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S
elf-assembled monolayers (SAMs) on
surfaces constitute the basis for mo-
lecular nanodevices.1�4 The tuning of

charge transport properties is crucial
for molecular electronics and is critically
determined by conformation-dependent
molecule�surface and molecule�molecule
interactions.5�19 Ultimately, most applica-
tions require the possibility of controlling
molecular conformation in a predictable
way.15,20�29 Thus, different external stimuli

such as light30,31 and temperature24,25 have
been explored to gain control over the
morphology of supramolecular layers.
The local electric field under a scann-

ing tunneling microscope (STM) tip can be
used to manipulate the diffusion and ar-
rangement of atoms and molecules at the
nanoscale.32�41 Because of strong intermo-
lecular interactions that need to be reconfi-
gured to manipulate the intermolecular
connectivity landscape, it has been difficult
to obtain reversible conformational switch-
ing in SAMs by means of electric fields.
Accordingly, the systems studied so far
included either metal�organic complexes

with high intrinsic dipolar moments that
can flip aligning to an external field33�35 or
ionized species being adsorbed/desorbed
or restructured from the solution in re-
sponse to a charged interface.39,40 Specially
challenging is the possibility to find robust
and reproducible systems that can keep the
same response and reversibility after nu-
merous switching cycles.
Herein, we show how the voltage applied

in situ by a STM can be used to gain full
control over the opening and closing
of nanoporous structures of a purely or-
ganic and neutral molecule: 1,3,5-tris(4-
carboxyphenyl) benzene (BTB) on HOPG.
The switch is fully reproducible and reverts
immediately according to the orientation of
the electric field.

RESULTS AND DISCUSSION

In Figure 1 we show STM images of
different supramolecular phases of BTB in
n-nonanoic acid (NA). At very low concen-
trations (2.5% of a saturated solution =
12.5 μM) we observe an open porous
network formed by six BTB molecules
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ABSTRACT We use the electric field in a scanning tunneling

microscope to manipulate the transition between open and close

packed 2D supramolecular networks of neutral molecules in nonpolar

media. We found that while the magnitude of the applied field is not

decisive, it is the sign of the polarization that needs to be maintained

to select one particular polymorph. Moreover, the switching is

independent of the solvent used and fully reversible. We propose

that the orientation of the surface dipole determined by the electric

field might favor different conformation-depended charge transfer

mechanisms of the adsorbates to the surface, inducing open (closed) structures for negative (positive) potentials. Our results show the use of local fields to

select the polymorphic outcome of supramolecular assemblies at the solid/liquid interface. The effect has potential to locally control the capture and

release of analytes in host�guest systems and the 2D morphology in multicomponent layers.
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(Figure 1a). In earlier works, this low-density (0.23
molecules/nm2) “honeycomb” (also named “chicken-
wire”) structure has been the only phase observed
in NA at room temperature, for any range of con-
centrations.9,24 Interestingly, in this work we find that
also other structures can be produced in NA by careful
control of the BTB concentration. By increasing the
concentration to 5% (25 μM) we obtain the “oblique”10

structure (Figure 1b). This structure has been pre-
viously identified for BTB when using solvents with
higher polarity, as in the case of shorter chain length
fatty acid solvents.9

Gutzler et al.24 found a densely packed “row” struc-
ture for BTB in NA when heating the substrate to 55 �C
and also when measuring in n-heptanoic acid (HA) at
25�60 �C. They modeled the densely packed row
structure (0.87 molecules/nm2) with the molecules
nearly upright, having two carboxylic groups interact-
ing with the surface while the third carboxylic group
points off the surface into the solution. In thisworkwefind
the row structure at saturated solutions, coexisting with a
“compact”phasewith lower density (0.56molecules/nm2)
(Figure 1c,d and Supporting Information, Figures S1�S2).
For concentrations of 10% of dilution (50 μM), we
observe the expression of all the close-packed phases:
oblique, compact, and row (Supporting Information,
Figure S2). After some minutes, domain areas become
larger by Oswald ripening and after 2h no evidence of
other less densely packed structures have been found
(Supporting Information, Figure S3).
In literature, there are several works showing the

same trend, where less densely packed polymorphs
are obtained for diluted solutions.13,14,17,24,25 Accord-
ingly, we found a critical concentration (C0) of 32 μM
that represents the limit of occurrence of an open
(honeycomb) or a densely packed structure at room
temperature (Supporting Information, Figure S4) when
measuring at positive sample potential.
Other authors have modeled the concentration

dependence of bimorphic monolayer self-assembly

in detail and concluded that densely packed poly-
morphs become thermodynamically preferred at
higher solute concentrations.14,28 However, we notice
that in this system the polymorphic structures show a
concentration selection during approximately 1 h,
after which they tend to transition toward close
packed phases for all ranges of initial concentrations,
indicating that open structures are only kinetically
favored.26

During all the experiments described above, we
always measured at positive sample bias at room
temperature. Surprisingly, we found that for freshly
deposited solutions we solely observe close-packed
structures (for concentrations higher than C0) when
we measure at a positive sample bias. In turn, when
we switch the polarity to negative sample bias we de-
tect exclusively the honeycomb structure (Figure 2).
Figure 2 panels a�c illustrate the dependence on the
sample polarity of a BTB monolayer physisorbed on
graphite. Figure 2a shows a typical close-packed struc-
ture at a sample bias of þ850 mV; 100 pA (the blue
arrow indicates the scanning direction). When a nega-
tive sample bias of �850 mV was applied, the more
densely packed structure was transformed into the
honeycomb structure as indicated in Figure 2b. When
the bias potential is maintained at �850 mV the
subsequent image (Figure 2c) shows the emergence
of a homogeneous honeycomb structure along the
scanned area.
This change is induced independently of the BTB

concentration (for any concentration higher than C0).
By gradually changing the magnitude of the bias
voltage we could establish a window in which the
phase change is observed (Figures 2d). The blind
region indicates the zone where no measurements
are possible due to imaging conditions. It is impor-
tant to point out that any change in the sign of the
sample polarity (from �1...�0.35 V to þ0.4...þ1 V)
independently of its magnitude will immediately
allow us to observe exclusively one structure. No time

Figure 1. STM images showing the concentration-dependence morphology of BTB monolayers on HOPG at the solid/liquid
interface (Vbias = 850 mV; I = 150 pA). Typical structure obtained for (a) very diluted solutions (e12.5 μM; 2.5% from the
saturated solution), (b) diluted solutions (25 μM; 5% from the saturated solution) and (c,d) saturated solutions of BTB in NA.
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dependence is evidenced as the transformation always
occurs from one scan line to the next one (∼10 s).
To study the reversibility of this particular process,

the bias polarity was changed abruptly from�850mVf
þ850 mV f �850 mV in the same scanned area
(Figure 2e). The observed transformation of BTB mor-
phology by reverting the electric field direction is
highly reproducible, as can be seen in several experi-
ments (see Supporting Information, Figure S5).
Changes in the morphology induced by the STM tip

were observed previously in molecular assemblies
both at the solid/vacuum33 and liquid/solid inter-
face.34�37,41 Most examples refer to 180� flipping of
nonplanar metal naphtalocyanines and noncentro-
symmetric triple-decker complexes.33�35 In all these
cases the molecules had a strong intrinsic molecular
dipole that was flipping direction in order to align with
the applied electric field. Instead, for BTB one possible
scenario involves the molecules in solution being
pushed away or aligned with the electric field depend-
ing on the polarization at the surface. The fact that the

two polymorphs can coexist on the surface also in-
dicates that their adsorption energies are similar.24

Therefore, the applied electrostatic field might change
the delicate balance betweenmolecule�molecule and
molecule�surface interactions and favor one con-
former over the other. According to our DFT calcula-
tions (B3LYP/6311Gþþ), the intrinsic dipole moment
P of the optimized structure of BTB is 2.4 D along the
central ring (Figure 2d and Supporting Information,
Figure S6).
Interestingly, the optimized structure of the honey-

comb phase on HOPG is the only structure completely
flat on the surface (in order tomaximize the H-bonding
interactions between neighboring molecules)24 with a
resultant dipolar moment of zero (Figure 2d). Thus,
molecules absorbed on the surface in a close-packed
less planar structure could allow the molecular dipole
to align with the applied electric field. A conformation-
dependent charge transfer mechanism is consistent
with the presence of two surface active centers, in-
volving both the electrons of the benzene ring
(backdonation from the surface to the π-antibonding
orbital of the molecule, enhanced in the flat con-
figuration) and the free electron pairs on carboxylic
oxygens (donation, enhanced for the upright con-
figuration).42 Recent DFT calculations for trimesic acid
(TMA) on graphene,43 show that the deformation of
COOH groups bending toward the surface affects
electron donation and backdonation. The formation
of a honeycomb H-bonded network decreases the
TMA deformation and the interaction with the surface,
while the stability of the adsorbed network is compen-
sated by H bonding.43 This mechanism is also compa-
tible with a partial deprotonation of the BTB molecule
being favored under positive surface potential. In
contrast to thermal annealing in UHV experiments,29

in solution the presence of a Hþ acceptor is funda-
mental to allow deprotonation. As autoprotolysis con-
stants of long chain carboxylic acids are very low44 and
the phase transformation was found to be indepen-
dent of the polarity of the solvent for n-heptanoic acid,
n-phenyloctane, and n-dodecane (Supporting Infor-
mation, Figure S7), the deprotonation seems unlikely
unless a contamination with water traces is present in
all the experiments. Moreover, no bias induced trans-
formations were observed for molecules that present
only flat conformers on HOPG as melamine and
the linear ditopic molecule 4,400-di(pyridine-4-yl)-
1,10:40,100-terphenyl (BPTB) in NA, indicating that the
conformation-dependent dipole of BTB promotes the
structural transition.
It is known that the stability of the open structure is

related to the coadsorption of solvent molecules in the
pores of the network.9,24,25 In some images we can
even resolve an ordered structure of solvent molecules
inside the pores (Supporting Information, Figure S8).
Nevertheless, we found that unless a negative surface

Figure 2. (a�c) Sequential STM images showing the vol-
tage-induced phase transformation. Blue arrows indicate
the scan direction (solution = 50 μM BTB in NA; I = 100 pA).
(d) Representation of the phase transition with the applied
bias-voltage showing the optimized structures of each
phase, the calculated intrinsic dipole moment of planar
vs relaxed structure in vacuum (top) and the potential
region where the phase transition takes place (bottom). (e)
STM image showing the reversibility of the phase changes
(solution = 5 μM BTB in NA; I = 40 pA).
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potential ismaintained the honeycomb structure is not
stable over long periods of time. In Figure 3a, the
spontaneous transformation of a very diluted BTB/NA
honeycomb structure into a close-packed structure at
room temperature is clearly observed, revealing the
instability of this phase. According to our results, the
honeycomb phase is kinetically favored in diluted
solutions, but it transforms into a denser phase with
a small energy barrier. To induce the transformation
process, we applied a perturbation (i.e., potential
pulses of different magnitude and application time)
on the sample. We found that in fresh networks
(honeycomb structures obtained immediately after
the addition of a very diluted BTB solution on the
substrate) a pulse of 1.5 V (100 ms) on the sample is
enough to transform a honeycomb into a close-packed
structure, Figure 3b). This phase transition induced by a
single pulse (without polarity switch) is time depen-
dent upon the initial concentration and it is not directly

reversible; that is, a negative pulse of the same magni-
tude does not induce the reversal to the original
structure. Moreover, the application of a potential
pulse (1.5 V; 100 ms) to the thermodynamically stable
structure formed from a saturated BTB solution in-
duced a rearrangement, generating small domain
areas of densely packed structures (Figure 3c). This
points toward a situation where the pulse provides the
energy to desorb the molecules from the surface and
at the same time eject molecules toward the surface
increasing the local concentration.
In contrast, when we have a close-packed structure

prepared from very diluted solutions (1% dilution,
5 μM) produced after a perturbation or spontaneously
formed after 1 h (Figure 4a), the application of a pulse
destroys the network and the kinetically favored
open structure is immediately formed (Figure 4b,c).
Because of the instability of the honeycomb phase
under positive sample potential, after some minutes,

Figure 3. (a) Sequential STM images showing the spontaneous phase transformation (from honeycomb to close-packed
structures) of a sample prepared froma very diluted BTB solution (12.5μM). I=150pA. (b) The samephase transformation but
induced by a pulse (1.5 V; 100 ms) of a sample prepared from a very diluted BTB solution (12.5 μM). I = 150 pA. (c)
Rearrangement of a close-packed structure induced by a pulse in a saturated BTB solution in NA. I = 200 pA. White arrows
indicate the scan direction.
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the thermodynamically stable close-packed structure
starts to grow preferentially at substrate defects (or
domain boundaries) covering the whole surface
(Figures 4d�f). As we described above, if we change
the sample polarity the open honeycomb structure
appears (Figure 4g, bottom). In the case of very
diluted solutions, the network is even missed until a
new positive pulse is applied (increasing the local
concentration) as can be seen in Figure 4g, top. After
that the close-packed structure starts to grow again
mainly at surface defects and covers the entire scanned
surface (Figure 4 h). This particular cycle described
in Figure 4 could be repeated several times in the same
area.
Another observation that confirms this scenario is

that, once a close-packed structure is formed, a de-
crease in the global BTB concentration in the solution
does not revert to the original structure. This effect was
proven adding pure solvent during the measurements
(not shown).

CONCLUSIONS

The supramolecular assembly of BTB molecules at
the liquid/solid interface can be tuned both by the
solute concentration (either globally or locally) and by
the polarization at the surface�molecule interface. The
two tip-induced transformations described here have a
different nature. The application of a local pulse causes
a gradual rearrangement of molecules toward the
thermodynamic polymorphs. The final rearrangement
after the pulse depends on the magnitude (extra
energy injected in the system) and the initial concen-
tration of the solution. While in the case of a change in
the polarization, themagnitude of the changedoes not
play a role, it is the sign of the polarization that needs to
be maintained to favor one particular polymorph. This
transformation is independent of the solvent and is
fully and immediately reverted by changing the sign of
the bias voltage. This means that the conformation of
the molecules with respect to the surface is directly

Figure 4. Reversible cycle showed by consecutive STM images on a very diluted BTB solution (5 μM) in NA on HOPG:
(a) Close-packed structure obtained after 1 h or by a perturbation by an electrical pulse; (b) after the application of an
electrical pulse >1.5 V, the honeycomb structure appears; (c) the honeycomb structure is obtained in the scanned area
(kinetically favored structure); (d,e) the close-packed structure grows mostly at defects; (f) the close-packed structure
covers the entire scanned surface (thermodynamically favored structure); (g) voltage-induced phase transformation from
close-packed to honeycomb structure (bottom) and application of a 1.5 V pulse (top); (h) spontaneous growth of the close-
packed structure. I = 100 pA.
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determined by the orientation of the surface dipole. In
particular, the orientation of the surface dipole under
positive voltages might induce COOH groups to bend
toward the surface inducing the molecule into a non-
planar configuration that allows the molecular dipole
to respond to the electric field.
The presented tunablemorphology could be used in

functional molecular architectures in which nanopores
could act as a target site for catalysis, controllable drug
release, host�guest chemistry, etc. and this capability

could be switched on/off in situ. Moreover we are
currently using this effect to investigate tunable re-
arrangements in mixed phases with planar and non-
planar adsorbates that respond distinctly to the
orientation of the surface dipole, allowing local control
of the partial interfacial concentration. In amore general
context, we expect this work to draw attention to the
“non-innocent” role of the sample polarity in determin-
ing the morphological outcome of supramolecular ad-
layers, even for neutral species in nonpolar media.

EXPERIMENTAL SECTION
Solutions of different concentrations of 1,3,5-tris(4-

carboxyphenyl) benzene (BTB) were prepared in n-nonanoic
acid (synthesis, Merck), n-heptanoic acid (98%, Aldrich), n-
dodecane (synthesis, Merck), and n-phenyl octane (98%,
Aldrich). Highly ordered pyrolytic graphite (HOPG, Bruker),
ZYB grade was used as substrate. The HOPG substrate was
cleaved with adhesive tape prior to use. The samples were
prepared by depositing 4 μL of BTB solution on the HOPG
substrate. STM tips were prepared by mechanical cutting of Pt/Ir
wire (90%/10%, diameter 0.25 mm, GoodFellow). All STM mea-
surements were performed using a Bruker system at constant-
current mode. After the samples were prepared the tip was
immersed in the droplet of solution at the liquid/solid interface.
STM images were processed using WSxM 5.0 software.45
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