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THE UNIQUE CONTINUATION PROPERTY FOR A

NONLINEAR EQUATION ON TREES

LEANDRO M. DEL PEZZO, CAROLINA A. MOSQUERA AND JULIO D. ROSSI

Abstract. In this paper we study the game p−Laplacian on a tree, that is,

u(x) =
α

2

{

max
y∈S(x)

u(y) + min
y∈S(x)

u(y)

}

+
β

m

∑

y∈S(x)

u(y),

here x is a vertex of the tree and S(x) is the set of successors of x. We study the
family of the subsets of the tree that enjoy the unique continuation property,

that is, subsets U such that u |U= 0 implies u ≡ 0.

1. Introduction

Our main goal in this paper is to analyze for which sets the unique continuation
property is valid for the nonlinear equation known as the game p−Laplacian on a
tree. This nonlinear equation reads as follows

(1.1) u(x) =
α

2

{

max
y∈S(x)

u(y) + min
y∈S(x)

u(y)

}

+
β

m

∑

y∈S(x)

u(y), ∀x ∈ Tm.

Here x is a vertex of the m-branches directed tree Tm and S(x) is the set of
successors of that vertex (see Section 2 for details).

Equation (1.1) arises naturally when one considers Tug-of-War games. In fact,
let us describe the game that gives rise to (1.1). This is a zero sum game with two
players in which the earnings of one of them are the losses of the other. Starting
with a token at a vertex x0 ∈ Tm, the players flip a biased coin with probabilities
α and β, α+ β = 1. If the result is a head (probability α), they toss a fair coin to
decide who move the token. If the outcome of the second toss is heads, then Player I
moves the token to any x1 ∈ S(x0), while in case of tails, Player II moves the token
to any x1 ∈ S(x0). In the other case, that is, if they get tails in the first coin toss
(probability β), the game state moves according to the uniform probability density
to a random vertex x1 ∈ S(x0). They continue playing and given a continuous
function F : [0, 1] → R, the final payoff is given by limk→+∞ u(xk) = F (π). This
game has a value u that verifies a Dynamic Programming Principle formula, that
for this game is given by (1.1). This can be intuitively explained as follows: the
expected value of the game is the sum among all possibilities of the expected value
in the successors. Note that Player I tries to maximize the expected value while
Player II tries to minimize it. Hence, there is α/2 probability of each player to win
(and hence α/2 probability to move to the vertex where the maximum is located
and α/2 to the minimum) and β probability of the random choice of the next

2010 Mathematics Subject Classification. 35Q91, 35B51, 34A12, 31C20.
Key words and phrases. Unique Continuation Property, Trees, p-harmonious functions, Tug-

of-war game.
Leandro M. Del Pezzo was partially supported by ANPCyT PICT No. 2006-290 and CON-

ICET (Argentina) PIP 5478/1438. Carolina A. Mosquera was partially supported by UBACyT
X638. Julio D. Rossi was partially supported by by projects MTM2010-18128 and MTM2011-
27998 (Spain).

1

http://arxiv.org/abs/1203.3989v3


2 L. M. DEL PEZZO, C. A. MOSQUERA AND J. D. ROSSI

point. Formula (1.1) encodes all these possibilities. See Section 3 for more details
concerning the game.

Also equation (1.1) can be viewed as a combination (with coefficients α and β)
of the discrete infinity Laplacian, studied in [23], that is given by

1

2

{

max
y∈S(x)

u(y) + min
y∈S(x)

u(y)

}

− u(x)

and the discrete Laplacian that in this case is given by

1

m

∑

y∈S(x)

u(y)− u(x).

The study of the unique continuation property for solutions of differential equali-
ties and inequalities of second order elliptic operators with smooth and non-smooth
real coefficients has a large history and is essentially complete. Let us state a clas-
sical strong unique continuation result for the divergence-form linear equation

div(A(x)Du) + 〈b(x), Du〉+ c(x)u = 0.

Classical unique continuation property. Let Ω ⊂ R
N be a connected domain.

Under adequate assumptions on the coefficients A, b and c, if u is a weak solution
that vanishes in an open subset of Ω, then u ≡ 0 in Ω.

A general version of this statement is proved by Hormander [9] using Carleman
estimates. See also [5] that contains a proof of the result via monotonicity formu-
las. This result was recently generalized to fully nonlinear equations (under some
assumptions on regularity of the equation) in [2]. For more details and references
concerning unique continuation we refer the reader to [8, 10, 13, 14, 21, 24].

Concerning unique continuation for quasilinear problems like the p−Laplacian,
div(|∇u|p−2∇u) = 0, in [1], the author proves the unique continuation property
in the plane for all 1 < p < +∞, for a different approach see also [4, 17]. In the
higher dimensions, as far as we know, the problem remains open for p 6= 2. Recently,
in [6] , the authors deal with this problem by studying a certain generalization of
Almgren’s frequency function for the p−Laplacian. Using this approach the authors
have obtained some partial results. See also the reference [7].

In the case of connected finite graph this problem can be stated as follows: Let
E be a connected finite graph. We assign to every edge of E length one and we
define d(x, y) = infx∼y |x ∼ y|, where x ∼ y is the path connecting vertex x to
the vertex y and |x ∼ y| is the number of edges in this path. Assume that u is a
solution to (1.1) on E (these functions are also called p−harmonious functions, see
[23]) and that u = 0 on BR(x) where BR(x) is the ball of radius R > 0 centered at
a node x of E contained within this graph. Does it imply that u ≡ 0 on E? The
answer to this problem is negative, see examples in Section 3.6 of [23]. Also, in [23],
the author proves the existence and uniqueness and a comparison principle for the
Dirichlet problem for (1.1) in the case of a connected finite graph and in the case
where the graph is T3.

1.1. Main results. Our results can be summarized as follows: first, for a general
m-branches directed tree, we prove existence, uniqueness and a comparison principle
for the Dirichlet problem for (1.1). In addition we present an approximation scheme
that can be used to approximate numerically the solution when the boundary data
is a Lipschitz function. Next, we prove our main result, that is a description
of sets U ⊂ Tm for which the unique continuation property holds. As we have
mentioned, this means that any bounded solution to (1.1) that vanishes on U
vanishes everywhere in Tm.
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Organization of the paper. In Section 2 we collect some preliminary facts
concerning trees and solutions to (1.1); in Section 3 we describe with some details
the associated Tug-of-War game and use it to prove existence and uniqueness for
the Dirichlet problem and a comparison principle for solutions to (1.1); in Section 4
we present a numerical scheme that approximates solutions to (1.1) and, finally, in
Section 5 we prove our main result concerning the sets for which unique continuation
holds.

2. Preliminaries

2.1. Directed Tree. Let m ∈ N>2. In this work we consider a directed tree
Tm with regular m−branching, that is, Tm consists of the empty set ∅ and all
finite sequences (a1, a2, . . . , ak) with k ∈ N, whose coordinates ai are chosen from
{0, 1, . . . ,m − 1}. The elements in Tm are called vertices. Each vertex x has m
successors, obtained by adding another coordinate. As we mentioned in the in-
troduction, we will denote by S(x) the set of successors of the vertex x. A vertex
x ∈ Tm is called a n−level vertex (n ∈ N) if x = (a1, a2, . . . , an). The set of all
n−level vertices is denoted by T

n
m.

Example 2.1. Let κ ∈ N≥3. The 1/κ−Cantor set, that we denote by C1/κ, is the set of

all x ∈ [0, 1] that have a base κ expansion without the digit 1, that is x =
∑

ajκ
−j

with aj ∈ {0, 1, . . . , κ − 1} with aj 6= 1. Thus C1/κ is obtained from [0, 1] by
removing the second κ−th part of the line segment [0, 1], and then removing the
second interval of length 1/κ from the remaining intervals, and so on. This set can
be thought of as a directed tree with regular m−branching with m = κ− 1.

For example, if κ = 3, we identify [0, 1] with ∅, the sequence (∅, 0) with the first
interval right [0, 1/3], the sequence (∅, 1) with the central interval [1/3, 2/3] (that is
removed), the sequence (∅, 2) with the left interval [2/3, 1], the sequence (∅, 0, 0)
with the interval [0, 1/9] and so on.

∅

0

0

0 1 2

1

0 1 2

2

0 1 2

1

0

0 1 2

1

0 1 2

2

0 1 2

2

0

0 1 2

1

0 1 2

2

0 1 2

A branch of Tm is an infinite sequence of vertices, each followed by its immediate
successor. The collection of all branches forms the boundary ∂Tm of Tm.

We now define a metric on Tm ∪ ∂Tm. The distance between two sequences (fi-
nite or infinite) π = (a1, . . . , ak, . . . ) and π′ = (a′1, . . . , a

′
k, . . . ) is m−K+1 when

K is the first index k such that ak 6= a′k; but when π = (a1, . . . , aK) and
π′ = (a1, . . . , aK , a

′
K+1, . . . ), the distance is m−K . Hausdorff measure and Haus-

dorff dimension are defined using this metric. We can observe that Tm and ∂Tm

have diameter one and ∂Tm has Hausdorff dimension one. Now, we observe that
the mapping ψ : ∂Tm → [0, 1] defined as

ψ(π) :=

+∞
∑

k=1

ak
mk
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is surjective, where π = (a1, . . . , ak, . . . ) ∈ ∂Tm and ak ∈ {0, 1, . . . ,m − 1} for all
k ∈ N. Whenever x = (a1, a2, . . . , ak) is a vertex, we set

ψ(x) := ψ(a1, a2, . . . , ak, 0, . . . , 0, . . . ).

We can also associate to a vertex x = (a1, a2, . . . , ak) an interval Ix of length 1
mk

as follows

Ix =

[

ψ(x), ψ(x) +
1

mk

]

.

Observe that for all x ∈ Tm, Ix∩∂Tm is the subset of ∂Tm consisting of all branches
that start at x.

With an abuse of notation, we will write π = (x1, . . . , xk, . . . ) instead of π =
(a1, . . . , ak, . . . ) where x1 = a1 and xk = (a1, . . . , ak) ∈ S(xk−1) for all k ∈ N≥2.

2.2. p−harmonious functions. Inspired in [23] and [20] we give the definition of
the p−harmonious function that we will consider throughout this paper.

Definition 2.2. Let α, β > 0 such that α+β = 1. A function u : Tm → R is called
p−subharmonious if

u(x) ≤
α

2

{

max
y∈S(x)

u(y) + min
y∈S(x)

u(y)

}

+
β

m

∑

y∈S(x)

u(y) ∀x ∈ Tm,

and p−superharmonious if the opposite inequality holds for all x ∈ Tm. We say
that u is p−harmonious if u is both p−subharmonious and p−superharmonious.

Remark 2.3. If u is a p−harmonious function on Tm, then u+ = max{u, 0} and
u− = max{−u, 0} are p−subharmonious functions on Tm.

Next, we collect some properties of p−harmonious functions.

Lemma 2.4. If u is a p−subharmonious function bounded above on Tm and there
exists x ∈ Tm such that u(x) = maxy∈Tm

u(y) then u(y) = u(x) for any y ∈ Tm

such that Iy ⊂ Ix.

Proof. Throughout this proof let M = u(x) = maxy∈Tm
u(y). We first observe that

it is sufficient to show that u(y) =M for all y ∈ S(x). Since u is p−subharmonious
on Tm, we have that

M = u(x) ≤
α

2

{

max
y∈S(x)

u(y) + min
y∈S(x)

u(y)

}

+
β

m

∑

y∈S(x)

u(y)

≤

(

α

2
+

(m− 1)β

m

)

M +

(

α

2
+
β

m

)

min
y∈S(x)

u(y).

Then
(

α

2
+
β

m

)

M ≤

(

α

2
+
β

m

)

min
y∈S(x)

u(y).

Therefore u(y) = u(x) for all y ∈ S(x). �

In the same manner, we can prove the following lemma

Lemma 2.5. If u is a p−superharmonious function bounded below on Tm and there
exists x ∈ Tm such that u(x) = miny∈Tm

u(y), then u(y) = u(x) for any y ∈ Tm

such that Iy ⊂ Ix.

Now we show that p−harmonious functions are well behaved with respect to
uniform convergence.

Lemma 2.6. The uniform limit of a sequence of p−harmonious functions is a
p−harmonious function.
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Proof. Let {un}n∈N be a sequence of p−harmonious functions which converges uni-
formly to u. We will show that u is a p−harmonious function. Given ε > 0, there
exists n0 = n0(ε) such that if n ≥ n0,

(2.2) |u(x)− un(x)| ≤ ε ∀x ∈ Tm.

Then, for all x ∈ Tm and n ≥ n0 we have that

un(y)− ε ≤ u(y) ≤ un(y) + ε ∀y ∈ S(x).

Thus, for all x ∈ Tm and n ≥ n0,

un(x)− ε =
α

2

{

max
y∈S(x)

un(y) + min
y∈S(x)

un(y)

}

+
β

m

∑

y∈S(x)

un(y)− ε

≤
α

2

{

max
y∈S(x)

u(y) + min
y∈S(x)

u(y)

}

+
β

m

∑

y∈S(x)

u(y)

≤
α

2

{

max
y∈S(x)

un(y) + min
y∈S(x)

un(y)

}

+
β

m

∑

y∈S(x)

un(y) + ε

= un(x) + ε.

Taking limit as n→ +∞, we get that

u(x)− ε ≤
α

2

{

max
y∈S(x)

u(y) + min
y∈S(x)

u(y)

}

+
β

m

∑

y∈S(x)

u(y) ≤ u(x) + ε ∀x ∈ Tm.

Then, since ε is arbitrary, we have that

u(x) =
α

2

{

max
y∈S(x)

u(y) + min
y∈S(x)

u(y)

}

+
β

m

∑

y∈S(x)

u(y) ∀x ∈ Tm,

that is, u is a p−harmonious function. �

The Fatou set F(u) of a function u is the set of the branches π = (x1, . . . , xk, . . . )
on which

lim
k→+∞

u(xk)

exists and is finite, and BV (u) is the set of the branches π = (x1, . . . , xk, . . . ) on
which u has finite variation

∞
∑

k=1

|u(xk+1)− u(xk)|.

Clearly BV (u) ⊆ F(u).

Now we use the results of [11] to show that the infimum of Hausdorff dimension
of BV (u) and F(u) are equal over all bounded p−harmonious functions on Tm.

Theorem 2.7. Let Hm be the set of bounded p−harmonious functions on Tm.
Then

(2.3) min
Hm

dimF(u) = min
Hm

dimBV (u) =
log
(

γ−
mα+2(m−1)β

2m + (m− 1)γ
mα+2β

2m

)

logm
,

where

γ =
mα+ 2(m− 1)β

(m− 1)(mα+ 2β)

and dim denotes the usual Hausdorff dimension.



6 L. M. DEL PEZZO, C. A. MOSQUERA AND J. D. ROSSI

Proof. By Theorem A in [11] we have that

min
Hm

dim F(u) = min
Hm

dim BV (u) =
log f(m)

logm
,

where

f(m) = min







m
∑

j=1

exj : x ∈ R
m s. t.

α

2

(

max
1≤j≤m

xj + min
1≤j≤m

xj

)

+
β

m

m
∑

j=1

xj = 0







.

We obseve that the minimum f(m) is attained at

x1 = −
αm+ 2(m− 1)β

2m
log γ, xj =

mα+ 2β

2m
log γ, 2 ≤ j ≤ m,

with value

γ−
mα+2(m−1)β

2m + (m− 1)γ
mα+2β

2m ,

which completes the proof. �

Remark 2.8. In [12], for the classical discretization of the p−harmonic function on
trees,

∑

y∈S(x)

|u(x)− u(y)|p−2(u(x)− u(y)) = 0,

the authors prove that

lim
m→+∞

min
Hm

dimF(u) = lim
m→+∞

min
Hm

dimBV (u) = 1

for all p > 1. In our case, we can observe that, when α = 0, we have that γ = 1
and therefore

min
Hm

dimF(u) = min
Hm

dimBV (u) = 1

for all m ∈ N≥2. On the other hand, when α 6= 0, if we rewrite (2.3) as

(

1

2
+

(m− 2)β

2m

)









1 +

log

(

(1− 1
m

)(α+ 2β
m

)

(α+ 2(m−1)β
m

)

)

log(m)









+

log

(

2

(α+ 2β
m )

)

log(m)

and take limit as m→ +∞, we obtain that

lim
m→+∞

min
Hm

dimF(u) = lim
m→+∞

min
Hm

dimBV (u) =
1

2
+
β

2
.

3. The Dirichlet Problem and a Tug-of-War Game

First, let us introduce what we understand by the Dirichlet problem for
p−harmonious functions.

Dirichlet Problem (DP ). Given α, β > 0 such that α+ β = 1 and a continuous
function F : [0, 1] → R, find a p−harmonious function u such that

lim
k→+∞

u(xk) = F (π) ∀π = (x1, . . . , xk, . . . ) ∈ ∂Tm.

We say that v is a supersolution of (DP ) if v is p−superharmonious and

lim
k→+∞

v(xk) ≥ F (π) ∀π = (x1, . . . , xk, . . . ) ∈ ∂Tm.

We say that v is a subsolution of (DP ) if v is p−subharmonious and

lim
k→+∞

v(xk) ≤ F (π) ∀π = (x1, . . . , xk, . . . ) ∈ ∂Tm.

First, we want to show that the (DP ) has a unique solution. To this end we
use the Tug-of-War game introduced in [22], see also [20]. Now we describe the
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game and refer to [15] for more details and references. It is a two player zero sum
game. Starting with a token at a vertex x0 ∈ Tm, the players flip a biased coin
with probabilities α of getting a head and β of a tail, α+ β = 1. If they get a head
(probability α), they toss a second coin (a fair coin this time with probabilities
1/2 and 1/2) to decide who move the token. If the outcome of the second toss
is heads, then Player I moves the token to any x1 ∈ S(x0). In the case of tails,
Player II gets to move the token to any x1 ∈ S(x0). In the other case, that is, if
they get tails in the first coin toss (probability β), the game state moves according
to the uniform probability density to a random vertex x1 ∈ S(x0). They continue
playing the game forever, generating an infinite sequence π = (x0, x1, . . . , xk, . . . )
where xk ∈ S(xk−1) for any k ∈ N, therefore π ∈ ∂Tm. Then Player I receive from
Player II the amount F (π), where F is a continuous function from [0, 1] to R. This
is the reason why we will refer to F as the final payoff function. Now we define
the expected payoff for an individual game. First, a strategy SI for Player I is a
collection of measurable mappings SI = {Sk

I }k∈N such that the next game position
is given by

Sk+1
I (x0, x1, . . . , xk) = xk+1 ∈ S(xk)

if Player I wins the toss given a partial history (x0, x1, . . . , xk). Similarly, Player
II plays according to a strategy SII . We can observe that the next game position
xk+1 ∈ S(xk), given a partial history (x0, . . . , xk), is distributed according to the
probability

qSI ,SII
(x0, . . . , xk, A) =

α

2
δSk

I
(x0,...,xk)(A) +

α

2
δSk

II
(x0,...,xk)(A) +

β

m
#(A ∩ S(xk)),

where A is a subset of Tm and #(A ∩ S(xk)) denotes the cardinal of the set A ∩
S(xk). Strategies SI and SII together with an initial state x0 determine a unique
probability measure P

x0

SI ,SII
in [0, 1]. For the precise definition of Px0

SI ,SII
we refer

to [19]. We define the expected payoff of an individual game as

E
x0

SI ,SII
[F ] =

∫ 1

0

F (y)Px0

SI ,SII
(dy).

We also define the value of the game for Player I as

uI(x0) = sup
SI

inf
SII

E
x0

SI ,SII
[F ]

and the value of the game for Player II as

uII(x0) = inf
SII

sup
SI

E
x0

SI ,SII
[F ].

The value uI(x0) and uII(x0) are in a sense the best expected outcomes each player
can almost guarantee when the game starts at x0. For more details on values of
games, we refer to [16, 23].

The following theorem states that the game has a value, i.e. uI = uII , and this
value is a solution of (DP ). For a detailed proof of the existence of a value see [15]
and, by an argument completely similar to the proof of Theorem 3.4 in [19], we
have that the game value is a solution of (DP ).

Theorem 3.1. Let F : [0, 1] → R be a continuous function. Then the game with
payoff function F has a value u. Furthermore, u is a solution of (DP ) with boundary
data F .

To see the form of game values u (solution of (DP )) let us mention that in [23],
an explicit formulae for Px0

SI ,SII
is given when F is monotone, and therefore we have

an explicit formulae for u. In the next section, we will show how to approximate u
in the general case.
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From now on, we assume that F : [0, 1] → R is a continuous function. Next we
show a comparison principle.

Theorem 3.2. Let G : [0, 1] → R be a continuous function and v be a bounded
supersolution of (DP ) with boundary data G such that G ≥ F in [0, 1], then

v(x) ≥ u(x)

for any x ∈ Tm, where u is the value of game with final payoff function F.

Proof. First, we show that by choosing a strategy according to the minimal values
of v, Player II can make the process a supermartingale. More precisely, Player I
follows any strategy and Player II follows the following strategy, that we will call
S0
II : at xk−1 ∈ Tm he chooses to step to a vertex that minimizes v, i.e. a vertex
xk ∈ S(xk−1) such that

v(xk) = min
y∈S(xk−1)

v(y).

We start from a vertex x0. Using that v is a supersolution of (DP ) and the estimated
the strategy of Player I by the supremum, we have that

E
x0

SI ,S0
II

[v(Xk)|x0, . . . , xk−1]

≤
α

2

{

min
y∈S(xk−1)

v(y) + max
y∈S(xk−1)

v(y)

}

+
β

m

∑

y∈S(xk−1)

v(y)

≤ v(xk−1),

where Xk is the coordinate process defined by

Xk(ω) := xk for ω = (x0, . . . , xk, . . . ) ∈ Tm × Tm × · · · .

Thus Mk = v(Xk) is a supermartingale. From this fact, using Theorem 4.2.2 in
[15], the Optional Stopping Theorem, and that G ≥ F in [0, 1], we get the desired
result. �

Moreover, we have an analogous result for bounded subsolutions of (DP ).

Theorem 3.3. Let G : [0, 1] → R be a bounded function and v be a bounded
subsolution of (DP ) with boundary data G such that G ≤ F in [0, 1], then

v(x) ≤ u(x)

for any x ∈ Tm, where u is the value of the game with final payoff function F.

Proof. The proof is similar to the previous one. �

Then, we arrive to the main result of this section.

Theorem 3.4. There exists a unique bounded solution of (DP ) with given boundary
data F. Moreover, it coincides with the value of the game.

Proof. Theorem 3.1 gives that the value of the game is a solution of (DP ). This
proves existence. Theorems 3.2 and 3.3 imply uniqueness. �

The above theorem, together with Theorems 3.2 and 3.3, give the Comparison
Principle for solutions of (DP ).

Theorem 3.5 (Comparison Principle). Let F,G : [0, 1] → R be bounded functions.
If v is a bounded supersolution (subsolution) of (DP ) with boundary data G, u is
the solution of (DP ) with boundary data F and F ≤ G (F ≥ G) in [0, 1], we have
that u ≤ v (u ≥ v) in Tm.
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4. A Numerical Approximation

In this section we give a numerical approximation for the solutions of (DP ) when
the boundary datum F is a continuous function.

Let F be a real-valued function on [0, 1] and n ∈ N, we define Fn : [0, 1] → R as

Fn(t) =

mn−1
∑

j=0

F (tnj)χInj
(t)

where tnj = j
mn , Inj = [tnj , tn(j+1)) for all j ∈ {0, . . . ,mn − 2} and In(mn−1) =

[tn(mn−1), 1]. Note that this function is piecewise constant.

Our next goal is to construct a F -harmonic function un such that un(x) = Fn(x)
for all x ∈ T

k
m for any k ≥ n.

We first observe that, for all j ∈ {0, . . . ,mn−1} there exists xnj ∈ T
n
m such that

Ixnj
= Inj . Then, for all k ∈ {1, . . . , n}, we take {x(n−k)j}

mn−k−1
j=0 ⊂ Tm such that

S(x(n−k)j) = {x(n−k+1)τ : 1 + (j − 1)m ≤ τ ≤ jm} ∀j ∈ {0, . . . ,mn−k − 1}.

Let un : Tm → R such that

un(y) = F (tnj) ∀y ∈ Tm such that Iy ⊂ Ixnj
for some j ∈ {1, . . . ,mn − 1},

and for any k ∈ {1, . . . , n}

un(x(n−k)j) =
α

2

{

max
y∈S(x(n−k)j)

u(y) + min
y∈S(x(n−k)j)

u(y)

}

+
β

m

∑

y∈S(x(n−k)j)

u(y)

for all j ∈ {0, . . . ,mn−k − 1}. It is easy to check that un is a p−harmoniuous
function. Moreover, if F is bounded then {un}n∈N is uniformly bounded on Tm.

Remark 4.1. Let F be a continuous function on [0, 1]. Then, given ε > 0 there
exists δ = δ(ε) > 0 such that

|F (x) − F (y)| ≤
ε

2
+

2‖F‖∞
δ

|x− y|

for all x, y ∈ [0, 1].

We are now ready to state the main result of this section.

Theorem 4.2. Let F : [0, 1] → R be a continuous function. Then the sequence
{un}n∈N converges uniformly to the solution u of (DP ) with boundary data F.
Moreover, if F is a Lipschitz function we have a bound for the error, it holds that

|un(x)− u(x)| ≤
L

mn

for all x ∈ Tm, where L is the Lipschitz constant of F.

Proof. We present two proofs of this result. The first proof only uses game theory
to show uniqueness and can be viewed as an alternative way to prove existence of
a solution.

This first proof we will be divided into 4 steps.

Step 1. Since F is a continuous function on [0, 1], by Remark 4.1, given ε > 0
there exists δ = δ(ε) > 0 such that

|F (x) − F (y)| ≤
ε

2
+

2‖F‖∞
δ

|x− y|

for all x, y ∈ [0, 1]. Therefore, for all n ∈ N we have that

|Fn(x)− F (y)| ≤
ε

2
+

2‖F‖∞
δmn

∀x, y ∈ Inj ∀j ∈ {0, . . . ,mn − 1}.
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Then {Fn}n∈N converges uniformly to F.

Step 2. We will prove that {un}n∈N is an uniformly Cauchy sequence.

Let h, k, n ∈ N and x ∈ T
h
m. If n ≤ k ≤ h, there exist i ∈ {0, . . . ,mn − 1}

and j ∈ {0, . . . ,mk − 1} such that un(x) = F (tni) and uk(x) = F (tkj). Moreover
Ix ⊂ Ixkj

⊂ Ixni
. Then, given ε > 0, using Remark 4.1, we have that

|un(x)− uk(x)| ≤ |F (tni)− F (tkj)| ≤
ε

2
+

2‖F‖∞
δmn

∀x ∈ T
h
m.

Thus, there exists n0 such that if n ≥ n0,

(4.4) |un(x) − uk(x)| ≤ ε ∀x ∈ T
h
m.

For all x ∈ T
k−1
m , by (4.4), we have that

uk(y)− ε ≤ un(y) ≤ uk(y) + ε ∀y ∈ S(x).

Then

uk(x)− ε ≤ un(x) ≤ uk(x) + ε ∀x ∈ T
k−1
m ,

i.e.,

|un(x)− uk(x)| ≤ ε ∀x ∈ T
k−1
m .

In the same manner, in k − 1−steps, we can see that

|un(x) − uk(x)| ≤ ε ∀x ∈ Tm.

Therefore {un}n∈N is an uniformly Cauchy sequence.

Step 3. Now, we will show that

u(x) = lim
n→+∞

un(x) ∀x ∈ Tm

is the solution of (DP ) with boundary data F.

By step 2, {un}n∈N converges uniformly to u. Therefore, by Lemma 2.6, u is a
p−harmonious function. Then we only need to show that

lim
k→+∞

u(xk) = F (π) ∀π = (x1, . . . , xk, . . . ) ∈ ∂Tm.

Let ε > 0 and π = (x1, . . . , xk, . . . ) ∈ ∂Tm. Since {un}n∈N converges uniformly
to u, there exists n0 = n0(ε) such that

(4.5) |un(xj)− u(xj)| <
ε

2
∀j ∈ N,

if n ≥ n0. On the other hand, we can observe that there exists n1 = n1(ε) such
that

(4.6) |Fn(π) − F (π)| <
ε

2

if n ≥ n1. Then, since un(x) = Fn(x) for all x ∈ T
j
m for any j ≥ n, if n ≥ n1 we

have that

(4.7) |un(xj)− F (π)| ≤
ε

2
∀j ≥ n.

Finally, taking n ≥ max{n0, n1} and j ≥ n, by (4.5) and (4.7), we get

|u(xj)− F (π)| ≤ |u(xj)− un(xj)|+ |un(xj)− F (π)| ≤ ε.

Therefore,

lim
k→+∞

u(xk) = F (π) ∀π = (x1, . . . , xk, . . . ) ∈ ∂Tm.

Step 4. We observe that if F is a Lipschitz function, in the same manner as in
step 2, we obtain that, if k, n ∈ N,

|un(x)− uk(x)| ≤
L

mn
∀x ∈ Tm.
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Therefore,

|un(x) − u(x)| ≤
L

mn
∀x ∈ Tm,

where L is the Lipschitz constant of F. This completes the first proof.

Now we proceed with the second proof of this result. This proof is shorter but
we use here the existence and comparison results proved in the previous section
using game theory.

Using that Fn is a continuous function on Ixnj
for all j ∈ {0, . . . ,mn − 1} (step

1), {Fn}n∈N converges uniformly to F and Theorem 3.5, we have that given ε > 0,
there exists n0 = n0(ε) ∈ N such that for any n ≥ n0

un(x)− ε ≤ u(x) ≤ un(x) + ε

for all x ∈ Tm such that Ix ⊂ Ixnj
for some j ∈ {0, . . . ,mn − 1}, where u is the

solution of (DP ) with boundary data F . By the above inequality and using that
un and u are p−harmonious functions, we have that

un(x) − ε ≤ u(x) ≤ un(x) + ε ∀x ∈ Tm, ∀n ≥ n0.

Therefore the sequence {un}n∈N converges uniformly to u. �

Example 4.3. Case p = ∞. Let m = 3, α = 1, β = 0 and F : [0, 1] → R given by
F (t) = t. In [23], the author proves that the solution of (DP ) with boundary data
F is

u(x) =

∫

Ix

t dCx(t) ∀x ∈ T3,

where Cx is the Cantor measure on the interval Ix with Cx(Ix) = 1.

Example 4.4. Case p = 2. Let m = 3, α = 0, β = 1 and F : [0, 1] → R given by
F (t) = (t− 1/2)2. In this case, the solution u of (DP ) is

u(x) =
1

|Ix|

∫

Ix

(

t−
1

2

)2

dt ∀x ∈ T3,

where |Ix| is the measure of Ix.

5. Unique continuation property

In this section we prove our main result that deals with subsets of Tm that have
the unique continuation property.

Definition 5.1. We say that a subset U of Tm satisfies the unique continuation
property (UCP ) if for any bounded p−harmonious function u such that u = 0 in
U, we have that u ≡ 0 in Tm.

Let us first prove that the density of the set ψ(U) in [0, 1] is a necessary condition
for UCP .

Theorem 5.2. If U ⊂ Tm satisfies UCP then ψ(U) is dense in [0, 1].

Proof. We will show that if ψ(U) is not dense in [0, 1], then there exists a
p−harmonious function u such that u 6= 0 in Tm and u = 0 in U .

Since ψ(U) is not dense in [0, 1] there exist τ > 0 and r ∈ [0, 1] such that

(5.8) (r − τ, r + τ) ∩ ψ(U) = ∅.

Then there exist k ∈ N and x = (a1, . . . , ak) ∈ Tm such that 1/mk < τ and
Ix ⊂ (r− τ, r+ τ). Therefore, using (5.8) and the fact that Ix is the subset of ∂Tm
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consisting of all branches that start at x, we have that (x, b1, . . . , bs) /∈ U for all
s ∈ N. Now, we construct u as follows

u(y) =











1 ∀y ∈ Tm such that Iy ⊂ I(x,0),

−1 ∀y ∈ Tm such that Iy ⊂ I(x,m−1),

0 otherwise.

It is clear that u is a bounded p−harmonious function such that u = 0 in U and
u 6= 0. This finishes the proof. �

Proposition 5.3. Let U be a subset of Tm. If U satisfies the following property

(PA) There exists n ∈ N such that for all x ∈ Tm there exist l ∈ {1, . . . , n} and
at least one branch starting at x such that its l−th node belongs to U,

then U satisfies UCP.

Remark 5.4. Let U be a subset of Tm. It is easy to see that if U satisfies PA, then
ψ(U) is dense in [0, 1].

Proof of Proposition 5.3. Let u be a bounded p−harmonious function such that
u = 0 in U . Set M = sup{u(x) : x ∈ Tm} and δ = (α/2 + β/m). Given ε > 0 there
exists x0 ∈ Tm such that u(x0) ≥M−ε. Thus, since u is a p−harmonious function,
we have that

M − ε ≤ u(x0) =
α

2

{

max
y∈S(x0)

u(y) + min
y∈S(x0)

u(y)

}

+
β

m

∑

y∈S(x0)

u(y)

≤

(

α

2
+
m− 1

m
β

)

M +

(

α

2
+
β

m

)

min
y∈S(x0)

u(y).

Then

M −
ε

δ
≤ min

y∈S(x0)
u(y) ≤ u(y)

for all y ∈ S(x0).

On the other hand, since U satisfies PA, there exist l ∈ {1, . . . , n} and
(x0, a1, . . . , al) ∈ U where ak ∈ {0, . . . ,m − 1} for all 1 ≤ k ≤ l. Then, using
that x1 = (x0, a1) ∈ S(x0) and the above inequality, we get

M −
ε

δ
≤ u(x1).

Similarly, we have

M −
ε

δk
≤ u(xk) ∀k ∈ {2, . . . , l}

where xk = (xk−1, ak), 2 ≤ k ≤ l. Then, using that xl = (xl−1, al) =
(x0, a1, . . . , al) ∈ U, we have that

Mδl ≤ ε.

Let us now suppose that M ≥ 0. Using that l ≤ n, 0 < δ < 1 and the above
inequality, we have that

Mδn ≤ ε ∀ε > 0,

then M = 0. Thus we have that M ≤ 0.

In the same manner we can show that N = inf{u(x) : x ∈ Tm} ≥ 0. Therefore,
M = N = 0, which proves the theorem. �
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Definition 5.5. Let U be a subset of Tm such that Tn
m \ U 6= ∅ for all n ∈ N. We

define the sequence {ρk(U)}k∈N ⊂ N as follows:

ρ1(U) : = min{n ∈ N : ∃x ∈ T
n
m ∩ U},

and for all k ∈ N≥2,

ρk(U) : = min{n ∈ N : ∃y ∈ T
ηk−1(U)
m \ U and x ∈ T

ηk−1(U)+n
m ∩ U s. t. Ix ⊂ Iy},

where

ηk−1(U) =

k−1
∑

j=1

ρj(U).

In addition, for all k ∈ N≥2, we define the sets

Ak(U) : =
{

y ∈ T
ηk−1(U)
m \ U : Iy ∩ Ixj

= ∅, xj ∈ T
ηj(U)
m ∩ U, ∀j ∈ {1, . . . , k − 1}

}

.

We will write simply ρk, ηk−1 and Ak when no confusion arises.

We can now formulate our main result.

Theorem 5.6. Let U be a subset of Tm such that ψ(U) is dense in [0, 1], Tn
m\U 6= ∅

for all n ∈ N and U satisfies the following properties

(P1) There exists a unique x1 ∈ U ∩ T
ρ1
m .

(P2) For all k ∈ N≥2 and for all y ∈ Ak there exists a unique x ∈ T
ηk−1+ρk
m ∩ U

such that Ix ⊂ Iy .

Then U satisfies UCP if only if

∞
∑

k=1

δρk = +∞

where δ = 1− θ, θ = α
2 + m−1

m β.

Proof. We will proceed in two steps.

Step 1. First we will prove that if U satisfies UCP, then

∞
∑

k=1

δρk = +∞.

Arguing by contradiction, we suppose that
∑∞

k=1 δ
ρk < +∞. By (P1), there exists

a unique x1 = (a1, . . . , aρ1) ∈ U such that τ1i = (a1, . . . , ai) /∈ U for any 1 ≤ i < ρ1.
We now construct a p−harmonious function u such that u = 0 in U as follows:

u(∅) = 1,

u(a1) = m11 = min
y∈S(∅)

u(y)

u(b1, . . . , bj) =M11 = max
y∈S(∅)

u(y) if b1 6= a1 ∀1 ≤ j ≤ ρ1,

and for any 2 ≤ i < ρ1

u(τ1i) = m1i = min
y∈S(τ1(i−1))

u(y)

u(τ1(i−1), bi, . . . , bj) =M1i = max
y∈S(τ1(i−1))

u(y) if bi 6= ai ∀i ≤ j ≤ ρ1.

Since x1 ∈ U and we need that u = 0 in U, we define

u(x1) = 0 = m1ρ1 = min
y∈S(τ1(ρ1−1))

u(y).
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We also take u(y) = 0 for all y ∈ Tm such that Iy ⊂ Ix1 . Thus, in order for u to
be a p−harmonious function, we need to takeM11, . . . ,M1ρ1 and m11, . . . ,m1(ρ1−1)

such that

1 =
α

2
(M11 +m11) +

β

m
((m− 1)M11 +m11) ,

m1i =
α

2
(M1(i+1) +m1(i+1)) +

β

m

(

(m− 1)M1(i+1) +m1(i+1)

)

∀1 ≤ i < ρ1.

Then, we can observe that

1 =
α

2
(M11 +m11) +

β

m
((m− 1)M11 +m11)

=

(

α

2
+
m− 1

m
β

)

M11 +

(

α

2
+
β

m

)

m11(5.9)

= θM11 + (1− θ)m11

and in the same manner, we can show that

(5.10) m1i = θM1(i+1) + (1 − θ)m1(i+1) ∀1 ≤ i < ρ1.

Now, using that m1ρ1 = 0, we have that

M1ρ1 =
m1(ρ1−1)

θ
.

1

M11 M11 m11

M12 M12 m12

m1(ρ1−1)

m1(ρ1−1)

θ

m1(ρ1−1)

θ
0

ρ1

If we take

(5.11) M1i =M1ρ1 =
m1(ρ1−1)

θ
=M1, ∀1 ≤ i ≤ ρ1,

by (5.10), we obtain

m1i = m1(ρ1−1) + (1− θ)m1(i+1) ∀1 ≤ i < ρ1.

Using the above equality, we have

m1(ρ1−2) = m1(ρ1−1) + (1− θ)m1(ρ1−1) = (2− θ)m1(ρ1−1),

and, for any 2 < j ≤ ρ1 − 1,

(5.12) m1(ρ1−j) =

(

j−3
∑

k=0

(1− θ)k + (1− θ)j−2(2− θ)

)

m1(ρ1−1).

Thus, by (5.9) and (5.12), we have that

m1(ρ1−1) =
1

ρ1−3
∑

k=0

(1− θ)k + (1− θ)ρ1−2(2− θ)

.
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In addition, since M1 =
m1(ρ1−1)

θ , we obtain

M1 =
1

θ

(

ρ1−3
∑

k=0

(1− θ)k + (1− θ)ρ1−2(2− θ)

) .

Then, taking δ = 1− θ, we get

θ

(

ρ1−3
∑

k=0

(1− θ)k + (1 − θ)ρ1−2(2− θ)

)

= (1 − δ)

ρ1−1
∑

k=0

δk = 1− δρ1 .

Therefore,

M1 =
1

1− δρ1
.

On the other hand,

A2 = {yj}
mρ1−1
j=1 and u(yj) =M11 ∀j ∈ {1, . . . ,mρ1−1}.

Furthermore, by (P2), for all j ∈ {1, . . . ,mρ1 − 1} there exists a unique

xj2 = (yj , a
j
ρ1+1, . . . , a

j
ρ1+ρ2

) ∈ T
ρ1+ρ2
m ∩ U

with τ j2i = (yj , a
j
ρ1+1, . . . , a

j
ρ1+i) /∈ U for any i ∈ {1, . . . , ρ2}.

Let j ∈ {1, . . . ,mρ1 − 1}. We define u as follows

u(yj, a
j
ρ1+1) = m21 = min

y∈S(yj)
u(y)

u(y1, bρ1+1, . . . , bρ1+l) =M21 = max
y∈S(yj)

u(y) if bρ1+1 6= ajρ1+1 ∀l ∈ {1, . . . ρ2},

and for any 2 ≤ i < ρ2,

u(τ j2i) = m2i = min
y∈S(τ j

2(i−1)
)
u(y),

u(τ j2(i−1), bρ1+i, . . . , bρ1+j) =M2i = max
y∈S(τ j

2(i−1)
)
u(y) if bρ1+l 6= ajρ1+i ∀l ∈ {i, . . . , ρ2}.

Since xj2 ∈ U and we need that u = 0 in U, we define

u(xj2) = 0 = m2ρ2 = min
y∈S(τ j

2(ρ2−1)
)
u(y).

We also take u(y) = 0 for all y ∈ Tm such that Iy ⊂ Ixj
2
.

Arguing as before, taking

M2i =M2ρ2 =
m2(ρ2−1)

θ
=M2, ∀1 ≤ i ≤ ρ2,

we get

m2(ρ2−1) =
M1

ρ2−3
∑

k=0

(1− θ)k + (1 − θ)ρ2−2(2− θ)

,

m2(ρ2−l) =

(

l−3
∑

k=0

(1− θ)k + (1− θ)j−2(2− θ)

)

m2(ρ2−1) ∀l ∈ {2, . . . , ρ2 − 1},

and

M2 =
M1

1− δρ2
=

1

(1− δρ1)(1 − δρ2)
.
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By induction in k, we construct u so that u is p−harmonious in Tm such that
u = 0 in U, u 6= 0 in Tm and

Mk =
k
∏

i=1

1

1− δρi
∀k ∈ N.

Since
∞
∑

k=1

δρk < +∞,

we have that
∞
∑

i=1

δρk

1− δρk
< +∞ ⇔

∞
∑

k=1

log

(

1 +
δρk

1− δρk

)

=

∞
∑

k=1

log

(

1

1− δρk

)

< +∞.

Thus,
∞
∏

i=1

1

1− δρk
< +∞.

Therefore u is a bounded p−harmonious function such that u = 0 in U and u 6= 0
in Tm. This is a contradiction.

Step 2. We assume that
∞
∑

i=1

δρi = +∞

and we will prove that U satisfies the UCP .

Suppose that there exists a p−harmonious function v 6= 0 such that v = 0 in U.
We will prove that v is unbounded. Multiplying v by a suitable constant, we can
assume that v(∅) = 1. Let u be defined as in the above step. First, we need to show
that

(5.13) Mk ≤ max{v(y) : y ∈ T
ρk
m } ∀k ∈ N.

To this end, we observe that

θM1 + (1− θ)m11 = u(∅) = 1 = v(∅) ≤ θ max
y∈S(∅)

v(y) + (1− θ) min
y∈S(∅)

v(y),

then
M1 ≤ max

y∈S(∅)
v(y) or m11 ≤ min

y∈S(∅)
v(y).

If M1 ≤ max
y∈S(∅)

v(y) then M1 ≤ max{v(y) : y ∈ T
k
m with k ∈ {1, . . . , ρ1}}, and

therefore M1 ≤ max{v(y) : y ∈ T
ρ1
m}.

Now we consider the case M1 > max
y∈S(∅)

v(y) and m11 ≤ min
y∈S(∅)

v(y).

By (P1), there exists a unique x1 = (a1, . . . , aρ1) ∈ U such that τ1i =
(a1, . . . , ai) /∈ U for any 1 ≤ i < ρ1. Then, since m11 ≤ min

y∈S(∅)
v(y) ≤ v(a1), we

have that

θM1 + (1− θ)m12 = m11 ≤ v(a1) ≤ θ max
y∈S(a1)

v(y) + (1− θ) min
y∈S(a1)

v(y),

and then
M1 ≤ max

y∈S(a1)
v(y) or m12 ≤ min

y∈S(a1)
v(y).

Again, if M1 ≤ max
y∈S(a1)

v(y), then we have that M1 ≤ max{v(y) : y ∈ T
ρ1
m }. If

m12 ≤ min
y∈S(a1)

v(y) ≤ v(τ12), then we can prove as before that

M1 ≤ max
y∈S(τ12)

v(y) or m13 ≤ min
y∈S(τ12)

v(y).
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In the same manner, using ρ1 − 1 steps, we show that

M1 ≤ max{v(y) : y ∈ T
ρ1
m} or m1(ρ−1) ≤ min

y∈S(τ1(ρ−2))
v(y).

If m1(ρ−1) ≤ min
y∈S(τ1(ρ−2))

v(y) ≤ v(τ1(ρ−1)), then

θM1 = m1ρ1 ≤ v(τ1(ρ−1)) ≤ θ max
y∈S(τ1(ρ−1))

v(y) + (1− θ) min
y∈S(τ1(ρ−1))

v(y).

Since x1 = (τ1(ρ−1), aρ1) ∈ U and v = 0 in U, min
y∈S(τ1(ρ−1))

v(y) ≤ 0 and then

M1 ≤ max
y∈S(τ1(ρ−1))

v(y).

Therefore

M1 ≤ max{v(y) : y ∈ T
ρ1
m }.

Then, by induction on k, using (P2), we have that (5.13) holds.

Since
∞
∑

j=1

δρj = +∞,

we have that

lim
k→+∞

Mk = lim
k→+∞

k
∏

i=1

1

1− δρi
= +∞.

Therefore, by (5.13), v is an unbounded. The proof is complete. �

5.1. Examples. Below we give some examples of sets verifying (or not) the UCP .

Example 5.7. Let U be given by

U =
⋃

k∈N

T
2k

m .

Then it is clear that U has the UCP .

Example 5.8. Let m = 3 and U be given by

U = {x ∈ T3 : x = (a1, a2, . . . , an), ai 6= 1, ∀1 ≤ i ≤ n} .

It is easy to see that ψ(U) is a Cantor set and therefore U does not have the UCP .

Example 5.9. Let U be given by

U = {x ∈ Tm : x = (a1, a2, . . . , an), an = 0} .

Then, since U satisfies (PA) with n = 1, U has the UCP .

Example 5.10. Let U1 := {(0)}, ρ1 := 1

U2n := {x ∈ T
µ2n−1+2n+1

m : x = (y, a1, . . . , a2n+1) : y ∈ T
µ2n−1
m \ U2n−1}, ρ2n := 2n+1

U2n+1 := {x ∈ T
µ2n+1
m : x = (y, 0): y ∈ T

µ2n
m \ U2n} and ρ2n+1 := 1

for all n ∈ N, where µn :=
∑n

j=1 ρj for all n ∈ N.

Then U =
⋃

n∈N
Un is dense and satisfies (P1) and (P2). Since

∑+∞
j=1 ρj = ∞,

by Theorem 5.6, U satisfies the UCP .
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