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Abstract

We present the first fully differential next-to-leading order QCD calculation for
lepton production in transversely polarized hadronic collisions, p ↑ p ↑→ ℓ±X ,
where the lepton arises from the decay of an electroweak gauge boson. The
calculation is implemented in the Monte-Carlo like code ‘CHE’ that already includes
the unpolarized and longitudinally polarized cross sections and may be readily
used to perform a comparison to experimental data and to extract information
on the related parton distributions. We analyze the perturbative stability of the
cross-section and double spin asymmetry ATT at RHIC kinematics. We find that
the QCD corrections are non-negligible even at the level of asymmetries and that
they strongly depend on the lepton kinematics. Furthermore, we present two
scenarios for transversely polarized parton distributions, based on the de Florian-
Sassot-Stratmann-Vogelsang (DSSV) set of longitudinally parton densities and fully
evolved to NLO accuracy, that can be used for the evaluation of different observables
involving transverse polarization.
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1 Introduction

The partonic structure of polarized nucleons at the leading-twist (twist-2) level is characterized
by the unpolarized, longitudinally polarized, and transversely [1–4] polarized parton distribu-
tion functions f , ∆f and δf , respectively. Unpolarized parton distributions are known to a
high degree of accuracy, allowing for very precise calculations at hadronic colliders, such as the
LHC. On the other hand, regardless of much progress over the past three decades, many open
questions concerning the helicity structure of the nucleon still remain. For example, we so far
have only a rather unfinished picture of the individual longitudinal polarizations of the light
quarks and anti-quarks [5–7], and just a first hint on the helicity contribution of gluons inside
the proton [7, 8]. Nevertheless, a strong program of polarized pp collisions is now underway at
the BNL Relativistic Heavy Ion Collider (RHIC) [9, 10], aiming at further unraveling the spin
structure of the proton.

Regarding the third leading-twist density, much less is experimentally known about the
distributions of transversely polarized quarks in a transversely polarized proton (see [11] for
a recent extraction of valence transversity distributions from dihadron production). A num-
ber of different processes, including prompt photon, heavy flavour, inclusive hadrons and jet
production have been proposed as observables to pin down the transversity distributions (see,
e.g., [12]). It has long been recognized that Drell-Yan Z boson production at the RHIC may
provide clean access to the transverse polarizations of quarks and anti-quarks in the colliding
protons [13–17,21]. The quantity of interest here is the double transversely polarized asymmetry
defined as the ratio between the transversity cross section and the unpolarized one, as

ATT ≡ dσ↑↑ − dσ↑↓ − dσ↓↑ + dσ↓↓

dσ↑↑ + dσ↑↓ + dσ↓↑ + dσ↓↓ ≡ dδσ

dσ
, (1)

where the arrows indicate the corresponding transverse polarization of each beam.

During the last decades, a number of perturbative QCD next-to-leading (NLO) calculations
became available for this observable, either at the level of the fully inclusive cross-section [17–19]
or differential only on some of the variables [17, 21]. For instance, the less inclusive analytical
calculation presented in Ref. [21] provides a result which is differential on the invariant mass
and rapidity of the dilepton system and the azimuthal angle of one lepton. But other relevant
distributions, such as the transverse momentum of each of the leptons, can not be reconstructed
from those.

While providing an estimate of the observables asymmetries, this kind of approach needs
to be expanded in various ways. On one hand, there is an experimental issue: the detectors
at RHIC do not offer full coverage, which means that it is not always possible to reconstruct
the momentum of the gauge boson from the leptonic final states. Furthermore, due to the
acceptance of the detector and also in order to reduce the background, selection cuts are
applied on several leptonic (and sometimes hadronic) variables which are not described by more
inclusive calculations. On the other hand, at variance with the unpolarized and longitudinally
polarized cases, for transverse polarization there is a strong azimuthal correlation between the
spin of the protons and the momentum of the outgoing lepton. That makes indispensable to
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count with a fully differential description of the observable in terms of the leptons 1. Indeed,
the strategy adopted by the RHIC experiments is to detect the charged decay lepton and
determine its transverse momentum pT and rapidity η. The relevant process therefore becomes
the reaction pp → ℓ±X , similar in spirit to the processes pp → πX , pp → jetX [22–24] used at
RHIC to determine gluon polarization in the nucleon.

The peculiar azimuthal dependence appearing in transverse polarization scattering can be
easily understood at the level of the matrix elements. At the lowest order, the only partonic
channel that contributes to the process is q(p1)q̄(p2) → e−(l1)e

+(l2). The corresponding (color
and spin averaged) transversely polarized matrix element is given by

δ|M|2 = 2

3
C
(

2
t̂û

ŝ
s1 · s2 +

4

ŝ
s1 · l1 s2 · l1

)

, (2)

where s1 ≡ (0; cosφ1, sinφ1, 0) and s2 ≡ (0; cosφ2, sinφ2, 0) are the transverse spin vectors
of the incoming protons, and the usual Mandelstam variables are given by ŝ = (p1 + p2)

2,
t̂ = (p1 − l1)

2 and û = (p2 − l1)
2. The charge coefficient C, adding contributions from both

photon and Z-boson exchange, is given by

C ≡ e4e2q + 2e2eqvevq
ŝ(ŝ−M2

Z)

(ŝ−M2
Z)

2 + Γ2
ZM

2
Z

− (v2e + a2e)(a
2

q − v2q )
ŝ2

(ŝ−M2
Z)

2 + Γ2
ZM

2
Z

, (3)

where, for the sake of simplicity in the notation, we write the corresponding weak coupling as
proportional to (vi − aiγ

5).

In the centre-of-mass frame of the incoming partons, the parenthesis in Eq.(2) reads

1

2
sin2 θ cos (2φ− φ1 − φ2) ≡

1

2
sin2 θ cos(2Φ) , (4)

where θ and φ are the polar and azimuthal angles of the lepton, respectively. As it occurs for
other processes involving transversely polarized partons, the cos(2Φ) term integrates to zero
and, therefore, a special treatment is required to extract a non-vanishing asymmetry, as it will
be discussed in Section 2.

While leading-order (LO) calculations in hadronic collisions usually present only a qualitative
description of an observable, higher order corrections are known to be large and needed to
provide reliable quantitative predictions for a high-energy process. It is, therefore, crucial to
determine the NLO QCD corrections.

In general, the key issue here is to check the perturbative stability of the process considered,
that is, to examine to which extent the NLO corrections affect the cross sections and, in spin
physics the spin asymmetries relevant for experimental measurements. Only if the corrections
are under control can a process that shows good sensitivity to a given transversity parton
density be considered as a genuine probe for that, and be reliably used to extract accurate

1Furthermore, in order to better reproduce the experimental cuts it is also necessary to be able to describe

the hadronic activity in the final state
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distributions from future data. Furthermore, the inclusion of extra partons in the NLO per-
turbative calculation also allows to improve the matching between the theoretical calculation
and the realistic experimental conditions. This is particularly true when the calculation is per-
formed at the fully differential level, such that all the four-momenta of all outgoing particles
(leptons and partons) are available in order to apply the same cuts used at the experimental
level. For that reason, we present here the first fully differential (in the hard cross section)
NLO calculation for the production of single leptons, mediated by the exchange of a photon
and a Z-boson, in collisions of transversely polarized protons p ↑ p ↑→ ℓ±X .

The remainder of this paper is organized as follows: in the next section we very briefly
discuss the non-standard characteristics of the NLO calculation with transverse polarization.
In Sec. 3 we introduce two different scenarios of transversely polarized distributions at NLO
accuracy, a key ingredient for the calculation. In Sec. 4 we study the perturbative stability of
the different observables and provide the phenomenological NLO results for the most relevant
distributions and asymmetries. We finally conclude in Sec. 5.

2 Next-to-leading Order Calculation

In order to evaluate the NLO QCD corrections to the process we rely on the version of the
subtraction method introduced and extensively discussed in Refs. [25, 26], and later extended
to the polarized case in Ref. [23]. We refer the reader to those references for the details. The
calculation is implemented in the Monte-Carlo like code ‘CHE’ (standing for ‘Collisions at High
Energies’) 2 which provides access to the full kinematics of the final-state particles, allowing for
the computation of any infrared-safe observable in hadronic collisions and the implementation
of realistic experimental cuts. It is worth noticing that the same code can compute the un-
polarized, the longitudinally single polarized and the (longitudinally and transversely) double
polarized cross sections. Even though the region of most interest at RHIC corresponds to the
production of a lepton pair due to the decay of a Z boson, the code also allows for the com-
putation of the corrections arising from photon exchange at the same accuracy in perturbative
QCD 3. We show in Figure 1 some of the Feynman diagrams contributing at LO and NLO.

We point out that at NLO the contribution from photon exchange, qq̄ → γ∗g followed
by γ∗ → ℓ+ℓ−, may generate large contributions when the high-transverse momentum photon
splits almost collinearly into the lepton pair, producing high-pT leptons with a very low invariant
mass. A proper treatment of this configuration would require the addition of a fragmentation
contribution based on parton-to-dilepton fragmentation functions [28]. On one hand, it is likely
that configurations with two nearly collinear leptons can be distinguished experimentally from
true single high-pT leptons. On the other hand, the kinematical region of interest for transverse
polarization at RHIC is limited to the high invariant mass configuration around the Z mass,
MZ . Therefore, in our calculation we can formally avoid such dangerous configurations by
requiring the lepton pair to have an invariant mass Ml1l2 > 10 GeV, without any compromise

2The code is available upon request from deflo@unsam.edu.ar
3Notice that the cross section is identically zero for transverse polarization in the case of W± exchange
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in the result since most phenomenological analysis will actually demand Ml1l2 & 70 GeV.

❩� ✦

❧✁
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☎✆

☎✝

☎✆

☎✝

✞✟✠

✡☛ ☞✡☛ ☞

Figure 1: Feynman diagrams for Z, γ production with leptonic decay: (a) leading-order, (b)
NLO virtual correction, (c) NLO real emission. Crossed diagrams are not shown.

The Monte-Carlo like implementation relies on the integration by using numerical adaptive
routines, such as Vegas, in order to improve the necessary cancellation of different terms in the
subtraction method. The transversity cross section introduces an extra complication towards
that, due to the particular azimuthal dependence cos 2Φ which integrates to zero over the full
phase space. In order to avoid that, and to produce results according to the conventional
strategy, we multiply the corresponding squared matrix elements by sign(cos 2Φ), such that the
azimuthal integration becomes

∫ π

−π

cos 2Φ dΦ →
(

∫ −3π/4

−π

−
∫ −π/4

−3π/4

+

∫ π/4

−π/4

−
∫

3π/4

π/4

+

∫ π

3π/4

)

cos 2Φ dΦ , (5)

maximizing the transversity cross section.

As a check of the implementation of the calculation, we have also computed the fully in-
clusive transversely polarized cross sections, integrated over all lepton angles. For these cross
section, analytical results are available [20], with which we agree.

3 Transversity parton distributions at NLO

In analogy to the longitudinally polarized density ∆f , the transversity distribution δf is defined
as the difference of finding a parton of flavor f at a scale Q with momentum fraction x and its
spin aligned (↑↑) and anti-aligned (↓↑) to that of the transversely polarized nucleon:

δf(x,Q) ≡ f ↑↑ (x,Q)− f ↓↑ (x,Q) . (6)

At variance with the longitudinally polarized and unpolarized cases, there is no transversity
gluon density for spin 1/2 hadrons [29, 30]. The lack of a gluon distribution, and its corre-
sponding mixing with quarks, has striking effects on the (factorization) scale dependence of the
transversity densities, which evolve as non-singlet quantities. Valence and sea quark distribu-
tions evolve very similarly, with small differences that start at NLO accuracy.

4



In order to analyze the perturbative stability of the NLO cross section, it is indispensable to
count with transversity parton distributions evolved with the corresponding NLO kernels [20,
31, 32]. Given that little information on transversity distributions is available so far, we will
present two extreme scenarios for them. The first one is based on Soffer’s inequality [33]

2|δf(x,Q)| ≤ f(x,Q) + ∆f(x,Q) , (7)

which has been shown to be preserved under evolution at LO and NLO [15, 20, 34]. For the
transversity maximally saturated scenario we assume that the inequality is saturated (choosing
the positive sign) at a low scale Q = 1 GeV. For the unpolarized distributions we use the
MSTW set [38], while for the helicity densities we rely on the latest DSSV14 [5–7] analysis. By
saturating the inequality at Q = 1 GeV, one usually generates transversity distributions that
can be unnaturally large, in particular in the sea quark sector. Given the non-singlet nature of
the transversity distributions, the sea quark densities at Q ∼ MZ can only be large at small x
if the same distribution is already sizable at the low initial scale Q = 1 GeV. In contrast, the
unpolarized and longitudinally polarized sea quark distributions are driven at small x by their
mixing to the gluon density through the evolution and can grow considerably.

A more conservative scenario relies on a possible analogy between longitudinally and trans-
versely polarized quark densities. Since the assumption δf(x,Q) ≡ ∆f(x,Q) can not be main-
tained for all scales Q due to the different evolution of δf(x,Q) and ∆f(x,Q), we set the
equality between both distributions at the initial scale Q = 1 GeV in the transversity-helicity
scenario. The result for both scenarios at Q = MZ , along with the unpolarized and longitudi-
nally polarized counterparts, are shown in Figs. 2 and 3 for the u, ū and d, d̄ quark distributions,
respectively.

Figure 2: Left: Next-to-leading order xu(x,Q) evaluated at the scale Q = 91.2 GeV for the unpo-
larized MSTW [38] distributions (solid), helicity DSSV [5–7] distribution (dashes), transversity
maximally saturated (dashed-blue), and transversity-helicity distributions (dots-blue). Right:
Same for xū(x,Q) (right-hand side).

As can be observed, and in agreement with the arguments presented above, in the transversity-
helicity scenario the quark densities follow the same trend of the helicity-distributions, while in
the antiquark sector we see larger differences originated by the scale evolution. On the other
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hand, more sizable transversity distributions are obtained in the transversity maximally satu-
rated scenario, where we also notice a notorious difference in the small x-behaviour between
the transversity and unpolarized distributions due to their non-singlet and singlet nature, re-
spectively.

Figure 3: Same as Figure 2 but for the xd(x,Q) and xd̄(x,Q) distributions.

Along this paper, we discard eventual contributions from heavy quark distributions in the
polarized case, an rely only on the three massless flavor approach. Furthermore, we only
produce NLO evolved parton densities, and use them as discussed in Section 4 4.

4 Phenomenological Results for RHIC

In this section we analyze the perturbative stability of different observables in lepton production.
We now use our NLO code to present some numerical results for polarized pp collisions at RHIC
at center-of-mass energy

√
S = 500 GeV. We do not include any QED or electroweak (EW)

corrections, but choose the coupling constants α and sin2 θW in the spirit of the ‘improved Born
approximation’ [35, 36], in order to effectively take into account the electroweak corrections.
This approach results in sin2 θW = 0.23119 and α = α(MZ) = 1/128. We also require the
lepton pair to have an invariant mass Ml1l2 > 10 GeV, in order to avoid potentially large NLO
contributions from production of a high-pT nearly real photon that subsequently decays into
a pair of almost collinear leptons, as discussed before. We set the mass of the vector boson
to MZ = 91.1876 GeV and the corresponding decay width to ΓZ = 2.4952 GeV [37]. For the
unpolarized cross section we will use the MSTW distributions with five massless flavors, while
for the transversely polarized case we rely on the (3-flavor) sets of distributions presented in
Section 3.

We study two different observables for lepton production in pp → ℓ−X : the transverse
momentum (pT ) distribution of the electron with a rapidity cut of |ηe| < 1, and the rapidity

4A Fortran code with the sets of tranversely polarized parton distributions is available upon request from

deflo@unsam.edu.ar

6



distribution with pT > 20 GeV. There are two hard scales in the process, which are of the same
order: the mass of the gauge boson and the transverse momentum of the observed lepton. We
choose µ2

F = µ2
R = (M2

Z + p2T )/4 as the default factorization and renormalization scales. We
note that the scale dependence of the cross sections and, in particular of the spin asymmetries
is extremely mild in case of vector boson production, so that other choices like µF = µR = MZ

or µF = µR = Ml1l2 provide rather similar results.

Given that the main reason to study polarized scattering is to shed light on the spin struc-
ture of the proton, and, in this particular case, to obtain information on the transversely
polarized distributions, we begin by analyzing which is the sensitivity range of the observable
in the momentum fraction carried by partons. With the selection cuts implemented in this
analysis, the process is dominated by the kinematics on the Z-pole and, therefore, one expects
a correlation between the partonic momentum fractions and the Z’s rapidity (yZ), for which
one has x1,2 =

MZ√
S
e±yZ at the Born level. It has been shown [27, 39] that this relation between

momentum fractions and rapidity at the gauge boson level is inherited by the lepton, even to
NLO accuracy. A remarkably strong correlation is found between 〈x1,2〉 and ηe and, as a rough
approximation, one can parameterize these correlations by the simple ‘empirical’ formulas

〈x1,2〉 ∼
MZ√
S
e±ηe/2 . (8)

Considering that RHIC experiments will allow to reach rapidities of the order of |ηe| ∼ 1, one
can expect sensitivity to the transversely polarized quark and anti-quark distributions in the
region 0.07 . x . 0.4.

By observing the distributions in Fig.2, it is clear that the leading u, ū, d and d̄ transversity
distributions are always positive in that kinematical range for the transversity maximally satu-
rated scenario, while ū and d̄ densities are mostly negative (with a sign change in that relevant
region) for the transversity-helicity scenario. The overall sign of the transversely polarized cross
section (and therefore the sign of the corresponding asymmetry) arises from the combination of
the parton distributions and the partonic cross section. For qq̄ → γ∗ → e−e+ annihilation the
polarized partonic asymmetry is positive, after removing the overall cos 2Φ term. The situation
changes at the Z-pole due to the different ElectroWeak couplings, as observed at the leading
order in Eq.(3), such that the ratio between the corresponding partonic contributions to the
cross section is roughly given by

δσqq̄→e−e+(Ml1l2 ∼ MZ)

δσqq̄→e−e+(Ml1l2 ≪ MZ)
∼ −

(v2e + a2e)(a
2
q − v2q )

e4e2q
(9)

and, therefore, the transversity partonic asymmetry becomes negative at Ml1l2 ∼ MZ . We
can observe this feature in Fig.(4), where we present the dilepton invariant mass distribution
for the transversely polarized cross section. The sign of the cross section around the peak is
therefore fixed by (the opposite sign of) the one arising from the combination of the polarized
parton distributions, resulting in a negative asymmetry for the transversity maximally saturated
scenario and a positive one for the transversity-helicity scenario (due to the mostly negative
antiquark distributions). On the other hand, for invariant masses far from the Z peak (i.e.
Ml1l2 . 70 GeV or Ml1l2 & 110 GeV ), the cross section is dominated by photon exchange and
the opposite sign is observed.
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Figure 4: Dilepton mass distribution for the transversely polarized cross section computed at
NLO accuracy with the transversity maximally saturated (solid) and transversity-helicity (dot-
ted) polarized densities.

We move now on the relevant issue of analyzing the perturbative stability of the QCD
expansion for different observables. One usual way to display the size of radiative QCD correc-
tions is in terms of a ‘K-factor’, which represents the ratio of the NLO and LO results. In the
calculation of the numerator of K one obviously has to use NLO-evolved parton densities. As
far as the denominator is concerned, a natural definition requires the use of LO-evolved parton
densities. However, by using NLO-evolved parton densities and LO partonic cross sections,
one still obtains a hadronic cross section accurate to LO, and therefore the denominator of the
K-factor can also be computed with NLO-evolved parton densities. The longitudinally polar-
ized parton distributions, which are at the basis of both transversity distribution scenarios, are
not yet as well determined as the unpolarized ones. Therefore, different results might arise
for some of them when fits are performed at LO or at NLO accuracy, resulting in rather large
K-factors for the distributions themselves. As an outcome of that, the use of LO distributions
in the evaluation of the denominator could generate artificially large or small K-factors in the
transversely polarized cross-sections, with effects far beyond those originated by the perturba-
tive corrections. Therefore, along this paper, we always use NLO distributions for both LO and
NLO observables to emphasize the true outcome of the higher order terms.

We start by presenting in Fig.(5) the dependence of the transversely polarized cross sections
on the transverse momentum of the electron. On first hand, we observe that the cross sections
are dominated by the production of leptons around the Jacobian peak pT ∼ MZ/2. In this
region the QCD corrections, as observed in the K-factors presented in the inset plot, become
rather large and unstable. This is not unexpected: at LO, reaching pT > MZ/2 is only possible
due to the finite width structure of the Z boson, while starting at NLO that region can be filled
by the decay of leptons from a Z boson with net transverse momentum, feature possible due to
the emission of extra gluons at higher orders. Therefore, that kinematical regime becomes very
sensitive on soft gluon emission, and its proper description requires all-order resummation of
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Figure 5: Transverse momentum dependence of the NLO (solid) and LO (dashes) transversely
polarized cross sections. The corresponding K-factors are shown in the inset plot.

the large logarithms that spoil the convergence of the perturbative expansion. However, after
one integrates over a sufficiently large region of lepton transverse momentum, these logarithms
turn into finite corrections and their resummation is not necessary. From the point of view of
extracting transversely polarized parton distribution functions, it therefore seems advisable to
focus on observables integrated over the lepton’s transverse momentum (such as the rapidity
dependence presented here), because these are insensitive to soft-gluon effects, and to use a plain
NLO calculation. On the other hand, at low transverse momentum, we observe a change of sign
in the cross sections due to the dominance of the pure QED (photon-exchange) contribution,
similarly to what occurs at low dilepton invariant mass, as already observed in Fig.(4). In this
kinematical region, due to the change of sign, the QCD corrections also become rather large
and very much dependent on the scenario used for the transversity parton distributions.

In Fig.(6) we show the rapidity dependence of the NLO and LO transversely polarized cross
sections, for both scenarios of transversity parton distributions. It is clear from there that
the QCD corrections to the cross section are sizable and very much dependent on the set of
distributions used. The inset plot displays the K-factors, explicitly manifesting corrections
in the range of 20-35%. It is important to notice that even in the rather restricted rapidity
range relevant for RHIC, usual assumptions like constant K-factors, as those obtained from
fully inclusive calculations of Z production, would fail to provide an accurate description of
this observable.

Finally, we present in Fig.7 the corresponding LO and NLO results for the transversity
asymmetry. For the sake of simplicity we do not include the background contribution that
might arise from pp → W± → l±ν in the unpolarized cross section needed to define the
asymmetry. That would only result in a slightly smaller asymmetries, without any modification
of the features presented along this paper, and, furthermore, is usually avoided by requiring the
presence of two charged leptons in the detector [40]. The general features of the asymmetries
can be easily understood. In the transversity maximally saturated we find negative (due to

9



Figure 6: Rapidity dependence of the NLO (solid) and LO (dashes) transversely polarized cross
sections. The corresponding K-factors are shown in the inset plot.

the Z pole dominance) and larger asymmetries than for the (positive asymmetry) transversity-
helicity distributions, due to the more sizeable transverse polarization of both valence and quark
densities in the first scenario.

It is also visible that, within the proposed scenarios, the asymmetries are at the few percent
level, similarly to other observables involving transversely polarized beams [12]. In principle
it would be possible to generate transversely polarized distributions with a larger polarization,
assuming that the boundary condition is imposed at even lower initial scales, but that might
turn out into rather unphysical scenarios. While large luminosities will be clearly needed at
RHIC to perform the measurement, even the observation of the sign of the asymmetry would
be of great help to improve our understanding on the spin content of the proton. For more
details on the experimental possibilities for the measurement, we refer the reader to the recent
analysis in [16].

While asymmetries are in general rather stable under the QCD corrections, since many
effects present in the individual cross sections cancel in the corresponding ratio, the NLO
contributions still have a non-trivial impact. In the inset plot of Fig.7 we show the corresponding
asymmetry KA ≡ ANLO

ALO

-factors, where we can observe corrections of the order of 10% for the
asymmetry computed with the transversity-helicity set. It is interesting to notice that KA is
always below one for both sets of transversity distributions, but that this is not an overall feature
of QCD. For example, a tiny modification in the transverse momentum cut for the lepton can
produce a rather large effect in the observed asymmetries. By lowering the corresponding cut
from 20 GeV to 15 GeV, as can be observed on the results presented in Fig.8, the asymmetries
are considerably reduced with respect to the previous case and the NLO corrections become
more sizable, with KA deviating even further away from unity. This effect can be understood
on simple basis; while the unpolarized cross section grows monotonically as the cuts become
less restrictive, the transversely polarized cross section is reduced by a cancellation between
the EW and photon contributions. While a modification in the cut around 15-20 GeV does
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Figure 7: Rapidity dependence of the NLO (solid) and LO (dashes) transversely polarized asym-
metries for the two sets of the transversely polarized parton distribution functions defined above.
The corresponding K-factors are shown in the inset plot.

not affect substantially the pure EW term, which typically produces leptons with transverse
momentum around pT ∼ MZ/2, it does modify significantly the photon share that contributes
to the integral with the opposite sign and reduces the asymmetry. Furthermore, the size of the
QCD corrections slightly depend on the relevant transverse momentum of the event: they are
typically larger for lower scale contributions, such as those relevant for the QED part, than for
higher scale ones, as those involve in the EW term. This results in an even more prominent
cancellation between QED and EW contributions at NLO. Therefore, the perturbative stability
of the asymmetry turns out to be affected also by the explicit leptonic cuts used in the analysis.

On the other hand, by selecting leptons with larger transverse momentum, or directly by
choosing events with dilepton invariant mass in the range 70 GeV ≤ Ml1l2 ≤ 110 GeV one
finds larger asymmetries with KA closer to one or even larger. Therefore, it is clear that for a
precise analysis of future RHIC data on this observable, a NLO fully differential calculation,
such as presented here, is essential for a clear understanding of different observables even at
the asymmetry level.

5 Conclusions

In this paper, we have presented the first complete differential calculation at next-to-leading
order in perturbative QCD of the Drell-Yan cross section in transversely polarized hadronic
collisions. The calculation is implemented in the Monte-Carlo like code ’CHE’ that already
includes the unpolarized and longitudinally polarized cross sections. Using the aforementioned
code, we investigated in some detail the phenomenological implications of jet production at
RHIC (polarized pp collisions with a maximum centre-of-mass energy of 500 GeV). We find
that the QCD corrections are sizable, very much dependent on the cuts and kinematic domain

11



Figure 8: Rapidity dependence of the NLO (solid) and LO (dashes) transversely polarized asym-
metries for the two sets of the transversely polarized parton distribution functions, with a modi-
fied cut on the transverse momentum of the electron pT > 20 GeV. The corresponding K-factors
are shown in the inset plot.

for the observed lepton, and have a visible effect even for the transversely polarized double
asymmetry.
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