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We study the behavior of strongly interacting matter under a uniform intense external magnetic field in
the context of nonlocal extensions of the Polyakov–Nambu–Jona-Lasinio model. A detailed description
of the formalism is presented, considering the cases of zero and finite temperature. In particular, we analyze
the effect of the magnetic field on the chiral restoration and deconfinement transitions, which are found to
occur at approximately the same critical temperatures. Our results show that these models offer a natural
framework to account for the phenomenon of inverse magnetic catalysis found in lattice QCD calculations.
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I. INTRODUCTION

The study of the behavior of strongly interacting matter
under intense external magnetic fields has gained increasing
interest in the last few years. In fact, this topic has important
applications e.g., in the description of compact objects like
magnetars [1], the analysis of heavy ion collisions at very
high energies [2], and the exploration of the first phases of
the Universe [3]. Since these studies require dealing with
QCD in nonperturbative regimes, present theoretical analy-
ses are based either in the predictions of effective models
or in the results obtained through lattice QCD (LQCD)
calculations. In particular, the features of QCD phase
transitions under external magnetic fields deserve significant
interest. Recent reviews on this subject can be found in
Refs. [4–6]. In view of the difficulty of theoretical calcu-
lations, most works concentrate on the case in which one has
a uniform and static external magnetic field B⃗. At zero
temperature and chemical potential, both the results of low-
energy effective models of QCD and LQCD calculations
indicate that the chiral quark condensate should behave as
an increasing function of B, which is usually known as
“magnetic catalysis.” On the contrary, close to the chiral
restoration temperature, LQCD calculations carried out with
realistic quark masses [7,8] show that light quark-antiquark
condensates behave as nonmonotonic functions of the
external magnetic field, and this leads to a decrease of the
transition temperature when the magnetic field is increased.
This effect is known as “inverse magnetic catalysis” (IMC).
In addition, LQCD calculations predict an entanglement
between the chiral restoration and deconfinement critical
temperatures [7]. These findings become a challenge to
model calculations. Indeed, most naive effective approaches

to low-energy QCD (Nambu-Jona-Lasinio model, chiral
perturbation theory, MIT bag model, and quark-meson
models) predict that the chiral transition temperature should
grow with B; i.e., they do not find IMC. In view of this
discrepancy, in the last few years, some more sophisticated
low-energy effective models compatible with the IMC effect
have been proposed in the literature [9–30]. Possible
mechanisms that allow the reproduction of IMC include,
e.g., the introduction of adequate (B-dependent) regulariza-
tion prescriptions or explicit dependences of the effective
coupling constants on the external field. In particular, in the
framework of the Nambu–Jona-Lasinio (NJL) model, it has
been shown that IMC can be obtained by considering a
B-dependent four-fermion coupling [18,19]. On the other
hand, the problem of the entanglement between the decon-
finement and chiral restoration transitions has been studied
in the context of the Polyakov–Nambu–Jona-Lasinio (PNJL)
model, in which fermions are coupled to a background color
field, and the traced Polyakov loop Φ is taken as order
parameter of the confinement/deconfinement transition. This
extension of the NJL model provides not only a description
of confinement but also allows one to obtain chiral restora-
tion critical temperatures compatible with those found in
LQCD. In this framework, the effect of an external magnetic
field has been studied in Ref. [31], where the authors
consider a Polyakov loop–dependent effective coupling
constant in order to avoid the splitting between chiral
restoration and deconfinement transitions. In this so-called
entangled PNJL model, however, no IMC effect is found
(see also Refs. [17,32]). Once again, as shown in Ref. [11],
in the context of the PNJL model, one can reproduce lattice
IMC results by considering a B-dependent four-fermion
coupling. Nevertheless, the results obtained in Ref. [11] lead
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to a relatively large splitting (≳30 MeV) between chiral
restoration and deconfinement temperatures.
In this work, we study the behavior of strongly interact-

ing matter under a uniform, static magnetic field in the
framework of nonlocal chiral quark models. This article is
an extension of a previous work in which it has been
noticed that these kind of models offer a natural mechanism
to understand the IMC effect [33]. Our aim is to present
here a more complete description of the formalism and also
to extend the model to incorporate the interaction with the
Polyakov loop. As in the case of the (local) NJL model, the
traced Polyakov loop can be taken as an order parameter of
confinement, allowing one to describe simultaneously the
chiral restoration and deconfinement transitions. We will
show that nonlocal models are able to describe, at the mean
field level, not only the IMC effect but also the entangle-
ment between both critical transition temperatures, in quite
reasonable agreement with LQCD results. The “nonlocal
PNJL” (nlPNJL) models considered here are a sort of
nonlocal extensions of the PNJL model that intend to
provide a more realistic effective approach to QCD. In fact,
nonlocality arises naturally in the context of successful
descriptions of low-energy quark dynamics [34,35], and it
has been shown [36] that nonlocal models can lead to a
momentum dependence in quark propagators that is con-
sistent with LQCD results. It is also found that in this
framework one obtains an adequate description of the
properties of light mesons at both zero and finite temper-
ature/density [36–47]. Moreover, nlPNJL models (in the
absence of interactions with external fields) provide a
description of the chiral restoration and deconfinement
transitions that is found to be in qualitative agreement with
LQCD calculations [47–51]. As in Ref. [33], we consider
here the case of nonlocal quark models with separable
interactions, using Ritus eigenfunctions [52] to address the
problem of including the interaction with the mag-
netic field.
The article is organized as follows. In Sec. II, we start by

introducing the formalism to account for the presence of a
constant magnetic field within the framework of a nonlocal
NJL-likemodel at zero temperature.Afterward,we showhow
to extend this formalism to a finite temperature system, taking
also into account the coupling to the Polyakov loop. In
Sec. III, we quote our numerical results, discussing in detail
the behavior of the different relevant quantities as functions of
the magnetic field and/or temperature. In Sec. IV, we present
our conclusions. Finally, in Appendixes A–D, we give some
technical details concerning the derivation of various expres-
sions quoted in the main text.

II. THEORETICAL FORMALISM

A. Nonlocal NJL-like model in the presence
of magnetic fields

Let us start by stating the Euclidean action for our
nonlocal NJL-like two-flavor quark model,

SE¼
Z

d4x

�
ψ̄ðxÞð−i=∂þmcÞψðxÞ−

G
2
jaðxÞjaðxÞ

�
: ð1Þ

Here, mc is the current quark mass, which is assumed
to be equal for u and d quarks. The currents jaðxÞ are
given by

jaðxÞ ¼
Z

d4zGðzÞψ̄
�
xþ z

2

�
Γaψ

�
x −

z
2

�
; ð2Þ

where Γa ¼ ð1; iγ5τ⃗Þ, and the function GðzÞ is a nonlocal
form factor that characterizes the effective interaction.
We introduce now in the effective action (1) a coupling
to an external electromagnetic gauge field Aμ. For a
local theory, this can be done by performing the replace-
ment

∂μ → Dμ ≡ ∂μ − iQ̂AμðxÞ; ð3Þ

where Q̂ ¼ diagðqu; qdÞ, with qu ¼ 2e=3, qd ¼ −e=3, is
the electromagnetic quark charge operator. In the case of
the nonlocal model under consideration, the inclusion of
gauge interactions implies a change not only in the
kinetic terms of the Lagrangian but also in the nonlocal
currents in Eq. (2). One has

ψðx − z=2Þ → Wðx; x − z=2Þψðx − z=2Þ; ð4Þ

and a related change holds for ψ̄ðxþ z=2Þ [36,38,46].
Here, the function Wðs; tÞ is defined by

Wðs; tÞ ¼ P exp

�
−i
Z

t

s
drμQ̂AμðrÞ

�
; ð5Þ

where r runs over an arbitrary path connecting s with t.
Regarding the choice of this path, it is worth taking into
account that none of the procedures used to “gauge”
theories that include nonlocal interactions leads to a
unique determination of the corresponding conserved
current [53]. The ambiguity, which in our case shows up
through the path choice for the line integral in Eq. (5),
is indeed present in any method used for the construc-
tion of a conserved current from a nonlocal action. Its
origin can be understood by noticing that the condition
of current conservation, which requires its divergence to
vanish, only fixes the longitudinal part of the current,
the transverse part remaining undetermined. This prob-
lem is well known in nuclear physics; longitudinal
components of exchange currents can be related to
phenomenological nucleon-nucleon forces, while trans-
verse currents require a specific model for the under-
lying meson exchanges [54].
Based on considerations of invariance and of simplicity,

the straight line path originally proposed in Ref. [55] has
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been chosen basically everywhere in the literature. Here,
we will also follow this choice, parametrizing the path in
Eq. (5) by

rμ ¼ sμ þ λðtμ − sμÞ; ð6Þ

with λ running from 0 to 1. In the present context, this has
to be considered as a part of our model specification. In
fact, although for some particular observables the depend-
ence on the path has been investigated and found to be quite
weak (see, e.g., Refs. [41,46]), a thorough analysis of this
issue is still lacking.
To proceed, it is convenient to bosonize the fermionic

theory, introducing scalar and pseudoscalar fields σðxÞ and
π⃗ðxÞ and integrating out the fermion fields. The bosonized
action can be written as [36,46]

Sbos ¼ − ln detDx;x0 þ
1

2G

Z
d4x½σðxÞσðxÞ þ π⃗ðxÞ · π⃗ðxÞ�;

ð7Þ

with

Dx;x0 ¼ δð4Þðx − x0Þð−i=DþmcÞ þ Gðx − x0Þγ0
×Wðx; x̄Þγ0½σðx̄Þ þ iγ5τ⃗ · π⃗ðx̄Þ�Wðx̄; x0Þ; ð8Þ

where x̄ ¼ ðxþ x0Þ=2 for the neutral mesons. We will
consider the particular case of a constant and homog-
enous magnetic field oriented along the 3-axis. To
perform the analytical calculations, we will use the
Landau gauge, in which one has Aμ ¼ Bx1δμ2. With this
gauge choice, the function Wðs; tÞ in Eq. (5) is given by

Wðs; tÞ ¼ exp

�
−
i
2
Q̂Bðs1 þ t1Þðt2 − s2Þ

�
: ð9Þ

Next, we assume that the field σ has a nontrivial
translational invariant mean field value σ̄, while the
mean field values of pseudoscalar fields πi are zero. It
should be stressed at this point that the assumption
stating that σ̄ is independent of x does not imply that the
resulting quark propagator will be translational invari-
ant. In fact, as discussed below, one can show that such
an invariance is broken by the appearance of the so-
called Schwinger phase. Our assumption just states that
the deviations from translational invariance driven by
the magnetic field are not affected by the dynamics of
the theory. In this way, within the mean field approxi-
mation (MFA), we get

DMFA
x;x0 ¼ diagðDMFA;u

x;x0 ;DMFA;d
x;x0 Þ; ð10Þ

where

DMFA;f
x;x0 ¼ δð4Þðx − x0ÞðΠf þmcÞ

þ σ̄Gðx − x0Þ exp ½iΦfðx; x0Þ�: ð11Þ

Here, we have introduced the operatorΠf¼−i=∂−qfBx1γ2,
and a direct product to an identity matrix in color space
is understood. Notice that the second term on the rhs
breaks translational invariance through the Schwinger phase
Φfðx; x0Þ, defined by

Φfðx; x0Þ≡ ðqfB=2Þðx1 þ x01Þðx2 − x02Þ; ð12Þ

which arises from the productWðx; x̄ÞWðx̄; x0Þ. In this way,
the MFA bosonized action per unit volume can be written as

SMFA
bos

Vð4Þ ¼ σ̄2

2G
−

Nc

Vð4Þ
X
f¼u;d

tr lnDMFA;f
x;x0 ; ð13Þ

where in the second term of the rhs the traces over color
and flavor have been taken. To proceed to take the remaining
traces over Dirac and coordinate spaces, it is convenient
to perform the Ritus transform of DMFA;f

x;x0 [52]. This is
defined by

DMFA;f
p̄;p̄0 ¼

Z
d4xd4x0Ēp̄ðxÞDMFA;f

x;x0 Ep̄0 ðx0Þ; ð14Þ

where Ep̄ðxÞ and Ēp̄ðxÞ, with p̄ ¼ ðk; p2; p3; p4Þ, are Ritus
functions, the definitions andproperties ofwhich are given in
Appendix A. The index k is an integer that will label
the Landau energy levels. Using the properties of Ritus
functions, we readily obtain

DMFA;f
p̄;p̄0 ¼ δ̂p̄;p̄0Pk;sf

�
−sf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kjqfBj

q
γ2 þ p∥ · γ∥ þmcI



þ σ̄

X
λ¼�

Gλ;f
p̄;p̄0Δλ; ð15Þ

where δ̂p̄;p̄0 is a shorthand notation for ð2πÞ4δkk0δðp2 − p0
2Þ

δðp3 − p0
3Þδðp4 − p0

4Þ, and we have introduced the
definitions sf ¼ signðqfBÞ, p∥ ¼ ðp3; p4Þ, γ∥ ¼ ðγ3; γ4Þ,
Δþ ¼ diagð1; 0; 1; 0Þ, Δ− ¼ diagð0; 1; 0; 1Þ, and Pk;�1 ¼
ð1 − δk0ÞI þ δk0Δ�. The functions Gλ;f

p̄;p̄0 are given by

Gλ;f
p̄;p̄0 ¼

Z
d4xd4x0E�

p̄λðxÞGðx− x0Þ exp ½iΦfðx; x0Þ�Ep̄0λðx0Þ;

ð16Þ

the explicit form of Ep̄λðxÞ being given in Eq. (A4). As is
discussed in Appendix B, after some calculation, one can
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show that Gλ;f
p̄;p̄0 is, in fact, diagonal in p̄; p̄0. One gets

Gλ;f
p̄;p̄0 ¼ δ̂p̄;p̄0gλ;fk;p∥

, where

gλ;fk;p∥
¼ 4π

jqfBj
ð−1Þkλ

Z
d2p⊥
ð2πÞ2 gðp

2⊥ þ p2
∥Þ

× expð−p2⊥=jqfBjÞLkλð2p2⊥=jqfBjÞ: ð17Þ

Here, we have used the definitions k� ¼ k − 1=2� sf=2
and p⊥ ¼ ðp1; p2Þ, while gðp2Þ is the Fourier transform of
GðxÞ and LmðxÞ are Laguerre polynomials, with the usual
convention L−1ðxÞ ¼ 0. Defining now

Mλ;f
k;p∥

¼ ð1 − δkλ;−1Þmc þ σ̄gλ;fk;p∥
; ð18Þ

we end up with DMFA;f
p̄;p̄0 ¼ δ̂p̄;p̄0Df

k;p∥
, where

Df
k;p∥

¼ Pk;sf

�
−sf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kjqfBj

q
γ2 þ p∥ · γ∥



þ
X
λ¼�

Mλ;f
k;p∥

Δλ:

ð19Þ

Then, using Eq. (A16) and writing explicitly the trace
over coordinate space, we have

tr lnDMFA;f
x;x0 ¼ Nc

2π

Z
d4x
X∞
k¼0

d2p∥

ð2πÞ2

×
Z

∞

−∞

dp2

2π
trD½Ep̄ðxÞ lnðDf

k;p∥
ÞĒp̄ðxÞ�; ð20Þ

where trD stands for the trace over Dirac space. Using the
cyclic property of the trace together with Eq. (A9), this
expression reduces to

tr lnDMFA;f
x;x0 ¼ Vð4ÞNc

jqfBj
2π

X∞
k¼0

Z
d2p∥

ð2πÞ2 trD½Pk;sf lnðDf
k;p∥

Þ�:

ð21Þ

Since the matrix between the parentheses is not diagonal in
Dirac space, it is convenient to use at this stage the identity
tr lnA ¼ ln detA. After calculating the determinant and
replacing in Eq. (13), we finally obtain

SMFA
bos

Vð4Þ ¼ σ̄2

2G
− Nc

X
f¼u;d

jqfBj
2π

Z
d2p∥

ð2πÞ2

×

�
ln
�
p2
∥ þM

λf;f
0;p∥

2


þ
X∞
k¼1

lnΔf
k;p∥

�
; ð22Þ

where λf ¼ þð−Þ for sf ¼ þ1ð−1Þ, andΔf
k;p∥

is defined by

Δf
k;p∥

¼
�
2kjqfBj þ p2

∥ þMþ;f
k;p∥

M−;f
k;p∥



2

þ p2
∥

�
Mþ;f

k;p∥
−M−;f

k;p∥



2
: ð23Þ

Here, it is seen that the functions M�;f
k;p∥

play the role of

constituent quark masses in the presence of the external
magnetic field. The vacuum expectation value σ̄ can now be
found by minimizing the effective action in Eq. (22). This
leads to the gap equation

σ̄

G
¼ Nc

X
f¼u;d

jqfBj
π

X∞
k¼0

Z
d2p∥

ð2πÞ2
X
λ¼�

Âλ;f
k;p∥

gλ;fk;p∥
; ð24Þ

where we have defined

Â�;f
k;p∥

¼
M∓;f

k;p∥
ð2kjqfBjþp2

∥þM−;f
k;p∥

Mþ;f
k;p∥

Þþp2
∥ðM�;f

k;p∥
−M∓;f

k;p∥
Þ

Δf
k;p∥

:

ð25Þ

Given the form of the two-point function (19), one can
also obtain the MFA quark propagators. Details of this
calculation are given in Appendix C. In coordinate space,
one gets

SMFA;f
x;x0 ¼ ðDMFA;f

x;x0 Þ−1

¼ exp½iΦfðx; x0Þ�
Z

d4p
ð2πÞ4 e

ip·ðx−x0Þ ~Sfðp⊥; p∥Þ;

ð26Þ

where

~Sfðp⊥; p∥Þ ¼ 2 expð−p2⊥=jqfBjÞ
X∞
k¼0

X
λ¼�

h
ð−1Þkλ

�
Âλ;f
k;p∥

− B̂λ;f
k;p∥

p∥ · γ∥


Lkλð2p2⊥=jqfBjÞ

þ 2ð−1Þk
�
Ĉλ;f
k;p∥

− D̂λ;f
k;p∥

p∥ · γ∥


p⊥ · γ⊥L1

k−1ð2p2⊥=jqfBjÞ
i
Δλ: ð27Þ
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Here, we have introduced the definitions

B̂�;f
k;p∥

¼ Ĉ�;f
k;p∥

−M∓;f
k;p∥

D̂�;f
k;p∥

; ð28Þ

Ĉ�;f
k;p∥

¼
2kjqfBj þ p2

∥ þM−;f
k;p∥

Mþ;f
k;p∥

Δf
k;p∥

; ð29Þ

D̂�;f
k;p∥

¼
M�;f

k;p∥
−M∓;f

k;p∥

Δf
k;p∥

; ð30Þ

whereas L1
kðxÞ are generalized Laguerre polynomials, with

L1
−1 ¼ 0. Notice that the functions Âλ;f

k;p∥
defined in Eq. (25)

satisfy

Â�;f
k;p∥

¼ M∓;f
k;p∥

Ĉ�;f
k;p∥

þ p2
∥D̂

�;f
k;p∥

: ð31Þ

As we have anticipated above, the quark propagators can be
written as a product of an exponential of the Schwinger
phase times a translational invariant function. It should be
noticed that, as discussed in detail in Appendix D, this form
for the quark propagators (and the two-point functions) is
also obtained within the Schwinger-Dyson (SD) formalism
using a general ansatz as the one proposed in Refs. [56–58]
[see Eq. (D11)]. Moreover, as shown in Appendix D, in that
framework, one also arrives at the gap equation quoted in
Eq. (24).
Given the quark propagators, the quark condensate for

each flavor can be easily calculated as

hq̄fqfi ¼ −NctrD½SMFA;f
x;x �: ð32Þ

Alternatively, they can be obtained by taking the derivatives
of SMFA with respect to the current quark masses. The
associated explicit expressions, extended to the case of
finite temperature, will be given in the next subsection.

B. Extension to finite temperature

We extend now the analysis of the model introduced in
the previous section to a system at finite temperature. This
is done by using the standard Matsubara formalism. In
order to account for confinement effects, we also include
the coupling of fermions to the Polyakov loop (PL),
assuming that quarks move on a constant color background
field ϕ ¼ igδμ0G

μ
aλa=2, where Gμ

a are the SU(3) color
gauge fields. We work in the so-called Polyakov gauge,
in which the matrix ϕ is given a diagonal representation
ϕ ¼ ϕ3λ3 þ ϕ8λ8, taking the traced Polyakov loop Φ ¼
1
3
Tr expðiϕ=TÞ as an order parameter of the confinement/

deconfinement transition. Since—owing to the charge
conjugation properties of the QCD Lagrangian [59]—the
mean field traced Polyakov loop is expected to be a real
quantity, and ϕ3 and ϕ8 are assumed to be real valued [60],

one has ϕ8 ¼ 0, Φ ¼ ½1þ 2 cosðϕ3=TÞ�=3. Finally, we
include in the Lagrangian a term that accounts for effective
gauge field self-interactions, through a Polyakov-loop
potential UðΦ; TÞ. The resulting scheme is usually denoted
as the nlPNJL model [44,45,48,61,62].
Concerning the PL potential, its functional form is

usually based on properties of pure gauge QCD. In this
work, we will mostly focus on a potential given by a
polynomial function based on a Ginzburg-Landau ansatz
[63,64], namely

UpolyðΦ; TÞ
T4

¼ −
b2ðTÞ
2

Φ2 −
b3
3
Φ3 þ b4

4
Φ4; ð33Þ

where

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

þ a3

�
T0

T

�
3

: ð34Þ

The parameters ai and bi can be fitted to pure gauge
lattice QCD results imposing the presence of a first-order
phase transition at T0, which is a further parameter of the
model. In the absence of dynamical quarks, from lattice
calculations, one expects a deconfinement temperature
T0 ¼ 270 MeV. However, it has been argued that in the
presence of light dynamical quarks this temperature scale
should be adequately reduced to about 210 and 190 MeV
for the cases of two and three flavors, respectively, with an
uncertainty of about 30MeV [65]. The numerical values for
the parameters, taken from Ref. [63], are

a0 ¼ 6.75; a1 ¼ −1.95; a2 ¼ 2.625;

a3 ¼ −7.44; b3 ¼ 0.75; b4 ¼ 7.5: ð35Þ

It should be noticed that alternative forms for the PL
potential have been proposed in the literature. For example,
an ansatz based on the logarithmic expression of the Haar
measure associated with the SU(3) color group integration
is considered in Ref. [60], where its explicit form and
parameters can be found. Moreover, in Ref. [66], the
authors propose a so-called improved PL potential, in
which the full QCD potential Uglue is related to that
corresponding to the pure Yang-Mills theory, UYM, by

UglueðΦ; tglueÞ
T4

¼ UYM½Φ; tYMðtglueÞ�
T4
YM

; ð36Þ

where

tYMðtglueÞ ¼ 0.57tglue ¼ 0.57

�
T − Tglue

c

Tglue
c

�
: ð37Þ

The dependence of the Yang-Mills potential on the
Polyakov loop Φ and the temperature TYM is taken from
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an ansatz such as that in Eq. (33), while for Tglue
c , a

preferred value of 210 MeV is obtained [66]. In our
calculations, we will also consider these alternatives
choices for the PL potential to get an estimation of the
possible qualitative impact on our results.
In this way, the grand canonical thermodynamic poten-

tial of the system under the external magnetic field is found
to be given by

ΩMFA
B;T ¼ σ̄2

2G
−T

X∞
n¼−∞

X
c;f

jqfBj
2π

Z
dp3

2π

�
ln
�
p∥

2
ncþM

λf;f
0;p∥nc

2



þ
X∞
k¼1

ln
�
Δf

k;p∥nc


�
þUðΦ;TÞ; ð38Þ

where we have defined p∥nc ¼ ðp3; ð2nþ 1ÞπT þ ϕcÞ.
The sums over color and flavor indices run over c ¼ r,
g, b and f ¼ u, d, respectively, while the color background
fields are ϕr ¼ −ϕg ¼ ϕ3, ϕb ¼ 0. As usual in nonlocal
models, it is seen that ΩMFA turns out to be divergent, and
thus it has to be regularized. We use a prescription similar
to that considered, e.g., in Ref. [37], namely

ΩMFA;reg
B;T ¼ ΩMFA

B;T −Ωfree
B;T þΩfree;reg

B;T : ð39Þ

Notice that here the “free” potential keeps the interaction
with the magnetic field and the PL; i.e., only σ̄ is set to zero.
For this free piece, the Matsubara sum can be performed
analytically, leading to

Ωfree;reg
B;T ¼ −

Nc

2π2
X
f

ðqfBÞ2
�
ζ0ð−1; xfÞ þ

x2f
4
−
1

2
ðx2f − xfÞ lnxf

�
− T
X
f;c

jqfBj
π

X∞
k¼0

αk

Z
dp
2π

lnf1þ exp ½−ðϵfkp þ iϕcÞ=T�g;

ð40Þ

where xf ¼ m2
c=ð2jqfBjÞ, αk ¼ 2 − δk0, and ϵfkp ¼ ð2kjqfBj þ p2 þm2

cÞ1=2. In addition, ζ0ð−1; xfÞ ¼ dζðz; xfÞ=dzjz¼−1,
where ζðz; xfÞ is the Hurwitz zeta function. Owing to the presence of the background field, one has now a set of two coupled
“gap equations,”

∂ΩMFA;reg
B;T

∂σ̄ ¼ 0;
∂ΩMFA;reg

B;T

∂Φ ¼ 0: ð41Þ

GivenΩMFA;reg
B;T , the magnetic field–dependent quark condensate for each flavor can be calculated by taking the derivative

with respect to the corresponding current quark mass. This leads to

hq̄fqfiregB;T ¼ −
jqfBjT

π

X
c

Z
dp3

2π

X∞
k¼0

X∞
n¼−∞

�X
λ¼�

Âλ;f
k;p∥nc

−
2mc

p2
∥nc þ 2kjqfBj þm2

c

�

−
Ncm3

c

4π2

�
lnΓðxfÞ

xf
−
ln 2π
2xf

þ 1 −
�
1 −

1

2xf

�
ln xf

�
þ jqfBj

π

X
c

X∞
k¼0

αk

Z
dp
2π

mc

ϵfkp

1

1þ exp½ðϵfkp þ iϕcÞ=T�
:

ð42Þ

Finally, to make contact with the LQCD results quoted in
Ref. [8], we define the quantity

Σf
B;T ¼ −

2mc

S4
½hq̄fqfiregB;T − hq̄qireg0;0� þ 1; ð43Þ

where S is a phenomenological scale fixed as S ¼
ð135 × 86Þ1=2 MeV. The subindex f can be omitted for
B ¼ 0, owing to isospin symmetry. We also introduce the
definitions ΔΣf

B;T ¼Σf
B;T−Σf

0;T , Σ̄B;T ¼ðΣu
B;TþΣd

B;TÞ=2
and ΔΣ̄B;T ¼ ðΔΣu

B;T þ ΔΣd
B;TÞ=2, which correspond to

the subtracted normalized flavor condensate, the normal-
ized flavor average condensate, and the subtracted normal-
ized flavor average condensate, respectively.

III. NUMERICAL RESULTS

To obtain numerical predictions for the behavior of the
above-defined quantities as functions of the temperature
and the external magnetic field, it is necessary to specify
the particular shape of the nonlocal form factor gðp2Þ. We
consider here two often-used forms, namely a Gaussian
function,

gðp2Þ ¼ expð−p2=Λ2Þ; ð44Þ
and a “5-Lorentzian” function,

gðp2Þ ¼ 1

1þ ðp2=Λ2Þ5 : ð45Þ
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Notice that in these form factors we introduce an energy
scale Λ, which acts as an effective momentum cutoff. This
has to be taken as an additional parameter of the model. The
functions gðp2Þ are normalized to gð0Þ ¼ 1, which is
equivalent to the condition

R
d4zGðzÞ ¼ 1 for the form

factors in coordinate space. In any case, this condition can
be relaxed by redefining the coupling constant G in the
Lagrangian. In the particular case of the Gaussian function,
one has the advantage that the integral in Eq. (17) can be
performed analytically. One gets

Mλ;f
p̄;k ¼ ð1 − δkλ;−1Þmc

þ σ̄
ð1 − jqfBj=Λ2Þkλ
ð1þ jqfBj=Λ2Þkλþ1

expð−p̄2=Λ2Þ: ð46Þ

Given the nonlocal form factor, one has to determine
the values of the parameters mc, G and Λ. Here, we
will consider different parameter sets, obtained by requiring
that the model leads to the empirical values of the pion
mass and decay constant, as well as some chosen value
of the quark condensate hq̄qireg0;0. We will consider in
particular the phenomenologically acceptable values
ð−hq̄qireg0;0Þ1=3 ¼ 220, 230, and 240 MeV. The correspond-
ing parameter sets for the Gaussian and 5-Lorentzian form
factors are quoted in Table I. The analytical expressions
used to calculate the values of the pion mass and decay
constant within the nonlocal NJL model can be found,
e.g., in Ref. [38].
Let us start by discussing our results for zero temper-

ature. In the upper panels of Fig. 1, we show the model
predictions for ΔΣ̄B;0 as a function of eB for various model
parametrizations, while in the lower panels, we show the
corresponding results for Σu

B;0 − Σd
B;0. LQCD data from

FIG. 1. Normalized condensates as functions of the magnetic field at T ¼ 0. Upper panel: subtracted flavor average; lower panel:
flavor difference [see Eq. (43) and the text below]. Solid (black), dashed (red), and dotted (blue) curves correspond to parametrizations
leading to ð−hq̄qireg0;0Þ1=3 ¼ 220, 230, and 240 MeV, respectively. Full square symbols indicate LQCD results taken from Ref. [8].

TABLE I. Model parameters for Gaussian and 5-Lorentzian
form factors leading to some representative values of the chiral
condensate.

ð−hqq̄ireg0;0Þ1=3
(MeV) Form factor mc (MeV) GΛ2 Λ (MeV)

220 G 7.4 29.06 604
L5 7.4 10.34 790

230 G 6.5 23.66 678
L5 6.5 9.700 857

240 G 5.8 20.65 752
L5 5.8 9.267 926
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Ref. [8] are also displayed in both cases for com-
parison. Solid, dashed, and dotted curves correspond to
ð−hq̄fqfireg0;0Þ1=3 ¼ 220, 230, and 240 MeV, respectively.
It can be seen that the predictions for ΔΣ̄B;0 are very
similar for all considered parametrizations, showing a
very good agreement with LQCD results. In the case of
Σu
B;0 − Σd

B;0, although the overall agreement with LQCD
calculations is still good, we find some dependence on the
parametrization. As shown in the figure, for both form

factor shapes, the parameter sets leading to a condensate of
ð−hq̄fqfireg0;0Þ1=3 ¼ 230 MeV seem to be preferred.
We turn now to our numerical results for a system at

finite temperature. In the upper panels of Fig. 2, we show
the behavior of the averaged chiral condensate Σ̄B;T and the
traced Polyakov loopΦ as functions of the temperature, for
three representative values of the external magnetic field B,
namely B ¼ 0, 0.6, and 1 GeV2. The curves correspond to
parameter sets leading to ð−hq̄qireg0;0Þ1=3 ¼ 230 MeV and a

FIG. 2. Upper panels: normalized flavor average condensate and traced Polyakov loop as functions of the temperature, for three
representative values of eB. Lower panels: behavior of the corresponding chiral and PL susceptibilities as functions of the temperature.
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polynomial Polyakov-loop potential with T0 ¼ 210 MeV.
Given a value of B, it is seen from the figure that for the
cases of both Gaussian and 5-Lorentzian form factors the
chiral restoration and deconfinement transitions proceed as
smooth crossovers, at approximately the same critical
temperatures. For definiteness, we take these temperatures
from the maxima of the chiral and PL susceptibilities,
which we define as the derivatives χch ¼ −∂½ðhūuiregB;T þ
hd̄diregB;TÞ=2�=∂T and χΦ ¼ ∂Φ=∂T, respectively. Our
results for the behavior of the susceptibilities as functions
of the temperature, for B ¼ 0, 0.6, and 1 GeV2, are shown
in the lower panels of Fig. 2.
The chiral restoration and deconfinement critical temper-

atures obtained in the absence of external magnetic field for
different parametrizations are quoted in Table II. It is seen
that in all cases the splitting between both critical temper-
atures is below 5 MeV, which is consistent with the results
obtained in lattice QCD. From Table II, it is also seen that
the values of critical temperatures do not vary significantly

with the parametrization (recalling that in all cases the
parameters have been fixed to reproduce the empirical
values of the pion mass and decay constant). On the other
hand, the critical temperatures in Table II are found to be
somewhat higher than those obtained from LQCD, which
lie around 160 MeV [67,68]. In fact, the value of Tc and the
steepness of the transition depend on the form of the
Polyakov-loop potential. It is found that the logarithmic
PL potential [60] leads in general to steep transitions
(which can be even of first order for certain values of
the parameters), whereas the “improved” PL potentials [see
Eqs. (36) and (37)] lead to a smoother behavior that shows a
better agreement with LQCD results [47]. In particular, for
an “improved polynomial” PL potential, one can get Tc ≃
160 to 165 MeV, depending on the parametrization. It is
worth noticing that in the absence of the interaction with
the Polyakov loop the values of Tc drop down to about
130 MeV [33].
Let us discuss the effect of the magnetic field on the

phase transition features. From Fig. 2, it is seen that the
splitting between the chiral restoration and deconfinement
critical temperatures remains very small in the presence
of the external field (in fact, a detailed analysis shows that
the splitting gets reduced for larger values of eB). In
addition, it is seen that the nonlocal NJL models show
inverse magnetic catalysis. Indeed, contrary to what hap-
pens, e.g., in the standard local NJL model [4–6], in our
models, the chiral restoration critical temperature becomes
lower as the external magnetic field is increased. This is

TABLE II. Critical temperatures for B ¼ 0 and various
parametrizations.

Gaussian 5-Lorentzian

ð−hqq̄ireg0;0Þ1=3 (MeV) 220 230 240 220 230 240

Chiral Tc (MeV) 182.1 179.1 177.4 177.0 177.0 177.8
Deconfinement
Tc (MeV)

182.1 178.0 175.8 174.8 174.7 175.5

FIG. 3. Subtracted normalized flavor average condensate as a function of eB for different representative temperatures. Left and
right panels correspond to Gaussian and 5-Lorentzian form factors, respectively, with ð−hq̄qireg0;0Þ1=3 ¼ 230 MeV and polynomial PL
potential. Temperature values are given in MeV.
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related to the fact that the condensates do not show in
general a monotonic increase with B for a fixed value of the
temperature. The situation is illustrated in Fig. 3, where we
show the behavior of the averaged difference ΔΣ̄B;T as a
function of eB, for T ¼ 0 and for values of the temperature
in the critical region. The curves correspond to models
with Gaussian (left) and Lorentzian (right) form factors,
ð−hq̄qireg0;0Þ1=3 ¼ 230 MeV, polynomial PL potential. For
these parametrizations, the critical temperatures for B ¼ 0
are slightly below 180 MeV (see Table II). While for T ¼ 0

the value of ΔΣ̄B;0 shows a monotonic growth with the
external magnetic field, it is seen that when the temper-
atures get closer to the critical values the curves have a
maximum and then start to decrease for increasing B. This
is the typical behavior associated to IMC and observed
from lattice QCD results; see, e.g., Fig. 2 of Ref. [8].
Qualitatively similar results are found for the other para-
metrizations in Table I. Finally, in Fig. 4, we plot our results
for the chiral restoration critical temperatures TcðBÞ,
normalized to the corresponding values at vanishing
external magnetic field. The figure includes the curves
for nonlocal NJL models with Gaussian (left) and
5-Lorentzian (right) form factors and different parameter
sets (see the caption). The gray bands in both panels show
the results obtained in LQCD, taken from Ref. [8]. For
comparison, for the Gaussian form factor, we have plotted
with thin lines the results for the improved polynomial.
Thick lines for both Gaussian and 5-Lorentzian form
factors correspond to the polynomial PL potential in
Eq. (33). Results for the logarithmic PL potential have
been omitted, since (as stated above) the transitions are
found to be too steep in comparison with LQCD results.
From the figure, it is clearly seen that the inverse magnetic
catalysis effect is observed for all considered parametriza-
tions. In addition, for a given form factor, the effect is
found to be stronger for parameter sets leading to a lower
absolute value of the chiral quark condensates. As a general

conclusion, it can be stated that the behavior of the critical
temperatures with the external magnetic field is compatible
with LQCD results, for phenomenologically adequate
values of the chiral condensate.
To shed some light on the mechanism that leads to

the IMC effect in our model, it is worth noticing that the
nonlocal form factor turns out to be a function of the
external magnetic field. This can be clearly seen from
Eq. (17). In addition, it is important to take into account that
in nonlocal NJL-like models the form factors play the role
of some finite-range gluon-mediated effective interaction.
Thus, the magnetic field dependence of the form factor can
be understood as originated by the backreaction of the sea
quarks on the gluon fields. It is interesting to consider the
effective mass for the particular case of a Gaussian form
factor, given by Eq. (46). It can be seen that in this case the
components of the momentum that are parallel and trans-
verse to the magnetic field become disentangled. While
for the 3,4 components the original exponential form
exp ð−p̄2=Λ2Þ is maintained, the 1,2 (transverse) part leads
to a factor given by a ratio of polynomials in jqfBj=Λ2,
which goes to zero for large B. In this way, for any value of
k, the strength of the effective coupling decreases as B
increases. This is analogous to what happens with the
B-dependent coupling constants considered, e.g., in
Refs. [11,19], and thus the IMC effect can be understood
on these grounds.

IV. SUMMARY AND CONCLUSIONS

We have studied the behavior of strongly interacting
matter under a uniform static external magnetic field in
the context of a nonlocal chiral quark model. In this
approach, which can be viewed as an extension of the
Polyakov–Nambu–Jona-Lasinio model, the effective cou-
plings between quark-antiquark currents include nonlocal
form factors that regularize ultraviolet divergences in
quark loop integrals and lead to a momentum-dependent

FIG. 4. Normalized critical temperatures as functions of eB for various model parametrizations. For comparison, LQCD results of
Ref. [8] are indicated by the gray band. Left and right panels correspond to Gaussian and 5-Lorentzian form factors, respectively.
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effective mass in quark propagators. We have worked out
the formalism introducing Ritus transforms of Dirac fields,
which allow us to obtain closed analytical expressions for
the gap equations, the chiral quark condensate, and the
quark propagator. In addition, we have shown that these
expressions can also be obtained in the framework of a
Schwinger-Dyson approach.
We have considered the case of Gaussian and Lorentzian

form factors, choosing some sets of model parameters that
allow us to reproduce the empirical values of the pion mass
and decay constants. At zero temperature, with these
parametrizations, we have calculated the behavior of the
subtracted flavor average condensate ΔΣ̄B;0 and the nor-
malized condensate difference Σu

B;0 − Σd
B;0 as functions of

the external magnetic field B. Our results show the
expected effect of magnetic catalysis (condensates behave
as growing functions of B), the curves being in quantitative
agreement with lattice QCD calculations with slight
dependence on the parametrization.
Finally, we have extended the calculations to finite

temperature systems, including the couplings of fermions
to the Polyakov loop. We have defined chiral and PL
susceptibilities in order to study the chiral restoration and
deconfinement transitions, which turn out to proceed as
smooth crossovers for the polynomial PL potential con-
sidered. From our numerical calculations, on one hand it is
seen that, for all considered values of B, both transitions
take place at approximately the same temperature, in
agreement with LQCD predictions. On the other hand, it
is found that for temperatures close to the transition region
the subtracted flavor average condensate ΔΣ̄B;T becomes a
nonmonotonic function of B, which eventually leads to the
phenomenon of inverse magnetic catalysis, i.e., a decrease
of the critical temperature when the magnetic field gets
increased. This feature is also in qualitative agreement with
LQCD expectations. Moreover, for some parametrizations,
we find a remarkably good quantitative agreement with
the results from LQCD calculations for the behavior of
the normalized critical temperatures with B (see Fig. 4).
The values of the critical temperature at T ¼ 0, which show
some dependence on the parametrization and the PL
potential, lie also within the range estimated by LQCD
results.
It is interesting to compare the nonlocal models with

approaches in which IMC is obtained by considering
some ad hoc dependence of the effective couplings on B
and/or T. The naturalness of the IMC behavior in our
framework can be understood by noticing that for a given
Landau level the associated nonlocal form factor turns out
to be a function of the external magnetic field, according
to the convolution in Eq. (17). Since the form factors can
be identified with some gluon-mediated effective inter-
action, the dependence on the magnetic field can be seen
as originated by the backreaction of the quarks on the
gluon fields.
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APPENDIX A: RITUS EIGENFUNCTIONS
AND RITUS TRANSFORMS

In this Appendix, we provide the explicit form of the
Ritus eigenfunctions [52] and discuss some of the their
properties. These functions satisfy the eigenvalue equation

Π2Ep̄ðxÞ ¼ ϵp̄Ep̄ðxÞ; ðA1Þ

where, in accordance with the definition in the main
text, Π ¼ −i=∂ − qBx1γ2. Here, p̄ ¼ ðk; p2; p3; p4Þ repre-
sents the set of quantum numbers needed to label the
eigenstates, the eigenvalues of which are given by
ϵp̄ ¼ −ð2kjqBj þ p2

3 þ p2
4Þ. Working in Euclidean space

and choosing the Weyl representation for the Dirac
matrices,

γ⃗ ¼
�

0 σ⃗

−σ⃗ 0

�
; γ4 ¼ iγ0 ¼ i

�
0 I

I 0

�
; ðA2Þ

one has

Ep̄ðxÞ ¼
X
λ¼�

Ep̄λðxÞΔλ; ðA3Þ

where Δþ ¼ diagð1; 0; 1; 0Þ, Δ− ¼ diagð0; 1; 0; 1Þ, and

Ep̄λðxÞ ¼ Nkλe
iðp2x2þp3x3þp4x4ÞDkλðρÞ; ðA4Þ

where ρ ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=jqBjp ðqBx1 − p2Þ, with s ¼ signðqBÞ.

The integer index kλ is related to the quantum number k by

k� ¼ k −
1

2
� s
2
; ðA5Þ

while Nn ¼ ð4πjqBjÞ1=4= ffiffiffiffiffi
n!

p
. In Eq. (A4), we have intro-

duced the cylindrical parabolic functions defined by

DnðxÞ ¼ 2−n=2e−x
2=4Hnðx=

ffiffiffi
2

p
Þ; ðA6Þ

where HnðxÞ are the Hermite polynomials, with the
standard convention H−1ðxÞ ¼ 0. In fact, strictly speaking,
for k ¼ 0, the Ritus eigenfunction Ep̄ðxÞ should be defined
as a 2 × 2 matrix
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Eð0;p2;p3;p4ÞðxÞ ¼ ð4πjqBjÞ1=4eiðp2x2þp3x3þp4x4Þe−ρ2=41ð2×2Þ;

ðA7Þ

where 1ð2×2Þ is the identity matrix in the subspace where
Ep̄λðxÞ is nonzero. On the other hand, it is easily seen that
the matrices Δλ satisfy

Δ�Δ� ¼ Δ�; Δ�Δ∓ ¼ 0;

Δ�γ⊥ ¼ γ⊥Δ∓; Δ�γ∥ ¼ γ∥Δ�; ðA8Þ

where γ⊥ ¼ ðγ1; γ2Þ and γ∥ ¼ ðγ3; γ4Þ.
As expected, along the direction of the magnetic field,

the function Ep̄ðxÞ preserves the form of the energy
eigenfunction of a free particle, being labeled by a
continuous index p3 that corresponds to the momentum
component parallel to B⃗. This is also the situation in the
direction of the imaginary time. On the other hand, the
quantum numbers corresponding to the plane x1x2 depend
on the gauge used to describe the vector potential Aμ.
We have chosen the Landau gauge, for which the states
associated with the x1 direction are quantized and labeled
by the integer index k. Along the x2 direction, the
eigenfunction has the form of that of a free particle, with
the particularity that the eigenvalues do not depend on p2,
and hence the states are degenerated. This last property
leads to the useful relation

Z
dp2

2π
Ep̄ðxÞĒp̄ðxÞ ¼

Z
dp2

2π
Ēp̄ðxÞEp̄ðxÞ ¼ jqBjPk;s;

ðA9Þ

where we have defined Ēp̄ ¼ γ0E
†
p̄γ0 and Pk;�1 ¼

ð1 − δk0ÞI þ δk0Δ�. The operators Pk;�1 are projectors;
i.e., they satisfy Pk;s ¼ ðPk;sÞ2. It is also seen that
Pk;sEp̄ ¼ Ep̄Pk;s ¼ Ep̄.
The Ritus functions Ep̄ðxÞ satisfy orthonormality and

completeness relations, namely

Z
d4xĒp̄ðxÞEp̄0 ðxÞ ¼ δ̂p̄;p̄0Pk;s; ðA10Þ

XZ
p̄

Ep̄ðxÞĒp̄ðx0Þ ¼ δð4Þðx − x0Þ; ðA11Þ

where the following shorthand notations have been
introduced:

XZ
p̄

≡ 1

2π

X∞
k¼0

Z
dp2

2π

dp3

2π

dp4

2π
;

δ̂p̄;p̄0 ≡ ð2πÞ4δkk0δðp2 − p0
2Þδðp3 − p0

3Þδðp4 − p0
4Þ: ðA12Þ

In addition, they satisfy the important identity

ΠEp̄ðxÞ ¼ Ep̄ðxÞ
�
−s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kjqBj

p
γ2 þ p∥ · γ∥



; ðA13Þ

where p∥ ¼ ðp3; p4Þ.
Given the Ritus functions, one can define the Ritus

transform of some arbitrary Dirac function ψðxÞ. One has

ψ p̄ ¼
Z

d4xĒp̄ðxÞψðxÞ; ψ̄ p̄ ¼
Z

d4xψ̄ðxÞEp̄ðxÞ;

ðA14Þ

together with the inverse transforms

ψðxÞ ¼
XZ
p̄

Ep̄ðxÞψ p̄; ψ̄ðxÞ ¼
XZ
p̄

ψ̄ p̄Ēp̄ðxÞ: ðA15Þ

In the same way, the Ritus transform Op̄;p̄0 of an arbitrary
operator Ox;x0 satisfies

Op̄;p̄0 ¼
Z

d4xd4x0Ēp̄ðxÞOx;x0Ep̄0 ðx0Þ; ðA16Þ

Ox;x0 ¼
XZ
p̄;p̄0

Ep̄ðxÞOp̄;p̄0 Ēp̄0 ðx0Þ: ðA17Þ

APPENDIX B: DETAILS OF THE
EVALUATION OF Gλ;f

p̄;p̄0

We start from the relation in Eq. (16),

Gλ;f
p̄;p̄0 ¼

Z
d4xd4x0E�

p̄λðxÞGðx−x0Þexp½iΦfðx;x0Þ�Ep̄0λðx0Þ;

ðB1Þ

where Φfðx; x0Þ ¼ ðqfB=2Þðx2 − x02Þðx1 þ x01Þ, and the
functions Ep̄λðxÞ are given in Eq. (A4). To work out
this expression, we introduce the Fourier transform
of GðxÞ,

gðt2Þ ¼
Z

d4xe−it·xGðxÞ; ðB2Þ

and perform the change of variables x ¼ zþ y=2,
x0 ¼ z − y=2. In this way, we get

Gλ;f
p̄;p̄0 ¼

Z
d4t
ð2πÞ4 gðt

2Þ
Z

d4yd4zE�
pλðzþ y=2Þ

× expðit · yÞ expðiqfBy2z1ÞEp0λðz − y=2Þ: ðB3Þ
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Given the explicit form of the functions Ep̄λðxÞ, the
integrals over z2, z3, z4 and y3, y4 can be easily performed.
We obtain

Gλ;f
p̄;p̄0 ¼ ð2πÞ3δðp2 − p0

2Þδðp3 − p0
3Þδðp4 − p0

4ÞΓλ;f
k;k0;p∥

;

ðB4Þ

where

Γλ;f
k;k0;p∥

¼ NkλNk0λ

Z
d2t⊥
ð2πÞ2 gðt

2⊥ þ p2
∥Þ
Z

dz1d2y⊥

× expð−ip2y2Þ expðit⊥ · y⊥Þ
× expðiqfBy2z1ÞDkλðρÞDk0λ

ðρ0Þ; ðB5Þ

with t⊥ ¼ ðt1; t2Þ and

ρ ¼ sf

ffiffiffiffiffiffiffiffiffiffiffi
2

jqfBj

s
½qfBðz1 þ y1=2Þ − p2�;

ρ0 ¼ sf

ffiffiffiffiffiffiffiffiffiffiffi
2

jqfBj

s
½qfBðz1 − y1=2Þ − p2�: ðB6Þ

We recall here that sf ¼ signðqfBÞ, while kλ is related to k
by Eq. (A5). We note now that the integration over y2
introduces a factor 2πδðqfBz1 − p2 þ t2Þ, which allows us
to easily perform the integral over t2. Taking into account
the explicit form of ρ and ρ0, we get

Γλ;f
k;k0;p∥

¼ 1

½2π2kλþk0λkλ!k0λ!�1=2
Z

dγdηdψg

�jqfBj
2

ðγ2 þ η2Þ þ p2
∥

�

× expðiγψÞ exp
�
−
η2 þ ψ2

2

�
Hkλ

�
ηþ ψffiffiffi

2
p

�
Hk0λ

�
η − ψffiffiffi

2
p

�
;

ðB7Þ

where we have used the expression of Dn in terms of
Hermite polynomials, Eq. (A6), and for convenience we
have introduced the dimensionless variables

γ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2

jqfBj

s
t1; η ¼ sf

ffiffiffiffiffiffiffiffiffiffiffi
2

jqfBj

s
ðqfBz1 þ p2Þ;

ψ ¼
ffiffiffiffiffiffiffiffiffiffiffi
jqfBj
2

r
y1: ðB8Þ

Making a new change of variables to polar coordinates r;ϕ
in the γη plane, we get

Γλ;f
k;k0;p∥

¼
Z

∞

0

drrg

�jqfBj
2

r2 þ p2
∥

�
expð−r2=2ÞIλk;k0 ðrÞ;

ðB9Þ

where

Iλk;k0 ðrÞ ¼
1

½2π2kλþk0λkλ!k0λ!�1=2
Z

2π

0

dϕ
Z

∞

−∞
dψ exp½−ðψ − ir cosϕÞ2=2�Hkλ

�
r sinϕþ ψffiffiffi

2
p

�
Hk0λ

�
r sinϕ − ψffiffiffi

2
p

�
: ðB10Þ

Next, we carry out a translation into the complex plane ψ ,
namely ψ → ψ 0 ¼ ψ − ir cosϕ. Since the integrand in
Eq. (B10) is an analytic function, making use of Cauchy’s
theorem, one can show that the integration path can be
taken along the Imψ 0 ¼ 0 axis. Thus, we obtain

Iλk;k0 ðrÞ ¼
1

½2π2kλþk0λkλ!k0λ!�1=2
Z

2π

0

dϕ
Z

∞

−∞
dψ expð−ψ2=2Þ

×Hkλ

�
ir exp ð−iϕÞ þ ψffiffiffi

2
p

�
Hk0λ

�
−ir exp ðiϕÞ − ψffiffiffi

2
p

�
:

ðB11Þ
Next, we use the relation Hnð−xÞ ¼ ð−1ÞnHnðxÞ and the
identity (see Eq. (7.377) of Ref. [69])

Z
∞

−∞
dxe−x

2

Hmðxþ yÞHnðxþ zÞ

¼ 2n
ffiffiffi
π

p
m!zn−mLn−m

m ð−2yzÞ; n ≥ m; ðB12Þ

where La
bðxÞ are generalized Laguerre polynomials. Fi-

nally, using

Z
2π

0

dϕ expðiϕmÞ ¼ 2πδm0; ðB13Þ

we obtain

Iλk;k0 ðrÞ ¼ 2πð−1ÞkλLkλðr2Þδkk0 : ðB14Þ

Replacing Eq. (B14) in Eq. (B9), and taking into account
Eq. (B4), after a new change of variables r → jp⊥j ¼
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijqfBj=2

p
, we end up with

Gλ;f
p̄;p̄0 ¼ δ̂p̄;p̄0gλ;fk;p∥

; ðB15Þ

where gλ;fk;p∥
is given in Eq. (17).
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APPENDIX C: MEAN FIELD
QUARK PROPAGATOR

In this Appendix, we outline the derivation of the u and d
quark propagators within the MFA. We start from the two-
point function in Ritus spaceDMFA;f

p̄;p̄0 which, as discussed in
the main text, is diagonal in Landau/momentum indices p̄.
The mean field quark propagators in this space, for quark
flavors f ¼ u, d, are then given by

SMFA;f
p̄;p̄0 ¼

�
DMFA;f

p̄;p̄0



−1 ¼ δ̂p̄;p̄0

�
Df

k;p∥



−1
; ðC1Þ

withDf
k;p∥

givenbyEq. (19).Since thisoperator isnondiagonal

only in Dirac space, it can be easily inverted. Defining
Sf
k;p∥

¼ ðDf
k;p∥

Þ−1, one finds that Sf
k;p∥

can be written as

Sf
k;p∥

¼
X
λ¼�

h
Âλ;f
k;p∥

− B̂λ;f
k;p∥

p∥ · γ∥

þ sf
ffiffiffiffiffiffiffiffiffiffi
2kBf

q �
Ĉλ;f
k;p∥

− D̂λ;f
k;p∥

p∥ · γ∥


γ2
i
Δλ; ðC2Þ

where we have defined Bf ¼ jqfBj, and the functions

Âλ;f
k;p∥

to D̂λ;f
k;p∥

are given in Eqs. (28)–(31). Notice that in

the particular case k ¼ 0 (i.e., kλ ¼ 0 or −1) the Dirac
space is reduced to a two-dimensional one; therefore, only
the coefficients Âλ;f

k;p∥
and B̂λ;f

k;p∥
with kλ ¼ 0 need to be

considered.
To find the expression for the propagator in coordinate

space, we have to perform the Ritus antitransform of
SMFA;f
p̄;p̄0 . One has

SMFA;f
x;x0 ¼

XZ
p̄;p̄0

Ep̄ðxÞSMFA;f
p̄;p̄0 Ēp̄0 ðx0Þ

¼ 1

2π

X∞
k¼0

Z
d2p∥

ð2πÞ2 e
ip∥·Δx∥

X
λ;λ0¼�

Iλλ
0
h
δλλ0
�
Âλ;f
k;p∥

− B̂λ;f
k;p∥

p∥ · γ∥


Δλ þ sf

ffiffiffiffiffiffiffiffiffiffi
2kBf

q
ð1− δλλ0 Þ

�
Ĉλ0;f
k;p∥

− D̂λ0;f
k;p∥

p∥ · γ∥


γ2Δλ0

i
;

ðC3Þ

where we have defined Δx∥ ¼ ðΔx3;Δx4Þ, with Δxi ¼ xi − x0i, and the integrals Iλλ
0
are given by

Iλλ
0 ¼ NkλNkλ0

Z
dp2

2π
eip2ðx2−x02ÞDkλðρÞDkλ0 ðρ0Þ; ðC4Þ

with ρð0Þ ¼ sf
ffiffiffiffiffiffiffiffiffiffiffi
2=Bf

p ½qfBxð0Þ1 − p2� ¼
ffiffiffiffiffiffiffiffi
2Bf

p ½xð0Þ1 − ðsf=BfÞp2�. Let us analyze separately the integrals I�� and I�∓.
Considering the explicit expressions for Nkλ and DkλðxÞ [see Eq. (A6)] and performing the translation
p2 ¼ q2 þ sfBfðx1 þ x01Þ=2, one has

Iλλ ¼
ffiffiffiffiffiffi
Bf

π

r
2−kλ

k!
exp½iΦfðx; x0Þ� expð−BfΔx21=4Þ

Z
∞

−∞
dq2 expðiq2Δx2Þ

× expð−q22=BfÞHkλ

� ffiffiffiffiffiffi
Bf

p
Δx1
2

−
sfq2ffiffiffiffiffiffi
Bf

p �
Hkλ

�
−

ffiffiffiffiffiffi
Bf

p
Δx1
2

−
sfq2ffiffiffiffiffiffi
Bf

p �
; ðC5Þ

whereΦfðx; x0Þ is the already defined Schwinger phase. Now, it is possible to carry out a translation in the complex plane to
a new variable ω ¼ ðq2 − iBfΔx2=2Þsf=

ffiffiffiffiffiffi
Bf

p
. Since the integrand is an analytic function in the whole plane, the integral

can be calculated along the Imω ¼ 0 axis. One gets in this way

Iλλ ¼ Bfffiffiffi
π

p 2−kλ

k!
exp½iΦfðx; x0Þ� expð−BfΔx2⊥=4Þ

Z
∞

−∞
dω expð−ω2Þ

×Hkλ

h
ω −

ffiffiffiffiffiffi
Bf

p ðΔx1 − isfΔx2Þ=2
i
Hkλ

h
ωþ ffiffiffiffiffiffi

Bf

p ðΔx1 þ isfΔx2Þ=2
i
; ðC6Þ

where Δx⊥ ¼ ðΔx1;Δx2Þ. The integral in Eq. (C6) can be evaluated using the relation in Eq. (B12), which leads to

Iλλ ¼ Bf exp½iΦfðx; x0Þ� exp½−BfΔx2⊥=4�LkλðBfΔx2⊥=2Þ: ðC7Þ
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Next, let us consider the integral

Kð0Þðm; y⊥Þ ¼
Z

d2p⊥eip⊥·y⊥ expð−p2⊥=BfÞLmð2p2⊥=BfÞ; ðC8Þ

where p⊥ ¼ ðp1; p2Þ, y⊥ ¼ ðy1; y2Þ. One has

Kð0Þðm; y⊥Þ ¼
Z

∞

0

djp⊥jjp⊥j expð−p2⊥=BfÞLmð2p2⊥=BfÞ
Z

2π

0

dθeijp⊥jðy1 cos θþy2 sin θÞ

¼ 2π

Z
∞

0

djp⊥jjp⊥j expð−p2⊥=BfÞLmð2p2⊥=BfÞJ0ðjp⊥jjy⊥jÞ

¼ πBfð−1Þm expð−Bfy2⊥=4ÞLmðBfy2⊥=2Þ; ðC9Þ

where J0ðxÞ is a Bessel function. The last equality in Eq. (C9) has been obtained using the following general relation, which
involves generalized Laguerre polynomials and Bessel functions:

Z
∞

0

dxxνþ1e−βx
2

Lν
mðαx2ÞJνðxyÞ ¼ ð2βÞ−ν−1

�
1 −

α

β

�
m
yνe−y

2=ð4βÞLν
m

�
αy2

4βðα − βÞ
�
: ðC10Þ

From Eqs. (C7), (C8), and (C9), we end up with

Iλλ ¼ 1

π
exp½iΦfðx; x0Þ�ð−1ÞkλKð0Þðkλ;Δx⊥Þ ¼ 4π exp½iΦfðx; x0Þ�ð−1Þkλ

Z
d2p⊥
ð2πÞ2 e

ip⊥·Δx⊥ expð−p2⊥=BfÞLkλð2p2⊥=BfÞ:

ðC11Þ

A similar procedure can be carried out for the calculation of the integrals I�∓. Performing the same changes of variables
as in the previous case, we obtain

I�∓ ¼ Bfffiffiffi
π

p 2−ðkþþk−Þ=2ffiffiffi
k

p ðk − 1Þ! exp½iΦfðx; x0Þ� expð−BfΔx2⊥=4Þð−1Þkþþk−

Z
∞

−∞
dωe−ω

2

×Hkþ

�
ω ∓

ffiffiffiffiffiffi
Bf

p
2

ðΔx1 ∓ isfΔx2Þ
�
Hk−

�
ω�

ffiffiffiffiffiffi
Bf

p
2

ðΔx1 � isfΔx2Þ
�

¼ Bf

ffiffiffiffiffiffi
Bf

2k

r
sf exp½iΦfðx; x0Þ�ð�Δx1 − iΔx2Þ exp

�
−
BfΔx2⊥

4

�
L1
k−1

�
BfΔx2⊥

2

�
; ðC12Þ

where we have used once again the relation in Eq. (B12) to evaluate the integral over ω. Notice that for k ¼ 0 one has
Iþ− ¼ I−þ ¼ 0 automatically from the definition in Eq. (C4), since either kþ ¼ −1 or k− ¼ −1, and D−1ðρð0ÞÞ ¼ 0. Now,
let us consider the integrals

Kð1Þ
j ðm; y⊥Þ ¼

Z
d2p⊥pjeip⊥·y⊥ expð−p2⊥=BfÞL1

mð2p2⊥=BfÞ; ðC13Þ

where j ¼ 1, 2. Using Eq. (C10) with ν ¼ 1, it is easy to show that

Kð1Þ
j ðm; y⊥Þ ¼ 2πi

yj
jy⊥j

Z
∞

0

djp⊥jp2⊥ expð−p2⊥=BfÞL1
mð2p2⊥=BfÞJ1ðjp⊥jjy⊥jÞ

¼ π

2
iB2

fð−1Þmyj expð−Bfy2⊥=4ÞL1
mðBfy2⊥=2Þ; ðC14Þ

from which we get
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I�∓ ¼ ð−iÞ 2
π
sf exp½iΦfðx; x0Þ�

ð−1Þkffiffiffiffiffiffiffiffiffiffi
2kBf

p ½∓ Kð1Þ
1 ðk − 1;Δx⊥Þ þ iKð1Þ

2 ðk − 1;Δx⊥Þ�

¼ −i8πsf exp½iΦfðx; x0Þ�
ð−1Þkffiffiffiffiffiffiffiffiffiffi
2kBf

p Z
d2p⊥
ð2πÞ2 e

iΔx⊥·p⊥ð∓p1 þ ip2Þ expð−p2⊥=BfÞL1
k−1ð2p2⊥=BfÞ: ðC15Þ

The results in Eqs. (C11) and (C15) can be put together as

Iλλ
0 ¼ 4πð−iÞkλþkλ0

�
2ffiffiffiffiffiffiffiffiffiffi
2kBf

p �jkλ−kλ0 j
exp½iΦfðx; x0Þ�

Z
d2p⊥
ð2πÞ2 e

iΔx⊥·p⊥ expð−p2⊥=BfÞ

× ½ðkλ − kλ0 Þp1 − isfp2�jkλ−kλ0 jLjkλ−kλ0 j
ðkλþkλ0−jkλ−kλ0 jÞ=2ð2p

2⊥=BfÞ ðC16Þ

(notice that an analogous expression has been obtained in
Ref. [57]). Replacing into Eq. (C3), and noting that
−ið�p1 þ ip2Þγ2Δ� ¼ p⊥ · γ⊥Δ�, we finally arrive at

SMFA;f
x;x0 ¼ exp½iΦfðx; x0Þ�

Z
d4p
ð2πÞ4 e

ip·ðx−x0Þ ~Sfðp⊥; p∥Þ;

ðC17Þ

where ~Sfðp⊥; p∥Þ is given by Eq. (27).

APPENDIX D: DERIVATION OF
THE GAP EQUATION USING THE
SCHWINGER-DYSON FORMALISM

In this Appendix, we derive the gap equation using the
SD formalism discussed, e.g., in Refs. [56–58]. We start by
considering an interaction term of the form

SintE ¼ −
1

2

Z
d4x1d4x2d4x3d4x4Kγ1;γ2;γ3;γ4ðx1; x2; x3; x4Þ

× ψ̄ γ1ðx1Þψγ2ðx2Þψ̄ γ3ðx3Þψγ4ðx4Þ; ðD1Þ

where γi stands for a set of Dirac and internal indexes (i.e.,
color and flavor). The corresponding SD equation for the
two-point function in the Hartree approximation is

ðDx;x0 Þα;β ¼ ðDð0Þ
x;x0 Þα;β

þ
Z
d4x3d4x4Kα;β;γ3;γ4ðx; x0; x3; x4ÞðSx4;x3Þγ4;γ3 ;

ðD2Þ

where Dð0Þ
x;x0 is the free two-point function and Sx;x0 is the

effective quark propagator.
The explicit form of the interaction kernel

Kγ1;γ2;γ3;γ4ðx1; x2; x3; x4Þ for the case we are interested in
can be read off from Eq. (2). Taking into account that, due
to the nonlocal character of the interaction, the coupling

with a gauge field requires the replacement in Eq. (4), for
our nonlocal model in the presence of an external field,
we have

Kγ1;γ2;γ3;γ4ðx1; x2; x3; x4Þ
¼ GGðx1 − x2ÞGðx3 − x4Þδð4Þðx̄12 − x̄34Þ
× ðγ0Wðx1; x̄12Þγ0ΓaWðx̄12; x2ÞÞγ1;γ2
× ðγ0Wðx3; x̄34Þγ0ΓaWðx̄34; x4ÞÞγ3;γ4 ; ðD3Þ

where x̄ij ¼ ðxi þ xjÞ=2. Replacing this expression in the
SD equation above, and considering the particular case of a
constant magnetic field along the 3-axis, in the Landau
gauge, we have

Df
x;x0 ¼ Dð0Þ;f

x;x0 þGGðx − x0Þ exp½iΦfðx; x0Þ�

× Nc

Z
d4yd4y0Gðy − y0Þδð4Þðx̄ − ȳÞ

×
X
f0¼u;d

trDfexp½iΦfðy; y0Þ�Sf
0

y0;yg; ðD4Þ

where x̄ ¼ ðxþ x0Þ=2, ȳ ¼ ðyþ y0Þ=2, and Φfðx; x0Þ is the
Schwinger phase introduced in Eq. (12). We have assumed
that, due to parity conservation, only Γ0 ¼ 1 is relevant at
this level. Thus, the solution of the SD equation has to be
diagonal in flavor space, allowing us to write the two-point
function (and the corresponding propagator) as in Eq. (10).
Note that in Eq. (D4) the symbol trD stands for the trace in
Dirac space, since the traces in color and flavor spaces have
already been taken.
To proceed, we use the well-known fact (see,

e.g., Ref. [57]) that the two-point function of a free
fermion in an external magnetic field is given (in
Euclidean space) by

Dð0Þ;f
x;x0 ¼ exp½iΦfðx; x0Þ�

Z
d4p
ð2πÞ4 e

ip·ðx−x0Þð=pþmcÞ: ðD5Þ

D. GÓMEZ DUMM et al. PHYSICAL REVIEW D 96, 114012 (2017)

114012-16



Replacing this relation into Eq. (D4), we see that the rhs of
the resulting equation can be written as the product of a
Schwinger phase factor times a translational invariant
function (i.e., a function that depends only on x − x0).
Thus, this has to be the form of Df

x;x0 . A suitable ansatz for
the Dirac structure of a two-point function of this type has
been given in Ref. [57]. Using our notation and conven-
tions, its Ritus transform reads

Df
k;p∥

¼
X
λ¼�

h
Aλ;f
k;p∥

þ Bλ;f
k;p∥

p∥ · γ∥

− sf
ffiffiffiffiffiffiffiffiffiffi
2kBf

q �
Cλ;f
k;p∥

þDλ;f
k;p∥

p∥ · γ∥


γ2
i
Δλ: ðD6Þ

The Ritus transform of the associated propagator can
be obtained by inverting this 4 × 4 matrix. It can be
expressed as

Sfk;p∥
¼
X
λ¼�

h
Âλ;f
k;p∥

− B̂λ;f
k;p∥

p∥ · γ∥

þ sf
ffiffiffiffiffiffiffiffiffiffi
2kBf

q �
Ĉλ;f
k;p∥

− D̂λ;f
k;p∥

p∥ · γ∥


γ2
i
Δλ; ðD7Þ

where

Â�;f
k;p∥

¼
A∓;f
k;p∥

Δ1 � p2
∥B

∓;f
k;p∥

Δ2

Δ
;

B̂�;f
k;p∥

¼
B∓;f
k;p∥

Δ1 ∓ A∓;f
k;p∥

Δ2

Δ
;

Ĉ�;f
k;p∥

¼
C∓;f
k;p∥

Δ1 � p2
∥D

�;f
k;p∥

Δ2

Δ
;

D̂�;f
k;p∥

¼ −
D∓;f

k;p∥
Δ1 ∓ C∓;f

k;p∥
Δ2

Δ
; ðD8Þ

with the definitions

Δ1 ¼ Aþ;f
k;p∥

A−;f
k;p∥

þ p2
∥B

þ;f
k;p∥

B−;f
k;p∥

þ 2kBf

�
Cþ;f
k;p∥

C−;f
k;p∥

þ p2
∥D

þ;f
k;p∥

D−;f
k;p∥



;

Δ2 ¼ Aþ;f
k;p∥

B−;f
k;p∥

− Bþ;f
k;p∥

A−;f
k;p∥

þ 2kBf

�
Cþ;f
k;p∥

Dþ;f
k;p∥

− C−;f
k;p∥

D−;f
k;p∥



;

Δ ¼ Δ2
1 þ p2

∥Δ2
2: ðD9Þ

Theparticular valuek ¼ 0 shouldbeconsidered separately. In
this case, the above relations for Aλ;f

k;p∥
and Bλ;f

k;p∥
simplify to

Âλ;f
0;p∥

¼
Aλ;f
0;p∥

Aλ;f
0;p∥

2 þ p2
∥B

λ;f
0;p∥

2
; B̂λ;f

0;p∥
¼

Bλ;f
0;p∥

Aλ;f
0;p∥

2 þ p2
∥B

λ;f
0;p∥

2
;

ðD10Þ

while Ĉλ;f
0;p∥

and D̂λ;f
0;p∥

are multiplied by zero in Eq. (D7) and

need not be defined.
Following the same steps as those sketched in

Appendix C, it can be shown that the two-point function
and the quark propagator in coordinate space can be
written as

Df
x;x0 ¼ exp½iΦfðx; x0Þ�

Z
d4p
ð2πÞ4 e

ip·ðx−x0Þ ~Dfðp⊥; p∥Þ;

Sfx;x0 ¼ exp½iΦfðx; x0Þ�
Z

d4p
ð2πÞ4 e

ip·ðx−x0Þ ~Sfðp⊥; p∥Þ:

ðD11Þ

The functions ~Dfðp⊥; p∥Þ and ~Sfðp⊥; p∥Þ are given by

~Dfðp⊥; p∥Þ ¼
X
λ¼�

h
aλ;fp⊥;p∥ þ bλ;fp⊥;p∥p∥ · γ∥

þ
�
cλ;fp⊥;p∥ þ dλ;fp⊥;p∥p∥ · γ∥



p⊥ · γ⊥

i
Δλ;

~Sfðp⊥; p∥Þ ¼
X
λ¼�

h
âλ;fp⊥;p∥ − b̂λ;fp⊥;p∥

p∥ · γ∥

þ
�
−ĉλ;fp⊥;p∥ þ d̂λ;fp⊥;p∥

p∥ · γ∥


p⊥ · γ⊥

i
Δλ;

ðD12Þ

where the functions aλ;fp⊥;p∥ ;… are related to Aλ;f
k;p∥

;…

through

 
aλ;fp⊥;p∥

bλ;fp⊥;p∥

!
¼2e−p

2⊥=Bf

X∞
k¼0

ð−1ÞkλLkλð2p2⊥=BfÞ
 
Aλ;f
k;p∥

Bλ;f
k;p∥

!
;

 
cλ;fp⊥;p∥

dλ;fp⊥;p∥

!
¼4e−p

2⊥=Bf

X∞
k¼1

ð−1Þk−1L1
k−1ð2p2⊥=BfÞ

 
Cλ;f
k;p∥

Dλ;f
k;p∥

!
;

ðD13Þ

and similar relations hold for the functions âλ;fp⊥;p∥ , Â
λ;f
k;p∥

,

etc., in the expression of the propagator. Note that using the
orthogonality of generalized Laguerre polynomials (see,
e.g., Eq. (3) of Sec. 7.414 in Ref. [69]),

Z
∞

0

dxxαe−xLα
nðxÞLα

mðxÞ¼
Γðαþnþ1Þ

n!
δnm; ReðαÞ>0;

ðD14Þ
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these relations can be inverted to give

 
Aλ;f
k;p∥

Bλ;f
k;p∥

!
¼ 4π

Bf
ð−1Þkλ

Z
d2p⊥
ð2πÞ2 e

−p2⊥=BfLkλð2p2⊥=BfÞ

×

 
aλ;fp⊥;p∥

bλ;fp⊥;p∥

!
;

 
Cλ;f
k;p∥

Dλ;f
k;p∥

!
¼ 4π

B2
f

ð−1Þk−1
k

Z
d2p⊥
ð2πÞ2 p

2⊥e−p
2⊥=BfL1

k−1ð2p2⊥=BfÞ

×

 
cλ;fp⊥;p∥

dλ;fp⊥;p∥

!
: ðD15Þ

We can now go back to the SD equation, Eq. (D4). Using
Eqs. (D5) and (D11), we have

~Dfðp⊥; p∥Þ ¼ =pþmc þGNcgðp2Þ

×
X
f0¼u;d

Z
d4q
ð2πÞ4 gðq

2ÞtrD½ ~Sf
0 ðq⊥; q∥Þ�:

ðD16Þ

Taking into account the explicit form of ~Df
p and ~Sfp given by

Eq. (D12), it is seen that the functions entering ~Dfðp⊥; p∥Þ
should satisfy

aλ;fp⊥;p∥ ¼mcþ σ̄gðp2Þ; bλ;fp⊥;p∥ ¼cλ;fp⊥;p∥ ¼1; dλ;fp⊥;p∥ ¼0;

ðD17Þ

where, in order to make contact with the results in the main
text, we have defined

σ̄ ¼ 2GNc

X
f

Z
d4q
ð2πÞ4 gðq

2Þ
X
λ¼�

âλ;fq⊥;q∥ : ðD18Þ

Given the results in Eq. (D17), we can easily obtain the
expressions for the functions entering the Ritus transform
of the two-point function. Using Eq. (D15), we get

Aλ;f
k;p∥

¼ ð1 − δkλ;−1Þmc þ σ̄gλ;fk;p∥
; Bλ;f

k;p∥
¼ ð1 − δkλ;−1Þ;

Cλ;f
k;p∥

¼ 1; Dλ;f
k;p∥

¼ 0; ðD19Þ

where the definition of gλ;fk;p∥
is that given in Eq. (17). As we

see, Aλ;f
k;p∥

coincides with the expression for Mλ;f
k;p∥

given in

Eq. (18). Replacing these results in Eq. (D6), we recover
the expression for Df

k;p∥
given in Eq. (19). On the other

hand, using the relations in Eqs. (D13) and (17), we can
write Eq. (D18) as

σ̄

G
¼ Nc

X
f¼u;d

jqfBj
π

X∞
k¼0

Z
d2p∥

ð2πÞ2
X
λ¼�

Âλ;f
k;p∥

gλ;fk;p∥
: ðD20Þ

Finally, replacing Eqs. (D19) into Eqs. (D8), it is seen that
the expression for Âλ;f

k;p∥
coincides with that given in

Eq. (25). This completes the derivation of the gap equation,
Eq. (24), within the framework of the SD formalism
developed, e.g., in Refs. [56–58].
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