattice vectors. TABC treats each twist in-
dependently during the simulation and therefore the re-
sultant statistical noise when averaging over the whole
set of twists is given by σ/

√
Nt where σ is the average

error attained on a single twist and Nt the total number
of twists. Therefore the statistical noise is effectively re-
duced by performing the average and TABC requires ap-
proximately the same amount of samples as a single-twist
calculation, for a given target statistical accuracy. This
method has been proven very accurate to extrapolate to
the thermodynamic (infinite-size) limit and to reduce en-
ergy fluctuations produced by shell filling. However, its
application leads to some pitfalls. On one hand, it re-
quires to keep a fixed number of fermions at each twist
condition, i.e. standard TABC works within the canon-
ical ensemble. This implies that standard TABC can-
not reproduce the correct thermodynamically converged
independent-particle limit of the many-body wavefunc-
tion. This issue affects the description of the Fermi sur-

face and it introduces a systematic small bias in kinetic
energy28. On the other hand, although the twist av-
erage effectively reduces statistical noise, large sets of
twists require in general a high computational burden;
this is verified especially when TABC is used in combi-
nation with diffusion Monte Carlo (see Sec. II), where a
relevant part of the simulation is spent in equilibration.
An attempt to overcome the first drawback is the so-
called grand canonical TABC (GTABC) method20,29,30,
where small fluctuations in the total number of particles
N are allowed for each twist condition. This method can
be straightforwardly applied on isotropic systems with
spherical Fermi surface, whereas for realistic QMC cal-
culations single-particle filling could be chosen according
to a mean-field approach such as DFT. GTABC cures
the kinetic energy bias introduced by the standard tech-
nique, but it leads to larger total energy fluctuations28.
Furthermore, it requires the wavefunction of each twist
to be optimized separately, often resulting in infeasible
computational requirements for realistic systems.
In this manuscript, we propose and test a simple pro-

cedure to evaluate special twist values20,22 for treating
FS effects in correlated simulations. We call this proce-
dure exact special twist method (EST). In fact, at vari-
ance with previous implementations, the EST procedure
yields the special twist values which reproduce the ex-
act thermodynamic limit of independent particles within
the desired numerical accuracy. Furthermore, we have
not assumed to work with particular twist values that
make the wavefunction real, as it is typically complex for
generic twists.
By means of advanced variational and diffusion Monte

Carlo simulations, we prove that the EST method can
eliminate most part of the energy fluctuations due to
shell effects and, using a single twist, it shows an effi-
ciency comparable to the TABC in thermodynamic limit
extrapolation, even for systems possessing a complicated
Fermi surface. At the same time, our method provides
the correct independent-particle limit and it allows a ro-
bust optimization of the full (Jastrow + determinant)
variational wavefunction.
The paper is organized as follows. In Sec. II we ad-

dress in detail the QMC framework used in this paper,
we present the theoretical foundations of the special twist
method and we outline the EST procedure. In Sec. III
we present the results. In Sec. III A we assess the ac-
curacy of our method in a simple correlated model, the
homogeneous electron gas (HEG) in three dimensions.
Then in Sec. III B we present realistic QMC simulations
of paradigmatic metallic systems such as solid bcc hydro-
gen, the high-temperature bcc phase of lithium and the
high-pressure β-tin structure of silicon. These systems
present a different degree of complexity and difficulty in
sampling the Fermi surface, therefore offering an exhaus-
tive testing ground for our method. In Subsec. III B 1
we report the energetics as a function of the simulation
cell size comparing different methodologies to reduce FS
effects. In Subsec. III B 2 we provide a more quantita-
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tive assessment of the various contributions to FS errors
in Li and Si. In Subsec. III B 3 we turn our attention
to correlation functions and in particular to the relia-
bility of EST method in the evaluation of QMC ionic
forces. Structural relaxation on the lithium bcc cell pa-
rameters are presented as well as pair radial distribution
functions obtained from QMC molecular dynamics sim-
ulations of liquid hydrogen. Finally we draw our conclu-
sions in Sec. IV.

II. METHODS

A. Quantum Monte Carlo techniques

Over the past years, stochastic QMC techniques are
constantly gaining ground in the field of ab initio elec-
tronic structure calculations of solids. As mentioned in
the introduction, this success is mainly due to the versa-
tility of the variational wavefunction, the high accuracy
attainable and the ability of fully exploiting the increas-
ing computational power of modern supercomputers. All
QMC calculations presented in this work are carried out
with the TurboRVB software package31.
The main ingredient of a reliable QMC calculation

is a flexible variational ansatz. In this manuscript, we
employ the standard Jastrow-single determinant (JSD)
form, used both for the HEG and for more realistic cal-
culations. Considering a system with N electrons and
Nat atoms, this wavefunction can be written as:

Ψ(Rel) = exp[−J(Rel)]Ψ
θ

SD(Rel) (2)

whereRel = {r1, . . . , rN} is the set of electronic positions
and θ is the twist condition.
The Jastrow factor J is the symmetric part of the

wavefunction, and it is crucial for an accurate treatment
of electron correlation. Thanks to explicit two-electrons
space-space correlators, it accounts in an approximate
but precise way for spatial quantum fluctuations on both
charge and spin sectors.

For HEG calculations we used: J =
∑N

i,j u(|ri − rj |)
where the u(r) is a long-ranged function based on the
random phase approximation (RPA). We refer the reader
to Ref. 32 for a rigorous derivation of this Jastrow form.
The complexity of electron interaction in realistic sys-

tems requires a more flexible and complete Jastrow. In
order to cope with these requirements, we expand it on a
Gaussian atom-centered basis set χα

l (r−Rα) where {Rα}
({r}) are the atomic (electronic) coordinates and the in-
dex l spans over the whole basis set. These orbitals do
not possess any periodicity. However, when dealing with
solids, the electron-ion distances are suitably transformed
in order to fulfill the periodicity of the supercell19,33. The
complete expression of our Jastrow is the following:

J(Rel) =

Nat
∑

α

N
∑

j

g1bα (r−Rα) +

N
∑

i6=j

g2b(ri, rj). (3)

The first term on the right-hand side of Eq. 3 is a one-
body factor which accounts for electron-ion interactions:

g1bα (r−Rα) = vα(|r−Rα|) +
∑

l

Gl
αχ

α
l (r−Rα) (4)

where:

vα(r) = Zα

1− e−β 4
√

(2Zα)r

β 4

√

(2Zα)

cures divergences of the electron-ion potential at coales-
cence points (electron-ion cusp conditions). The many-
body g2b is built with the same structure as the one-body
term and it reads:

g2b(r, r′) = u(|r− r
′|)+

αβ
∑

lm

Cαβ
lmχ

α
l (r−Rα)χ

β
m(r′ −Rβ).

(5)
This factor is designed, on one hand, to fulfill the

electron-electron wavefunction cusps. This is achieved
through a spin contaminated homogeneous term:

u(r) =
A

γ
(1− e−γr)

where A = 1/2 for like spins and A = 1/4 for unlike
spins. On the other hand, the second term on the right-
hand side of Eq. 5 ensures an accurate characterization of
charge fluctuations by correlating single-particle orbitals
describing electrons located on different atoms. We do
not explicitly account for spin-spin correlations in Eq. 5
as we verified that their inclusion leads to a negligible im-
provement in the variational energy for all systems con-
sidered in this work. The Jastrow variational parameters
are therefore β, γ for the homogeneous terms, the matrix

elements Gl
α, C

αβ
lm and the exponents of the Gaussian or-

bitals. For the largest simulations supercells, we set to

zero the elements Cαβ
lm connecting atoms α and β whose

distance |Rα−Rβ| is larger than an appropriately chosen
cutoff Rmax. While not affecting the final energy, this ap-
proximation considerably reduces the number of param-
eters that are effectively optimized during the minimiza-
tion procedure. This turns out in an increased stability,
especially for larger systems, by removing local minima
in the energy hypersurface.
The Jastrow factor is always real-valued also in the

case of non-zero twist calculations. Furthermore, in the
TABC results presented in the next Section, we use a
common Jastrow for all twists. This assumption is phys-
ically justified by the fact that the Jastrow is a density-
density correlator function, being the (physical) elec-
tronic density a k-independent quantity. The optimiza-
tion of Jastrow variational parameters is based on the
stochastic reconfiguration method which has been exten-
sively described elsewhere34,35. The atomic positions are
included in the optimization procedure by treating them
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on the same footing of the other variational parameters of
the wavefunction. Differently from previous implementa-
tions, in our approach the energy derivatives with respect
to the variational parameters and ionic positions are all
computed by means of the adjoint algorithmic differenti-
ation (AAD) introduced in Ref. 36. Initially devised for
real-valued wavefunctions, it is straightforward to extend
this technique to complex arithmetics.
The antisymmetric part of our wavefunction is a

complex-valued single Slater determinant represented by
means of N/2 molecular orbitals (MOs) ψσ

θ,i(r):

Ψθ

SD(Rel) = det
[

ψ↑
θ,i(rj)

]

det
[

ψ↓
θ,i(rj)

]

(6)

where 1 < i, j ≤ N/2 and we explicitly write the de-
pendence of the molecular orbitals on the chosen twist
value θ. Within the TurboRVB code implementation, it
is possible to go beyond the single determinant repre-
sentation by using a number of MOs larger than N/2,
obtaining the so-called antisymmetrized geminal power
(AGP) ansatz37,38. However in this work we do not use
the AGP extension, it is worth to mention that the meth-
ods for treating FS effects presented here can be straight-
forwardly extended to the AGP. This turns out to be of
particular importance for low-energy phenomena such as
high-temperature superconductivity and it will be the
subject of future publications. As for the Jastrow factor,
the N/2 MOs are expanded over a periodic Gaussian ba-

sis set φα,θl (r−Rα). However, in the case of the determi-
nantal part these functions are complex valued. Setting
Nbas as the total basis set dimension, the molecular or-
bitals read:

ψσ
θ,i(r) =

Nat
∑

α

Nbas
∑

l

M l,α
i φα,θl (rσ −Rα) (7)

where the optimal complex coefficientsM l,α
i are obtained

from a DFT calculation in the local density approxima-
tion (LDA) performed with the same setup (basis set
and supercell) as the corresponding QMC calculation.
The DFT code used is built-in in the TurboRVB pack-
age. The orbitals of the basis set are constructed, at
variance with the Jastrow factor, in a way which explic-
itly includes the twist dependence and, at the same time,
satisfies the Bloch theorem for single-particle wavefunc-
tions. If we denote the infinite set of supercell lattice
vectors as L, these orbitals read:

φα,θl (r−Rα) =
∑

L

χα
l (r−Rα + L)e−iθ·L (8)

where χα
l are the same localized Gaussian functions used

for the Jastrow factor, except without imposing any pe-
riodicity on the coordinates. The infinite sum of Eq. 8
is truncated above a suitable cutoff ǫcut satisfying the
following inequality:

ζl

√

L2
x + L2

y + L2
z ≥ ǫcut with l ∈ [1, Nbas], (9)

where ζ is the exponent of the localized orbital χα
l and

{Li} are the components of the lattice vector L along the
three Cartesian directions.
In the TurboRVB implementation, we are able to relax

the condition of Eq. 6 that the twist θ must be the same
for both spin sectors. Indeed, this feature can be crucial
to effectively reduce FS errors in simulation of antifer-
romagnetic materials and in ab initio high-temperature
superconductivity. In fact, by setting θ

↓ = −θ
↑, we

are able to preserve the time reversal symmetry at ev-
ery supercell size. Differently from the standard case of
equal boundaries for up/down spins, this choice also en-
sures the conservation of the translational invariance of
singlet electron states such as Cooper pairs. This fact
not only can improve the quality of finite-size extrapo-
lation, as demonstrated by preliminary calculations39 on
the Heisenberg model, but it also allows to fully exploit
the translational invariance to decrease the number of
variational parameters in the determinant. In the present
work, we adopt this choice but it has no influence on FS
extrapolation since no optimization of the determinantal
part is performed.
Except for the case of hydrogen where all electrons are

included in the simulation, we replace core electrons with
the Burkatzki, Filippi, Dolg (BFD) energy-consistent
pseudopotential40 specifically designed for QMC calcu-
lations. Further details on the basis sets employed for
the considered systems are reported in Sec. III.
In this article, QMC single point energies are obtained

with the variational Monte Carlo (VMC) for the simplest
systems and with the more accurate projective lattice
regularized diffusion Monte Carlo41,42 (LRDMC) for the
more delicate benchmarks. LRDMC, within the standard
fixed-node approximation, allows a big improvement on
the quality of the energy and correlation functions. The
outcome of our QMC calculations for both HEG and re-
alistic systems are detailed in Sec. III.

B. Exact special twist method

Within an independent-electron framework such as
DFT, the Bloch theorem establishes that the thermody-
namic (or infinite-size) limit of most physical quantities
can be evaluated exactly by performing an integration
over the first Brillouin zone (1BZ) of the reciprocal lat-
tice:

f∞ =
Ω

(2π)3

∫

Ω

d3k f(k), (10)

where the function f(k) is a periodic quantity and Ω is
the volume of primitive cell. The mean-value theorem
for definite integrals ensures the existence of a special
point k

∗, the so-called mean-value point, for which the
integrand in Eq. 10 equals the integral, i.e.

f(k∗) = f∞. (11)
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Notice that the validity of this theorem is restricted to
continuous functions f(k).
Baldereschi43 devised an analytical procedure which

allows to determine, in an approximate fashion, the value
of the mean-value point. This scheme exploits the point
group symmetries of the Bravais lattice and its validity is
restricted to slowly varying integrands f(k). Baldereschi
method gives excellent results in predicting thermody-
namically converged energies and other observables for
insulating materials, but it fails for metallic systems
where the integrated function in Eq. 10 is typically not
smooth for some observables such as the total energy.
Within DFT and other mean field approaches, this issue
can be cured by simply increasing the number of k-points
and approximating the integral in Eq. 10 with a sum:

f∞ ≈ 1

Nk

Nk
∑

i=1

f(ki) =

Nk
∑

i=1

wif(ki) with

Nk
∑

i

wk = 1

(12)

The quality of the above approximation can be improved
by choosing a uniform mesh of k-points in the 1BZ44,45,
which is nowadays the standard methodology of most
available DFT programs. The total number of points in
the sum can be reduced by assigning to each k-point an
appropriate weight wi determined by symmetry consid-
erations.
QMC calculations present a different scenario. In this

case, the simulation model cannot be restricted to a single
primitive cell, but a larger simulation supercell contain-
ing several primitive cells is needed due to the many-body
nature of the ab initio Hamiltonian. Refs. 21,22 general-
ized the Bloch’s theorem to supercell calculations. Fol-
lowing Ref. 22, the wavefunction of a n1×n2×n3 super-
cell (where {ni} is the number of primitive cells contained
within the supercell along the three Cartesian directions)
corresponds to n1 × n2 × n3 uniform k-points mesh in
mean field language. Evaluating this wavefunction at a
non-zero wave vector θs is equivalent to apply an offset
to this grid with respect to the origin at the center of the
Brillouin zone. This offset is usually called “twist”, in or-
der to distinguish it from the k-points corresponding to
the supercell size. In the independent particle limit, sum-
ming over all the twists in a given supercell is equivalent
to the full k-point summation in 1BZ.
In the following, we present the theoretical foundations

of the special twist method in supercell calculations. At
first, we set the function f(k) in Eqs. 10, 11 as the total
energy, since it is the most basic quantity to evaluate
within QMC. However, this approach is general and it
can be, in principle, applied also to other observables.
The basic idea behind the special twist method is to

find a twist θs which, in the limit of an independent-
particle wavefunction, reproduces the exact mean-field
infinite-size energy. The practical implementation of this
idea, which we dub “exact special twist” (EST) method,
consists in finding an arbitrarily accurate numerical so-
lution to Eq. 11. This is carried out within a mean-field

approach which can be Hartree-Fock, DFT or any in-
dependent particle method. For most part of the cal-
culations presented in this manuscript we use DFT the
as reference mean-field framework to solve Eq. 11. Let
us consider a metallic system with Np electrons in the
primitive cell, as described by an independent particle
wavefunction such as the single determinant introduced
in Eq. 6. The thermodynamic converged energy per elec-
tron at the DFT level reads:

E∞[ρ∞] =
1

NpNk

Nk
∑

i=1

〈

Ψki

SD

∣

∣

∣
HDFT[ρ∞]

∣

∣

∣
Ψki

SD

〉

= (13)

=
1

Np

Nk
∑

i=1

wi

∑

n=1

F (Eki

n [ρ∞]− µ∞) Eki

n [ρ∞],

where the first sum goes over the k-points in 1BZ with
weights {wi} and the second over the electronic bands Ek

n .
F is a smearing function with Fermi distribution shape
whose purpose is to smooth the electronic occupations
around the chemical potential µ∞ (equal to the Fermi
energy at zero temperature). Besides improving the con-
vergence of the sum during the DFT self-consistent cycle,
the smearing function F introduces fractional electron
occupations which change the effective number of elec-
trons considered at each k-point, i.e. it allows the method
to work within the grand canonical ensemble with fluc-
tuating number of particles. The effective number of
particle at each k-point is determined by the chemical
potential µ∞. In the case of insulators, F usually takes
the functional form of a Heaviside step function H . In
Eq. 14, we highlight that the band energies Ek

n in the
sum are computed with the thermodynamic converged
electronic density ρ∞ = Ω

(2π)3

∫

Ω
d3k ρ(k). Notice also

that E∞ is obtained within a primitive cell simulation.
The purpose of the EST method described here is to

find a special twist value θs which satisfies numerically
Eq. 11 up to an arbitrary accuracy. The total DFT en-
ergy for this special twist, now computed in a supercell
with Ns electrons, reads:

Eθs
[ρθs

] =
1

Ns

〈

Ψθs

SD

∣

∣

∣
HDFT[ρθs

]
∣

∣

∣
Ψθs

SD

〉

=

=
1

Ns

∑

n

H(Eθs

n − µθs
)Eθs

n [ρθs
], (14)

where H is the step function, ρθs
is the electronic den-

sity calculated for the special twist value, and the chem-
ical potential µθs

is such that the effective number of
electrons is equal to the true number of particles in the
system. It is worth remarking that, in this way, no frac-
tional electron occupations are allowed, i.e. the energy is
now computed within the canonical ensemble with fixed
number of particles. Given this formalism, finding the
special twist solution to Eq. 11 is equivalent to satisfy
the following equality:

Eθs
[ρθs

] = E∞[ρ∞]. (15)
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From the above formulation, it is simple to understand
that the numerical procedure to find the special twist
consists in finding the DFT energy within the canonical

ensemble which matches, up to a certain adjustable ac-
curacy, the grand canonical and thermodynamically con-
verged energy in Eq. 14. Once Eq. 15 is solved, it is pos-
sible to build a many-body wavefunction (Eq. 2) with the
chosen twist value which automatically fulfill the correct
(at the DFT level) independent-electron limit. As we will
show in Sec. III, this method leads to a large reduction of
the one-body FS errors in QMC calculations, by keeping
at the same time an affordable computational cost.
Notice that the twist average boundary conditions

method20 mentioned in the introduction can be viewed
as the many-body equivalent of independent-particle k-
points sampling in Eq. 14; indeed, all the 1BZ sampling
procedures44,45 exploited in DFT can be extended also
to the TABC technique. However, the standard TABC
method imposes a fixed number of particles for each twist
condition θ, i.e. it works in the canonical ensemble only.
In the independent electron framework (Eq. 14), this con-
straint turns out in the substitution:

F (Eθ

n − µ∞) → H(Eθ

n − µθ)

at each twist condition. It is evident that this results
in a wrong independent particle limit and it leads to
an incorrect Fermi surface sampling and to a small bias
in the final QMC energy28. This problem can be cured
by allowing the number of particles to fluctuate for each
twist as implemented within the grand canonical TABC
method. Although this method yields the correct inde-
pendent particle limit, it also gives large fluctuations in
the converged energies28 which hindered widespread use
of this technique in production QMC runs.
We turn now our attention to the practical procedure

for solving numerically Eq. 15 in realistic QMC calcula-
tions. The first and, at our knowledge, unique attempt
to tackle this problem can be found in Refs. 21,22. Here
the authors argued that a suitable θs can be chosen in
the set {Gs/2}, whereGs are the supercell reciprocal lat-
tice vectors. This choice ensures that the underlined k-
points mesh possesses inversion symmetry, thus allowing
to employ a real-valued wavefunction and avoid complex
arithmetics. The offset belonging to this set which pro-
vides the best thermodynamic limit is then determined
via cheap DFT calculations in the LDA approximation at
different supercell sizes. The latter approach is of course
approximate as the exact special twist does not necessar-
ily falls within the {Gs/2} set.
In this manuscript, we propose a simple but effective

evolution of this procedure. Our methodology comprises
several steps which are fully accounted in the remaining
part of this Section.

1. At first we determine the thermodynamic con-
verged energy E∞ (Eq. 14) within an independent-
particle or mean-field approaches. For 3D-HEG
calculations (Subsec. III A), this reference energy

is the non interacting (NI) energy: EHEG
∞ =

∑

k
k
2/2 ≃ 2.21

r2
s

whose value is completely con-

trolled by the Wigner-Seize radius rs, i.e. by the
electronic density. For realistic QMC runs (Sub-
sec. III B), we evaluate it at the DFT-LDA level
using a fully converged k-points mesh45 and with
the same basis set as QMC. All these calculations
are carried out in the primitive cell with a negligible
computational cost as compared to QMC.

2. The second step consists in the numerical solution
of Eq. 15, at given fixed number of particles. In
the case of HEG, we select several high symmetry
directions and we scan the reciprocal space along
these directions in order to find the value of the
twist θs giving the exact non-interacting energy
EHEG
∞ . In Fig. 1 the simple case of the two di-

mensional electron gas with rs = 1 a.u. is shown.
We notice that several twist values satisfy the con-
dition in Eq. 15. We verified that the final result
is independent both on the direction and on the
special twist selected. The same procedure can be
straightforwardly applied to the three dimensional
electron gas reported in Subsec. III A. Similarly, in
the case of realistic QMC calculations we pick a di-
rection in the first Brillouin zone (in general along
a diagonal, thus characterized by just one param-
eter) and we scan the DFT-LDA band structure
by computing energies at each twist on a uniform
grid along the chosen direction. These runs must be
performed within the same supercell used for QMC
(Eq. 14). We select the value which reproduces the
thermodynamic limit within a range smaller than
the accuracy required by QMC. In particular, for
calculations on metallic systems presented in Sub-
sec. III B, we choose an accuracy of 0.005 eV/atom
in determining the special twist. Notice that the
selected twist will likely require a complex-valued
determinantal part in the QMC variational ansatz.
In contrast with Refs. 21,22, this is the case for all
calculations presented in Subsec. III B.

3. Once the special twist value θs is found, we per-
form a final DFT-LDA supercell calculation with
the selected twist. The resulting wavefunction is
used as determinantal part of the total QMC ansatz
(Eq. 2).

4. Given the JSD wavefunction built in the previous
steps, we carry out the Jastrow optimization with
the stochastic reconfiguration technique (see Sub-
sec. II A for technical details). Both the linear coef-
ficients and the Gaussian exponents of the Jastrow
are optimized. In the case of bcc-Li structure in
Subsec. III B we also test the effectiveness of special
twist method in predicting structural properties by
performing full QMC crystal cell relaxation.

5. The final QMC energy is evaluated with the varia-
tional and, in selected cases, diffusion Monte Carlo
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FIG. 1: Energy landscape of the non-interacting (NI) 2D ho-
mogeneous electrons gas with 90 particles at a Wigner-Seize
radius of rs = 1 a.u. as a function of the twist angle θ in
π/a units, where a is the cubic box parameter. Two repre-
sentative directions in the Brillouin zone, (1,0) and (1,1), are
shown. The exact value of the NI energy is represented by the
straight line. The energy surface presents some cusps which
are due to discontinuous changes in the occupations of the
electronic states. We notice that several twist conditions in
both directions match the value of EHEG

∞ . We verified that
the choice of both the direction and the specific special twist
is irrelevant for the final outcome.
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schemes using the JSD ansatz. The procedure is
repeated at different supercell sizes in order to per-
form an extrapolation to the infinite-size limit.

In conclusion, our procedure for finding special twist
values is cheap and its numerical accuracy can be
adjusted depending on the considered physical prob-
lem. The way we select the EST ensures the cor-
rect independent-particle limit for the many-body QMC
wavefunction without relying on grand canonical ensem-
ble formalism. Besides these features, our approach also
possesses the advantages of employing only a single twist:
the computational cost of a EST calculation is about
twice the cost of a simple gamma point simulation due
to the complex arithmetics needed by the wavefunction
evaluation.

III. RESULTS

This Section presents the analysis of finite-size effects
for several systems by means of the EST method in-
troduced in Sec. II B. Sec. III A addresses the homoge-
neous electron gas in 3 dimensions, a correlated model for
metallic systems widely used as a benchmark for FS cor-
rection techniques. In Subsec. III B we focus on paradig-
matic ab initio metallic systems and we compare EST

with other FS methodologies. In particular, we test it
against the simple periodic boundary conditions (PBC),
the standard twist average boundary conditions (TABC)
technique20 and a different special twist determined ana-
lytically with the procedure introduced in Ref. 43, which
we dub “Baldereschi point”. At first we analyze the effec-
tiveness of EST method in extrapolating the total energy
to the infinite-size limit. If not otherwise specified, the
energies are corrected for many-body finite-size effects
using the KZK energy functional introduced in Ref. 24.
DFT(KZK) is performed with the built-in DFT code of
the TurboRVB package. The two-body corrections33 we
apply to the total QMC energy read:

ǫKZK
2b = ENs

LDA − ENs

KZK, (16)

where both LDA and KZK energies are computed within
the same Ns electrons supercell and the same twist(s)
condition(s) as the corresponding QMC calculation. We
verified that the application of the corrections based on
the RPA electronic structure factor25 leads to very simi-
lar results. A brief discussion on the evaluation of many-
body errors directly at QMC level is also presented.
The last part of Subsec. III B analyzes FS effects on

correlation functions using the EST method. In particu-
lar, we report the results on the bcc-Li lattice constant
evaluated with a zero temperature structural relaxation
of QMC ionic forces. Finally, we present some bench-
mark calculations on radial pair distribution functions
extracted from QMC based molecular dynamics simula-
tions of high-pressure high-temperature hydrogen18,46.

A. 3D homogeneous electron gas

The homogeneous electron gas in 3 dimensions (3D-
HEG) is certainly the most studied model for correlated
metallic systems. Its importance is not limited at the
model level, but it also constitutes the basis for building
the local density approximation routinely employed in
density functional theory47.
In this work, we simulated the 3D-HEG at an elec-

tronic density corresponding to a Wigner-Seitz radius of
rs = 10 a.u. This value has been used in several published
works20,25 carried out with the TABC method and it is
therefore convenient for the sake of comparison. In Fig. 2
we present the FS size extrapolation of HEG total energy
per electron as a function of the inverse number of parti-
cles. We analyze the performance of EST by comparing it
with simple PBC48 and with TABC calculations20 both
carried out with the same Slater-Jastrow trial wavefunc-
tion as ours. The arrow in Fig. 2 indicates the infinite-size
limit as presented in the original manuscript in Ref. 20.
We did not apply any many-body FS correction to our
results.
We can immediately notice that both EST and TABC

are effective in suppressing shell fluctuations as the num-
ber of particles grows. Both methods yield a very smooth
curve and we can easily extrapolate our EST results to
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FIG. 2: Comparison of different method for alleviating FS
effects in the 3D electron gas. The arrow indicates the infinite-
size limit as presented in Ref. 20. The solid line on EST results
is obtained with a simple quadratic polynomial fit.
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the infinite-size limit using a quadratic polynomial fit.
Furthermore, we can directly match the two thermo-
dynamic limits of the variational energy. TABC and
EST are in agreement within the statistical error bar
σ ∼ 2 × 10−5Ry, the extrapolated energy per particle
of EST being -0.10558(2) Ry/N and -0.10561(5) Ry/N
the corresponding TABC one.
At variance with the other methods, the shell fluctu-

ations in the PBC energies are too large to perform any
extrapolation, as expected. This issue is apparent also
if one considers the infinite-size estimate of -0.10549(2)
Ry/N reported in Ref. 48. We notice that it still dis-
plays a discrepancy of the order of ∼ 5σ with respect to
EST and TABC infinite-size limits. This disagreement is
likely due to residual one-body error dependence which
cannot be suppressed despite the very large number of
particles employed for this simulation.

B. Realistic systems

1. Total energy

In this Section we analyze the FS effects on the en-
ergetics of three paradigmatic metallic systems with in-
creasing degree of complexity. We believe they constitute
an exhaustive testing ground for the EST method and
they pave the way for applying EST to more complex
compounds. For TABC calculations we choose a uni-
form Monkhorst-Pack45 mesh offsetted from the Γ point
of the supercell Brillouin zone. The number of indepen-
dent twist conditions is reduced using the point group
symmetry operations of the supercell lattice. In order to
ensure convergence, the mesh size is varied at each super-

FIG. 3: VMC extrapolation to the infinite-size limit on solid
bcc structure of hydrogen. Results are corrected for two-body
errors with the KZK method24. The x axis reports the inverse
number of atoms in the supercell. In the inset we zoom the
results for the largest supercells in order to appreciate the
thermodynamic limit convergence. The x axis of the inset
reports the actual number of hydrogen atoms present in the
supercell.
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cell size such that the corresponding number of inequiva-
lent atoms is kept constant and appropriately large. The
size of the twist mesh is reported on the top x axis of
each plot.
The first metallic system we address is solid hydro-

gen in the bcc structure. Despite being the simplest el-
ement in the periodic table, hydrogen displays very in-
triguing properties and its phase diagram under pressure
is far from being completely understood. In particular,
in the region up to ∼ 300 GPa, solid hydrogen undergoes
numerous phase transitions displaying exotic quantum
properties which are not well characterized yet either ex-
perimentally or theoretically49–51. It is well established
that FS effects represent an important source of error in
many-body simulations and the size of the simulation su-
percell is crucial for obtaining accurate correlation func-
tions in molecular dynamics simulations of liquid hydro-
gen, as we will show in Sec. III B 3. Here we study the bcc
structure of solid hydrogen which has not been observed
yet in nature, but it is one of the candidate structure for
the high-pressure atomic phase due to its dense packing
of the atoms52.
We use a primitive Gaussian basis set of [J ]2s[D]2s,

where J refers to the Jastrow and D to the determinan-
tal part. The exponents of the determinant are taken
from a previous fully optimized calculation46. Despite
its small size, this basis has been proven accurate in de-
scribing both energetics and the most important corre-
lation functions18,46 of hydrogen. FS extrapolation at
a VMC level is presented in Fig. 3. As apparent, both
TABC and EST show a very smooth behavior toward the
thermodynamic limit, indicating that most part of shell
fluctuations have been eliminated.
By performing extrapolation to infinite size, we ob-
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FIG. 4: Energy extrapolation on Li in the high temperature bcc phase. We show VMC results (panel a) and LRDMC energies
(panel b). The energies are compared with different techniques. Two-body corrections are applied with the KZK functional
approach. In the inset, a zoom of the results for the largest supercells is shown. The x axis reports the inverse number of atoms
in the supercell for the main plot and the number of atoms itself for the inset.
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FIG. 5: Fermi surface contour plots along the z axis for bcc-
Li (left panel) and β-tin Si (right panel). The contour has
been taken at kz = 0. The calculations have been performed
with the software package Wannier9053 based on DFT(LDA)
results obtained with the QuantumESPRESSO54 program.
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tain -13.7117(38) eV /atom for TABC and -13.7197(43)
eV /atom using our EST method. These two FS cor-
rection methods are therefore in excellent agreement
for a simple, but relevant system as hydrogen. If the
Baldereschi point43 is used to offset the twist grid, the
energy fluctuations are mostly suppressed, but the ex-
trapolation procedure does not yield a satisfactory result
(see the inset of Fig. 3).
We turn now our attention to metallic bcc lithium.

Bulk Li has been the subject of intense studies due
to the emergence of exotic quantum states, including
superconductivity55,56, in its phase diagram under pres-
sure and also to its extensive application in battery de-
velopment. Previous QMC investigations57,58 provided

very accurate results and, at the same time, they es-
tablished the important role of FS effects in determin-
ing the converged ground state energy58,59. For treating
this system the localized basis set used in this work is
[J ]2s2p[D]4s4p and the 1s core electron is replaced with
a BFD pseudopotential40. A comparison among several
FS methods is presented in Fig. 4a for VMC and Fig. 4b
for LRDMC energies. Both TABC and EST methods,
in combination with the KZK corrections, ensure an al-
most complete suppression of energy fluctuations and
they provide a well converged result already for the 54
atoms supercell, at variance with the Baldereschi point
which displays a much slower convergence with supercell
size. In order to fully appreciate the convergence to the
thermodynamic limit, a zoom on the largest systems is
reported in the inset. The final extrapolated results of
TABC and EST are in agreement up to 0.002 eV/atom
for both VMC and LRDMC. This value is of the order of
the attained statistical error. These results demonstrate
that TABC and EST provide a similar performances in
controlling FS effects in this system, although the former
displays a slightly flatter curve.
The last system we address for benchmarking our

method is the high pressure β-tin structure of silicon.
Upon application of a pressure around 12 GPa, Si dis-
plays a structural phase transition from the semiconduc-
tor diamond phase to a β-tin metallic phase. The transi-
tion develops on a very narrow energy scale60 and stan-
dard DFT techniques yield unsatisfactory and functional-
dependent results. Due to its sensitivity, this phe-
nomenon is a perfect ground for benchmarking advanced
first principles methods such as QMC and it has been ex-
tensively studied33,61–64. The tiny energy scale (∼ 0.05
eV/atom) to be probed in order to spot the correct tran-
sition pressure, requires a very accurate control of finite-
size effects33. Metallic Si offers a perfect playground for
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FIG. 6: Finite-size extrapolation with VMC (panel a) and LRDMC (panel b) methods on Si in the high pressure β-tin
phase. Again a comparison is shown among various FS correction methods and the inset reports a zoomed view close to the
thermodynamic limit. Two-body errors are corrected with KZK method. The x axis the inverse number of atoms for the main
plot and the number of atom itself for the inset. Except for PBC, we perform a linear fit on the results. We notice that, despite
yielding a smooth curve, the EST energy in the 16 atoms supercell (second point from the right) displays a shift towards higher
energies. This is likely due to a particularly sharp Fermi surface for this specific supercell; we verified that, at DFT level, the
use of a rotated supercell allows to partially suppress this shift. For consistency, we keep the result in the plot but we remove
it from the fitting procedure.
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testing the reliability of EST method when tackling sys-
tems with complex and discontinuous Fermi surfaces. To
be more explicit, in Fig. 5 we show a comparison of the
LDA Fermi surface between bcc-Li and β-tin Si, where
the contour has been taken along the z-axis at kz = 0.
We notice that Li (Fig. 5a) displays practically no fea-
tures except a large electron pocket centered at the Γ
point. β-tin Si (Fig. 5b) is instead considerably more
challenging, in particular as a result of the small electron
pockets present at the Brillouin zone borders. As already
presented in the Li case, we report FS extrapolation in
Si with KZK corrections for curing two-body FS effects.
The final results obtained with the VMC and LRDMC
methods are shown in Fig. 6a and Fig. 6b respectively.
The EST method gives excellent results, comparable to
the more expensive TABC in eliminating shell filling ef-
fects. In this particular case, the energy curve obtained
with EST method is flatter than the TABC one. How-
ever, we notice that the energy of the 16 atoms supercell
(second point from the right) is shifted towards higher
energies. We believe that this issue is related to the par-
ticularly poor sampling of the Fermi surface for that set
of k-points. This fact together with the relatively small
number of atoms in the supercell – which corresponds to
a coarse k-points mesh – may give rise to the shift ob-
served in EST results. We verified, at DFT level, that
this shift can be partially recovered by using a rotated su-
percell with lower symmetry. In Fig. 6 we do not include
this point in the extrapolation procedure.
The infinite-size extrapolation of TABC and EST are

in agreement up to 0.005 eV/atom for the VMC method,
a value below the attained statistical error. A larger
difference is apparent when using the LRDMC; beyod-

leading-order extrapolation might be more appropriate
in this case. However, when the largest supercell (96
atoms for EST, Baldereschi and TABC, 256 atoms at Γ
point) is used, all results, independently from the method
used, are converged up 0.01 eV/atom for all techniques,
an accuracy sufficient for obtaining a correct transition
pressure33.

2. Comparison of errors in the EST method

In this Section we present a more quantitative discus-
sion on the impact of FS effects in the special twist ap-
proach.
By definition (Eq. 15), the EST method cancels out

all FS errors derived from the one-body contribution at
mean-field level. However, if one switches electron corre-
lation on in QMC, the Fermi surface can vary from the
single-particle estimation, thus reintroducing some one-
body finite-size effects also in the case of EST. Their size
can be estimated via the TABC technique which ensures
a denser sampling of the Fermi surface. Thus, we pro-
vide an estimation of this residual contribution to the
one-body FS errors directly within QMC. For this esti-
mate VMC is the method of choice as it likely provides an
outcome similar to LRDMC concerning FS effects and,
since it is much cheaper, it can be used in production runs
for correcting the LRDMC energy results. The residual
one-body error at VMC level reads:

ǫVMC
1b = ETABC,Ns

VMC − ENs

VMC, (17)

where ENs

VMC is the EST energy in a Ns-atom supercell,

whereas ETABC,Ns

VMC is the correspondent fully converged
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ǫKZK

2b ǫVMC

2b ǫVMC

1b

# of atoms bcc-Li

16 0.1958 0.198(7) -0.013(6)

54 0.0378 0.061(5) -0.006(5)

128 0.0245 0.026(5) -0.003(2)

250 0.0125 0.013(5) 0.0002(17)

β-tin Si

16 0.3545 0.185(6) 0.026(2)

48 0.1181 0.096(7) 0.036(7)

64 0.0886 0.067(6) 0.042(6)

96 0.0574 0.042(8) 0.035(2)

TABLE I: Comparison of many-body FS effects estimated
with different methods for both bcc-Li and β-tin Si . All pre-
sented results are in eV per atom. Many-body errors are com-
pared between the KZK and VMC corrections, both detailed
in the text. We notice an overall good agreement between the
two estimations for both Li and Si, except the case of the 16
atoms Si supercell which displayed similar issues also in the
energy extrapolation (see Fig. 6).

TABC result in the same supercell. Results for Li and Si
are presented in Tab. I (4th column); they constitute an
indirect probe of the changes in the Fermi surface when
going from DFT to QMC level. If one takes bcc-Li as
the reference case, one can see that the one-body resid-
ual corrections are very small (one order of magnitude
smaller than many-body effects) and decrease fast when
the size is increased. This implies that, in this case, the
estimated value of the EST is supposedly very close to
the one obtained at the DFT(LDA) level. This is fur-
ther confirmed by the fact that the EST value changes
only slightly from simple Hartree to DFT(LDA) mean-
field estimates. In other words, the actual EST is rather
insensitive to the underlying theory used to determine it
which makes the EST evaluation quite robust.
Moreover, we notice that for β-tin Si the behavior of

ǫVMC
1b is less systematic as a function of the system size.
This could be related to the limitation of the TABC
approach used to estimate the one-body corrections at
VMC level. Indeed, as already mentioned, TABC works
in the canonical ensemble and can introduce a bias in the
energy values due to the wrong k-point occupations, that
can be particularly severe in the case of β-tin Si where
the Fermi surface is much more complex than in the Li
case (see Fig. 5).
The residual many-body contribution to the FS errors

can also be evaluated at VMC level. In Tab. I we com-
pare the many-body errors estimations obtained with the
standard KZK method in Eq. 16 (2nd column) and di-
rectly within VMC (3rd colum) using the relation:

ǫVMC
2b = Eextr

VMC − ETABC,Ns

VMC (18)

where Eextr
VMC is the VMC energy extrapolated to the

infinite-size limit. Notice that this extrapolation is ob-

tained using KZK corrected values, however the infinite
size limit must obviously be the same.
Tab. I demonstrate that KZK and direct VMC esti-

mations are in good agreement concerning many-body
FS errors for both Li and Si, thus supporting the use of
the cheap KZK approach for production QMC runs. The
only relevant discrepancy is shown by the Si 16 atoms su-
percell which is a particularly delicate case both for EST
and TABC methods, as previously mentioned.
In conclusion, it is important to remark that the spe-

cial twist value used for Li and Si calculations has been
determined using DFT(LDA) energies, therefore its value
can be slightly different than the one obtained directly
with the DFT(KZK) functional instead. This discrep-
ancy could lead to some spurious contribution to the
KZK estimation of the many-body errors. However, we
verified that the variation of the EST between the two
functionals is negligible, in line with what said before,
thus ǫKZK

2b is considered as purely many-body and directly
comparable with ǫVMC

2b .

3. Energy derivatives

TABLE II: Lithium cell parameters obtained from VMC
structural relaxation at different supercell sizes. The EST
results are compared with standard PBC calculations and
with the most accurate TABC method. We report also values
obtained from fully converged DFT calculations in the LDA
approximation, performed with the QuantumESPRESSO54

program using a 15 × 15 × 15 k-point mesh and norm con-
serving pseudopotentials. Experimental cell parameters are
also shown.

# of atoms Cell parameter [Å]

PBC EST TABC

16 3.497(6) 3.457(4) 3.454(4)

54 3.469(3) 3.476(3) 3.496(3)

128 3.521(3) 3.505(3) 3.502(2)

250 3.510(5) 3.506(2) 3.499(3)

DFT(LDA) 3.3537

EXP65 3.482

In Sec. III B 1 we demonstrated the reliability of the
EST method in extrapolating QMC energies to the
infinite-size limit. However, as already pointed out in
Ref. 20, sampling the Fermi surface with a single point
might not be sufficient to account for more sensitive prop-
erties of the system such as the potential energy or cor-
relation functions. In this Section we focus on testing
the EST method with a particularly important type of
correlation function: the ionic forces. Their evaluation
within QMC has been the subject of intense research
activity36,66 due to the intrinsic difficulty to find an effi-
cient and finite variance algorithm for computing many-
body energy derivatives. As already mentioned, the AAD
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FIG. 7: Hydrogen radial pair distribution function extracted
from a molecular dynamics simulation of liquid hydrogen at
a density given by rs = 1.36 a.u. For this plot we use a
supercell of 64 atoms. We compare our EST method with the
standard PBC, with the Baldereschi point and with TABC
results performed with a 4× 4× 4 uniform mesh (64 twists).
The solid lines are obtained with a polynomial interpolation
as guide for the eye. Despite small discrepancies in the g(r)
around the peaks, TABC and EST display an overall good
agreement. We notice instead some spurious features in the
results obtained with the Baldereschi point, in particular in
the region zoomed in the inset (r ∈ [1.5, 3.2]).
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FIG. 8: Same as Fig. 7 but performed with a larger supercell
containing 128 hydrogen atoms. In this case the disorder of
the system prevails and the system can be considered spher-
ically symmetric; for this reason the special twist coincides
with the Baldereschi point. We notice that at this supercell
size the EST and TABC curves are practically indistinguish-
able, while PBC is still far from the other two methods, es-
pecially in the description of the first peak around r = 3.2
a.u.
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technique36 offers a solution to this issue. With our ap-
proach is thus possible to perform both zero tempera-
ture structural relaxation and molecular dynamics simu-
lations based on QMC forces18,19,46.
In Tab. II we present the optimization of the cell pa-

rameter of bcc Li carried out with full QMC forces min-
imization. The EST results are obtained with the same
value of special twist previously used for energy extrap-
olation.
Thanks to its denser sampling of the Fermi surface, the

TABC method performs better than single-twist meth-
ods, with the cell parameter already converged for the 54
atoms supercell. EST is slightly slower to converge to-
wards the infinite-size limit than TABC, but it displays
a much smoother behavior with respect to simple PBC
calculations, thus allowing an easy extrapolation to infi-
nite size. By performing a linear extrapolation we obtain
3.508(3) Å for TABC and 3.504(5) Å for EST, which are
in statistical agreement. The residual discrepancy with
the experimental value65 (∼ 0.025 Å) can be due to tem-
perature effects which are not taken into account by our
calculations. However, QMC outcome provides already
a substantial improvement with respect to DFT(LDA)
calculations.
The lower computational cost of the EST method

makes this approach the appropriate choice in the case
of structural relaxation of more complex crystal cells, re-
quiring the use of large supercells or the simultaneous op-
timization of several structural parameters, which would
be computationally infeasible using the TABC technique.
The last part of this Section is devoted to benchmark

calculations on the radial pair distribution function (g(r))
of liquid hydrogen. The g(r) is extracted from QMC
based molecular dynamics (MD) simulations at a tem-
perature of 1800 K and an estimated pressure of ≃ 260
GPa. Forces are computed with the AAD technique and
the MD is carried out with the methods introduced in
Refs. 18,46. At these conditions, in our simulations liq-
uid hydrogen is in the atomic phase18. This phase is
metallic, hence FS effects are likely to be important in
order to obtain a reliable description of the system.
The evaluation of the special twist for liquid hydrogen

MD is more challenging. Due to its disordered nature,
the system can be considered spherically symmetric and
thus one can assume that the Baldereschi point for cubic
systems (1/4, 1/4, 1/4) would provide a good approxima-
tion for the special twist, since the disorder favors the
lowest Fourier components of Brillouin zone integrals. In
order to investigate better this issue, we extract several
configurations from a previous molecular dynamics simu-
lation carried out with the same conditions and we apply
the EST procedure. The special twist is obtained by av-
eraging among all the points found. In the case of the
64 atoms supercell, we realized that the special twist has
no relevant fluctuations among different configurations
and that it tends to a value of (1/4, 1/4, 0), in contrast
with the initial assumption; we conclude that within this
relatively small supercell the system tends to break the
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spherical (cubic) symmetry given by its disordered na-
ture. On the contrary, for the 128 supercell we found a
special twist very close the cubic Baldereschi point, as
expected. This demonstrates that this supercell is suf-
ficient to correctly account for the disordered nature of
liquid hydrogen.
In Fig. 7 the g(r) is reported for the 64 atoms supercell.

The overall behavior of the EST curve is in good agree-
ment with TABC with only small discrepancies around
the peaks. This is not the case for simulations carried out
with the Baldereschi point, where we notice an anoma-
lous feature close to the first peak at r ∼ 2.8 a.u. An
excellent agreement between the two methods is instead
obtained with a 128 atoms supercell, as shown in Fig. 8
where TABC and EST (Baldereschi) curves perfectly su-
perpose. At difference with the EST method, also with
this larger supercell the g(r) extracted from PBC calcula-
tions qualitatively differs from the more accurate TABC
result.
The EST method remains reliable in the evaluation of

ionic forces, in both simple structural relaxation and pair
distribution functions extracted from MD simulations.
However, the accordance with the more expensive TABC
technique is achieved only when relatively large supercells
are employed. Hence, if one has to compute correlations
functions using the EST method, a careful assessment
of the impact of supercell size is needed before starting
production runs.

IV. CONCLUSIONS

In this manuscript we presented a novel procedure,
dubbed EST method, to find special twist values in the
Brillouin zone corresponding to the simulation cell, which
reproduce the mean-field infinite-size energy up to an ar-
bitrarily high numerical accuracy. We show that, when
the EST value is used to build wavefunctions for corre-
lated ab initio QMC calculations, it greatly reduces one-
body shell fluctuations in the energy extrapolation to the
infinite-size limit.
Our procedure has several advantages with respect to

the widely used TABC technique. From a computational
point of view, it is a single-twist technique and it is there-
fore considerably more affordable, especially within dif-
fusion Monte Carlo calculations characterized by a sig-
nificant equilibration time. Within our method, it is not
only possible to accurately compute thermodynamic con-
verged total energies, but its relatively low cost also en-
sures the possibility of performing structural relaxation
of complex supercells or even large molecular dynamics
simulations within the QMC framework. On the other
hand, the EST method is constructed in order to keep the

exact mean-field thermodynamic limit of the many-body
variational wavefunction. This feature allows to avoid
any bias in the kinetic energy evaluation and provides
a more reliable description of the Fermi surface when a
large supercell is used.
We tested our procedure on the 3D electron gas, a sim-

ple, but widely studied model for metallic correlated sys-
tems. Within this system EST displays an efficiency com-
parable with the standard TABC technique. We demon-
strate that EST is also very effective in controlling FS ef-
fects when tackling more complex and realistic systems,
such as solid hydrogen, bcc-Li and the high-pressure β-
tin phase of silicon. These systems show different degrees
of complexity and they represent an exhaustive testing
ground for our method. β-tin Si is particularly challeng-
ing, since it possesses a very complicated Fermi surface.
EST and TABC extrapolated results are shown in very
good agreement, and the two methods ensure a very sim-
ilar smoothing of the one-body energy fluctuations.
The calculation of correlation functions such as ionic

forces is more delicate. We show for both zero tempera-
ture structural relaxation and molecular dynamics simu-
lations that EST performs better than any other single-
twist method. However, the TABC technique still shows
a better performance, thanks to its denser sampling of
the Fermi surface. We show that for reasonably large
supercell sizes, EST and TABC techniques are in perfect
agreement. Therefore a careful study of the supercell size
dependence is necessary before applying the EST method
in QMC production runs for the calculation of correlation
functions.
We believe that EST procedure here introduced can

be the method of choice for reducing FS effects in many
practical situations, particularly when the complexity of
the system or the required supercell size make the more
demanding TABC calculations infeasible. Last but not
least, given its single-twist nature, EST can also be effi-
ciently used in combination with full determinant opti-
mization of the wavefunction, QMC structural relaxation
and molecular dynamics simulations, as we demonstrated
in this paper.
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61 D. Alfè, M. J. Gillan, M. D. Towler, and R. J. Needs, Phys.

Rev. B 70, 214102 (2004).
62 W. Purwanto, H. Krakauer, and S. Zhang, Phys. Rev. B

80, 214116 (2009).
63 R. Maezono, N. D. Drummond, A. Ma, and R. J. Needs,

mailto:vildosol@tandar.cnea.gov.ar
mailto:michele.casula@impmc.upmc.fr
mailto:sorella@sissa.it
http://people.sissa.it/~sorella/web/


15

Phys. Rev. B 82, 184108 (2010).
64 R. G. Hennig, A. Wadehra, K. P. Driver, W. D. Parker,

C. J. Umrigar, and J. W. Wilkins, Phys. Rev. B 82, 014101
(2010).

65 S. Vaidya, I. Getting, and G. Kennedy, J. Phys. Chem.

Solids 32, 2545 (1971), ISSN 0022-3697.
66 C. Filippi and C. J. Umrigar, Phys. Rev. B 61, R16291

(2000).


