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Abstract

In view of the present controversy related to the potential
beneficial effects of clinical dehydroepiandrosterone
(DHEA) treatments, and considering our own previous
results that reveal an influence of this steroid in pituitary
hyperplasia development in vivo in rats, we decided to
evaluate the role of DHEA in prolactin and GH secretion,
as well as in second messengers involved, in cultured rat
anterior pituitary cells. DHEA (1 X107~ > to 1x 10~ M)
did not modify basal GH or prolactin release, and a
prolactin inhibitory effect was observed only for andro-
stenediol, a metabolite of DHEA. DHEA partially
prevented dopamine (1 X 10™° M)-induced prolactin inhi-
bition and facilitated the prolactin-releasing effect of
10~ %M Ang II, without modifying the resulting Ca*"

i

mobilization. Furthermore, DHEA potentiated the GH
release and cAMP production induced by 1x10~*M
GHRH. Finally, DHEA partially reversed the inhibitory
effect of 1x 10~ ® M somatostatin on GH, but not pro-
lactin, release. We conclude that DHEA in vitro, directly
or indirectly through conversion into metabolites, is able
to modulate the hormonal response of the pituitary to
hypothalamic regulators. It can enhance pituitary prolactin
release and induce GH secretion. These effects could help
explain some of the side effects observed in prolonged
DHEA treatments in vivo and should be taken into account
when considering its use in human clinical trials.
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Introduction

Dehydroepiandrosterone (DHEA), unconjugated or as its
sulphate, is the major secretory steroidal product of the
human adrenal gland. Its serum concentration is 20 times
higher than that of any other steroid hormone in humans
(Ebeling & Koivisto 1994). But, despite its abundance, its
physiologic role is not yet completely known. In vitro and
in vivo data suggest estrogen- or androgen-like effects of
DHEA and its metabolites, depending on sex hormone
homeostasis (Poortman et al. 1975). In particular the
relation of DHEA to pituitary function has not been
clearly defined.

Serum DHEA levels present a characteristic ontogenic
pattern, with increasing values toward puberty and a
progressive decline during aging, paralleling growth hor-
mone (GH) and insulin-like growth factor-I (IGF-I)
values. In an aging society, this inevitably raises the
question of whether aging is, in part, a consequence of
DHEA deficiency and potentially reversible by DHEA
treatment. Furthermore, a significant deficiency in DHEA
in patients with several major diseases such as various
cancers, inflammatory diseases, type II diabetes, athero-
sclerosis, Alzheimer’s disease and cardiovascular disorders
has been described (Shealy 1995, Allolio & Arlt 2002).
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These data suggest that DHEA could be a multifunctional
hormone with anticancer, immune-enhancing, neuro-
tropic and general antiaging effects. This idea has been
strengthened by numerous animal experiments. However,
most animal studies used pharmacologic DHEA doses,
yielding serum DHEA levels far beyond the physiologic
ones. Recently, a growing number of well-designed
clinical trials has begun to shed light on the role of DHEA
in human health.

DHEA, synthesized from pregnenolone by the cyto-
chrome P450-C17, can be converted to androgens or
estrogens. In rats, DHEA is metabolized in situ in many
tissues mainly to 7 a-hydroxy DHEA (OH-DHEA) by
the a-hydroxylase CYP7B, or to 5-0-androstene-3f3,17f3-
diol (ADIOL), which can also be o-hydroxylated, pre-
sumably by the same enzyme (Rose ef al. 2001). The rat
has proved to be an useful model to study the mechanism
of action of DHEA. In a previous work we showed that
this steroid attenuates estrogen-induced pituitary hyper-
plasia and hyperprolactinemia (Suarez et al. 2002). Besides,
DHEA per se produced diverse hormonal effects, such as
serum prolactin and GH increase in vivo, which would
restrict the clinical application of this drug in humans. In
the present study we wished to determine whether the
in vivo hormonal effects described for DHEA could be
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accounted for by an action of DHEA or its metabolites,
ADIOL and OH-DHEA, directly at the pituitary level.
We therefore evaluated the effect of DHEA, OH-DHEA
and ADIOL on prolactin and GH secretion in pituitary
cells dispersed in witro, in combination with well-
established secretagogues such as angiotensin II (Ang II),
dopamine, growth hormone-releasing hormone (GHRH)
and somatostatin. Furthermore, we investigated whether
DHEA had any effect on GHRH and Ang II regulation of
second messengers ([Ca>"]; and cAMP) that could partici-
pate in the actions described for the adrenal steroid at the
pituitary level.

Materials and Methods

Animals

Female 60-day-old Sprague-Dawley rats were housed in
an air-conditioned room with lights on at 0700 h and off at
1900 h. Rats were maintained in accordance with NIH
Guide for the Care and Use of Laboratory Animals.
Vaginal smears were performed daily and rats in diestrus
were used.

Drugs

Unless specified, all chemicals were purchased from
Sigma.

Cell dispersion and culture

Anterior pituitaries were placed in chambers containing
freshly prepared Krebs-Ringer bicarbonate buffer without
Ca®" or Mg®". Buffer containing 14 mM glucose, 1%
bovine serum albumin (BSA), 2% MEM amino acids,
1% MEM vitamins (Life Technologies, Buenos Aires,
Argentina) and 2 mM glutamine was previously gassed for
15 min with 95% O, and 5% CO, and adjusted to pH
7-:35=7-40. Buffer was sterilized by filtration through a
0-45-um pore diameter membrane (Nalge Nunc Inter-
national, Rochester, NY, USA). Pituitaries were washed
three times with Krebs-Ringer bicarbonate buffer and
then cut into 1 mm pieces. Fragments obtained were
washed and incubated in the same buffer containing 0-5%
trypsin for 30 min at 37 °C in 95% O, and 5% CO,. They
were treated for another 2 min with 50 pl deoxyribo-
nuclease I (1 mg/ml; Worthington Biochemical Corp.,
Lakewood, NJ, USA). Digestion was ended by adding
1 mg/ml lima bean trypsin inhibitor. Fragments were
dissociated to single cells by gentle trituration through
siliconized Pasteur pipettes. The resulting suspension was
filtered through a nylon gauze (160 um pore size) and
centrifuged for 10 min at 120 g, and a cellular pellet was
obtained. Before centrifugation, an aliquot of the cellular
suspension was taken to quantify pituitary cell yield, using
a Neubauer chamber. Viability of cells, as determined by
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Trypan blue exclusion, was always greater than 90%. Cells
were freshly used for intracellular Ca*" measurements (see
below), or plated in sterile cell culture plates. Cells (50 000
cells/well) were cultured for 3 days. Cell culture was
performed as previously described with minor modifica-
tions (Gonzalez Iglesias ef al. 2000). DHEA, OH-DHEA,
ADIOL, Human GHRH-(1-29)-amide (provided by the
National Institute of Diabetes, Digestive and Kidney
Diseases (NIDDKD)’s National Hormone and Peptide
Program and Dr A F Parlow), dopamine hydrochloride,
Ang II and somatostatin (Somatostatin-UCB; Rontag,
Buenos Aires, Argentina) were used as stimuli. Times and
concentrations were chosen according to our previous
experience (Gonzalez Iglesias ef al. 2001).

.
Intracellular Ca®" measurements

Fura-2/AM (tetracetoxymethylesther-Fura 2; Molecular
Probes, Eugene, OR, USA) was used as a fluorescent
indicator. The pellet of anterior pituitary cells was redis-
persed and incubated in a buffered saline solution (BSS)
(140 mM NaCl, 39mM KCl, 0-7mM KH,PO,,
05mM Na,HPO,.12H,0, 1mM CaCl,, 0-5mM
MgCl,, 20 mM Hepes (pH 7-5)) in the presence of
Fura-2/AM 1-5 uM, 10 mM glucose and 0-1% BSA. Cells
were incubated for 30 min at 37 °C in an atmosphere of
5% CO,, during which time Fura-2 was trapped intra-
cellularly by esterase cleavage. Cells were then washed
twice in BSS without Fura-2/AM, and brought to a
density of 1-7 to 2 X 10° cells/ml BSS. Fluorescence was
measured in a spectrofluorometer (Jasco Corporation,
Tokyo, Japan) provided with the accessory CA-261 to
measure Ca®" with continuous stirring, the thermostat
adjusted to 37 °C, and an injection chamber. Intracellular
Ca”" levels were registered every second by exposure to
alternating 340 and 380 nm light beams, and the intensity
of light emission at 505 nm was measured. In this way
light intensities and their ratio (F340/F380) were fol-
lowed. Drugs were injected (5 pl) into the chamber as a
100-fold concentrated solution without interruption of
recording. The preparation was calibrated by determining
maximal fluorescence induced by 0:1% Triton X-100
(F a0 and minimal fluorescence (F, ;) in the presence of
6mM EGTA (pH adjusted to over 8:3). [Ca®"]i was
calculated according to Grynkiewicz et al. (1985). Values
were corrected for dye leakage as previously described
(Grynkiewicz et al. 1985, Gobbe & Herchuelz 1989), and
for autofluorescence with unlabeled cells. Both dye
leakage and autofluorescence were minimal.

Intracellular cAMP measurement

For intracellular cAMP measurements, cells obtained as
described above were plated in 24-cell culture plates.
After a preincubation of 48 h with DHEA (1x10~°
and 1 x 107 M) in BIC-BSA or medium alone (control),
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pituitary cells (300 000 cells/well) were washed and incu-
bated with GHRH (1 X 10°® M), forskolin (1 X 1077 M) or
buffer for 30 min in the presence of 3-isobutyl-1-
methylxanthine (IBMX, 0-1 mM). After incubation, cells
were placed on ice and washed with BIC-BSA, and 0-7 ml
cold ethanol added to each well. Cells were scraped,
transferred to tubes, sonicated for 15 s, heated for 5 min at
95 °C and centrifuged for 5 min at 9400 g. Supernatants
were evaporated, and the dry extracts were suspended in
cAMP RIA buffer (NaAc 50 mM, pH=6-2). Intracellular
cAMP was measured by RIA as previously described (Del
Punta et al. 1996), using the antibody provided by the
NIDDKD. Assay sensitivity was 3-3 pg (10 fmol)/tube.
Intra- and interassay coefficients of variation were 8-1%
and 10-5% respectively. Experiments were repeated four
times. Results are expressed as percentage increase over
basal levels (100%).

Radioimmunoassays

Prolactin and GH were assayed by RIA with kits provided
by the NIDDKD. Results were expressed in terms of
prolactin PRL RP3 and GH RP2. Intra- and inter-assay
coefficients of variation were 7-2 and 12-8% respectively
for prolactin, and 8-3 and 13-1% for GH.

Statistical analyses

Results are expressed as means & sE. Effect of different
concentrations of DHEA, ADIOL or OH-DHEA on GH
or prolactin release, and effects of DHEA on dopamine,
somatostatin, Ang II or GHRH action (for prolactin or
GH secretion) were analyzed by one-way ANOVA. If F
was significant, individual means were compared by
Tukey’s honest significant difference or Fisher’s protected
least significant difference tests. The effect of DHEA
pretreament on cAMP generation induced by forskolin or
GHRH was analyzed by two-way ANOVA. For cell
cultures, five rats were used in each experiment, and
quadruplicate wells were used for each stimulus. Experi-
ments were repeated four times. In calcium experiments,
anterior pituitaries from five rats were pooled for each
experiment, and experiments were repeated 6—7 times.
Areas under the curve of the plateau response (9—11 min)
and peak [Ca®']; responses were compared by paired
t-tests. P<0-05 was considered significant.

Results

Effect of DHEA and its metabolites on prolactin and GH
release from anterior pituitary cells in vitro

Pituitary cells were treated for 48 h with DHEA (1 X 10 ™,
10~ %and 10 =7 M), OH-DHEA (1 X 10 =7 M) or ADIOL
(1x10~7M). OH-DHEA decreased basal prolactin re-
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Figure 1 Effect of DHEA and its metabolltes on prolactin (PRL) (A)
and GH secretion (B) in dispersed pituitary cells from female rats
in diestrus. For this and following figures, DH7: 1x 10~ 7 M
DHEA, DH6: 1x 10~ M DHEA, DH5: 1x 10~ ° M DHEA,
OH-DH: 1x10~7 M OH-DHEA, ADIOL: 1x 10~ "M
androstenediol. Results are expressed in ng/ml. * P<0-05 vs
control. n=7.

lease (P=0-045) (Fig. 1), and there was no significant
effect for the rest of the steroids at the concentrations tested
on basal prolactin or GH release.

Effect of DHEA and its metabolites on Ang II-induced
prolactin increase in anterior pituitary cells in vitro

At a concentration of 1x10~®M, Ang II did not
induce a significant increase in prolactin released to the
medium. But DHEA (1 X 10~ M) pretreatment for 48 h
significantly increased the effect of Ang II on prolactin
secretion (DHEA 1X10~>M+Ang Il and DHEA
1x107~° M+Ang II vs Ang II: P=0-018 and P=0-066)
(Fig. 2A). DHEA alone did not modify prolactin secretion
(in ng/ml £ sE: 1229 £ 63, 1248 & 115, 1011 £ 63 and
1266 + 64 for 110>, 10~ ®and 10~ "M DHEA and
control, respectively). In anterior pituitary buffer-treated
cells, 110~ ®* M Ang II induced a biphasic response of
[Ca®"]; (Fig. 2B). It consisted of a 2—6-s delay, followed
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Figure 2 (A) Effect of DHEA on angiotensin Il (All, T x 10~ 8 M)-induced prolactin (PRL)
release. *P<0-05 vs control. n=6. (B) [Ca®"]; (%) in cells pretreated with buffer (thin line),
1% 10~ °M DHEA or (C) 1x 10~ ° M DHEA (thick lines) for 8 min and then challenged

with 1x 108 M All (arrow). n=7. Basal [Ca®"]; was considered as the average of [Ca

20 s before the All stimulus.

after 144+2 s by a peak increase of 20% (rise from
184 £ 14 to a peak of 219 £ 15 nM), and a subsequent
decay to levels slightly higher than resting levels at
45 +3 s (plateau phase). DHEA pretreatment at the
concentrations of 1x107> and 1x10~°M did not
modify the spike phase [Ca®"]; increment induced by
1x107®M Ang II (Fig. 2B and C) (P=0-59 and 0-42
respectively). The plateau phase of [Ca®"]; in response to
1x10~ % M Ang II (measured as the area under the curve
from 9 to 11 min) was not significantly higher in 1 x 10~ >
or 1 x10~ ° M DHEA-pretreated cells (P=0-42 and 0-85
respectively).

Effect of DHEA and its metabolites on dopamine-induced
prolactin inhibition in anterior pituitary cells in vitro

Incubation with dopamine (1 X 10~ ® M) for 3 h signifi-
cantly inhibited prolactin release from anterior pituitary
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cells, but if cells were pretreated for 48 h with DHEA
(110~ ?), the effect was reduced (DHEA 10~ > M plus
dopamine vs dopamine=504 + 89 and 157 &+ 42 ng/ml;
P=0-012) (Fig. 3). No significant effect on prolactin
inhibition evoked by dopamine was evidenced for ADIOL
or OH-DHEA. On the other hand, DHEA by itself
(1x107°, 10~ ° and 107" M) did not modify basal
prolactin secretion (see Fig. 1, control data).

Effect of DHEA and its metabolites on GHRH-induced GH
release in anterior pituitary cells in vitro

GHRH (1 10~ ® M) increased GH release in vitro (con-
trol: 654 £ 48, GHRH: 1452 £ 94 ng/ml; P=0-000 13),
and DHEA pretreatment for 48 h augmented the effect
of GHRH (DHEA 107°M plus GHRH and DHEA
107°M plus GHRH vs GHRH; P=0-00020 and
0-000 63 respectively) (Fig. 4). OH DHEA and ADIOL
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Figure 3 Effect of DHEA and its metabolites on dopamine (DA,
1% 10~ ® M)-induced inhibition on prolactin (PRL) secretion.
*P<0-05 vs control. a: P<0-05 vs DA. n=4(OH: 1x10~7M
OH-DHEA).

had no effect on GH release induced by GHRH. On the
other hand, DHEA by itself (1 X 1075 107° and
10~ 7 M) did not modify basal GH secretion (see Fig. 1,
control data).

Effect of DHEA on GHRH-induced increase in [Ca®™ i in
freshly dispersed anterior pituitary cells

When GHRH (1 X 10 ™ M) was applied to pituitary cells,
there was an increment in [Ca®"],, and levels remained
elevated for at least 3 min (Fig. 5). If cells were pretreated
for 7min with 1X 10~ >M DHEA, this increase was

< QK\Q;@Y\Q;@%\QZ&Y\XO%\O@@XC; qx\x%

Figure 4 Effect of DHEA and its metabolites on GHRH
(1x10 8 M)-induced GH release. *P<0-05 vs control. a:
P<0-05 vs GHRH. n=7(OH: 1 x 10~ 7 M OH-DHEA).
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Figure 5 [Ca®"]; in cells pretreated with 1x 10~ > M DHEA (thick
line) or buffer (thin line) for 8 min and then challenged with

1x 10~ %M GHRH (first arrow). Second arrow corresponds to
25 mM KCl at 12 min. n=6. Results are expressed as percent
increase of [Ca”"]; over basal levels (basal levels were considered
as the average of [Ca®*]; 20 s before the GHRH stimulus).

blocked (P=0-0013). The effect of 25 mM K -induced
increase in [Ca®']; was not modified by the DHEA
pretreatment.

Effect of DHEA on GHRH-induced intracellular cAMP
production in anterior pituitary cells in vitro

DHEA pretreatment for 48 h augmented the effect of
GHRH (1x10~® M) on cAMP production (P inter-
action=0-0015 — DHEA 10" °>M plus GHRH and
DHEA 10~ °M plus GHRH vs GHRH; P=0-048 and
0-0031 respectively) (Fig. 6A). DHEA had no effect on
basal cAMP levels. On the other hand, DHEA pretreat-
ment did not modify forskolin-induced cAMP generation
(P interaction=0-19, effect of forskolin; P=0-000 21) (Fig.
6B).

Effect of DHEA and its metabolites on somatostatin-induced
GH and prolactin inhibition in anterior pituitary cells in vitro

DHEA pretreatment at the concentrations of 1 X 107>
and 1 X 10 ~® M reduced the inhibitory effect of somato-
statin (1 X 10~ ® M) on GH release (DHEA 10~ > M plus
somatostatin and DHEA 10~ °M plus somatostatin vs
somatostatin; P=0-037 and 0-037 respectively) (Fig. 7A).
On the other hand, the adrenal steroid had no effect on
somatostatin inhibition of prolactin secretion (Fig. 7B).

Discussion

DHEA and DHEA-sulphate (DHEA-S), synthesized
by the adrenal gland, are the most abundant steroids
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Figure 6 (A) Effect of DHEA (DH6: 1 X 10~ ° M DHEA, DH5:

1x 10~ > M DHEA) on GHRH (1 % 10~ M)-induced intracellular
cAMP production expressed in percentage (100% corresponds to
buffer-treated cells (Control). *P<0-05 vs control. a: P<0-05 vs
GHRH. n=7. (B) Effect of DHEA on forskolin (FK, 1x 107
M)-induced cAMP generation.

circulating in the human blood. In rats, plasma DHEA
concentrations are lower, but this animal model has been
used to study the effects of DHEA treatment on various
disorders (for reviews, see Svec & Porter 1998; Hinson &
Raven 1999). Recently, there has been a strong resur-
gence of interest in DHEA because of its suggested
antitumoral and antiaging effects, even though its biologic
action is still controversial and not clearly defined. In
particular, we were interested in evaluating the effect of
DHEA at the pituitary level.

DHEA exerts its action in peripheral target tissues either
indirectly, after its conversion to androgens, estrogens or
both, or directly as a neurosteroid, via interaction with
neurotransmitter receptors in the brain. Therefore, it is
conceivable that DHEA may modify pituitary function, as
neurotransmitters can modify neurohormone or hormone

Journal of Endocrinology (2005) 185, 165-172

(A)
800

600 - a a

400 -

GH (ng/ml)

200

Control ST DH5+ST DH6+ST DH7+ST

(B)
2000

1500 -

1000 -

PRL (ng/ml)

500

DH5+ST DHG+ST DH7+ST

Control ST

Figure 7 Effect of DHEA on somatostatin (ST, 1% 10~ ®)-induced
inhibition of (A) GH and (B) prolactin (PRL) release. *P<0-05 vs
control. a: P<0-05 vs ST. n=7.

release, acting at the hypothalamus or the pituitary, and
both structures are target tissues for steroids. From a
physiologic/developmental point of view, plasma DHEA
levels in both genders are very low in the infantile period,
increase rapidly at puberty, and thereafter decrease
linearly and age-dependently, low levels being found in
senescence.

In a previous work we showed that in pituitary hyper-
plasia induced by estrogen in female rats, DHEA had
several endocrine and metabolic effects, which depended
mainly on the endocrine environment (Suarez ef al. 2002).
We found that DHEA enhanced serum prolactin in rats in
diestrus, though it partially reversed estrogen-induced
hyperprolactinemia. Consequently, DES-induced pitu-
itary enlargement was reduced by cotreatment with
DHEA, but DHEA by itself slightly increased pituitary
weight. The fact that in the presence of high estrogen
levels the action of DHEA could be reversed may indicate
that the endocrine environment conditions the effect of
the adrenal steroid. In accordance, the present results
showed that the effect of DHEA in vitro was different
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depending on the presence or absence of an inhibitory
tone (dopamine). In vitro, DHEA partially reduced the
inhibition of prolactin secretion induced by dopamine.
And in the absence of dopamine, it did not modify
prolactin release in vitro, even though one of its
metabolites, OH-DHEA, inhibited prolactin secretion.

Numerous observations indicate that Ang II can con-
tribute to the physiologic regulation of prolactin secretion
(Freeman et al. 2000), and that it releases prolactin both
in vivo and in vitro (Diaz-Torga et al. 1994, 1998).
Angiotensin II receptors, which mediate prolactin secre-
tion (AT1), belong to the family of G protein-coupled
receptors. In the rat pituitary, most AT1 receptors are
located on lactotropes (Moreau ef al. 1997), and their
activation is coupled to a G,y protein which increases
phospholipase C-f activity, resulting in inositol 1,4,5-
triphosphate and diacylglycerol (DAG) formation, fol-
lowed by a biphasic increase in [Ca®"]; (Sudrez et al. 2003).
In the present experiments the effect of Ang II on
prolactin secretion was enhanced by previous treatment
with DHEA, even though Ca®"; mobilization was not
modified, suggesting that a different intracellular messen-
ger was mediating its action. It has been shown that
pituitary sensitivity to Ang II stimulation is modulated by
steroid hormones and is related to the gender of the animal
(Diaz-Torga et al. 1998, Lachowicz & Rebas 2002).

In experiments in rats in vivo we had observed that
DHEA increased serum GH levels (Sudrez et al. 2002).
Furthermore, it has also been reported that serum DHEA
levels correlate positively with GH and IGF-I levels in
nonobese women with functional hyperandrogenism
(Legan et al. 2002), in pubertal development, and in aging
(Shealy 1995, Kroboth et al. 1999). DHEA replacement in
old healthy people as well as in patients with primary
adrenal insufficiency produced an increase in serum IGF-I
(Arlt ef al. 1999). It was therefore of interest to study the
interaction of DHEA with GHRH- and somatostatin-
induced secretion of GH at the pituitary level.

Our results proved that DHEA did not modify basal GH
secretion, but did enhance the GH-releasing effect of
GHRH. It has been shown that GHRH action on GH
secretion is mediated by a host of intracellular, second-
messenger systems including, among others, cAMP pro-
duction and Ca®", mobilization (Miiller ef al. 1999).
GHRH stimulation of cAMP production is related to the
coupling of the GHRH receptor to a G protein (G,), and
GHR H-induced increase in [Ca”"]; to stimulation of Ca>"
influx through L-type, voltage-operated calcium channels
(Lussier ef al. 1991). We observed that DHEA enhanced
c¢AMP production evoked by GHRH, and not by forsko-
lin, a stimulatory agent of adenylate cyclase, indicating that
this was a GHRH-receptor-specific effect. On the other
hand, DHEA prevented the GHRH-induced increase in
[Ca®"];. These results suggest that the facilitatory action of
DHEA on GHRH-induced GH release is mediated by
cAMP formation, and not by Ca®" influx. Nevertheless,
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other second messengers may also be involved. On the
other hand, DHEA pretreatment reduced the inhibitory
action of somatostatin on GH, and not on prolactin,
secretion. These results could be related to the DHEA-
induced reversal of the inhibitory effect of ether stress on
GH secretion, which we have previously described
(Suarez et al. 2002). From our results, it can be inferred that
DHEA may release GH in vivo by reducing somatotrope
responsiveness to somatostatin, as well as by enhancing
somatotrope sensitivity to GHRH.

We conclude that DHEA in vitro, directly or indirectly
through conversion into metabolites, is able to modulate
the hormonal response of the pituitary to hypothalamic
regulators. It can enhance pituitary prolactin release by a
partial reversal of dopamine inhibition, and by a facilitation
of the Ang II secretory action. On the other hand, DHEA
can also induce GH secretion by reducing the inhibitory
action of somatostatin and by stimulating the GHRH
releasing effect. In vitro effects described herein correlate
well with those observed in vivo. DHEA administration in
excess of normal baseline levels might carry the risk of
promoting sex-hormone-dependent neoplasia (Maggiolini
et al. 1999). In rodents, for example, long-term admin-
istration of DHEA produced uterine enlargement and
precocious ovulation followed by ovulatory failure with
low circulating luteinizing hormone levels (Knudsen ef al.
1975). In addition to its potential hormonal side effects, it
has been reported that DHEA can produce hepatomegaly
(Rao et al. 1992). The results described herein could help
to explain some of the hormonal side effects observed in
prolonged DHEA in vivo treatments and should be taken
into account when considering its use in human clinical
trials.
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