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Abstract

Evolutionary-rate variation among sites within proteins depends on functional and biophysical 

properties that constrain protein evolution. It is generally accepted that proteins must be able to 

fold stably in order to function. However, the relationship between stability constraints and 

among-sites rate variation is not well understood. Here, we present a biophysical model that links 

the thermodynamic stability changes due to mutations at sites in proteins (ΔΔG) to the rate at 

which mutations accumulate at those sites over evolutionary time. We find that such a “stability 

model” generally performs well, displaying correlations between predicted and empirically 

observed rates of up to 0.75 for some proteins. We further find that our model has comparable 

predictive power as does an alternative, recently proposed “stress model” that explains 

evolutionary-rate variation among sites in terms of the excess energy needed for mutants to adopt 

the correct active structure (ΔΔG*). The two models make distinct predictions, though, and for 

some proteins the stability model outperforms the stress model and vice versa. We conclude that 

both stability and stress constrain site-specific sequence evolution in proteins.
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1. Introduction

The evolution of protein-coding genes is shaped by functional and biophysical constraints 

on the expressed proteins (Pal et al. 2006, Thorne 2007, Worth et al. 2009, Wilke & 

Drummond 2010, Grahnen et al. 2011, Liberles et al. 2012). These constraints create 

patterns of rate variation among and within proteins. Among proteins, the primary 

determinant of rate variation is gene expression level (Drummond & Wilke 2008), though 

many other factors have been identified that also contribute to rate variation (Lemos et al. 

2005, Xia et al. 2009, Liao et al. 2010, Pang et al. 2010). Within proteins, the primary 

determinants of rate variation seem to be linked to geometrical properties of the folded 

protein, in particular the Relative Solvent Accessibility (RSA) (Bustamante et al. 2000, 

Dean et al. 2002, Franzosa & Xia 2009, Ramsey et al. 2011, Shahmoradi et al. 2014) and the 

Local Packing Density (LPD) (Liao et al. 2005, Franzosa & Xia 2009, Yeh et al. 2014a, Yeh 

et al. 2014b) of sites in the three-dimensional protein structure.
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To develop a mechanistic understanding of the causes that link geometrical properties, such 

as RSA and LPD, with site-specific rates of evolution, we need to develop explicit models of 

protein evolution. For example, recently a mechanistic “stress model” was proposed to 

explain the LPD–rate relationship (Huang et al. 2014). According to this stress model, LPD 

is a proxy of the stress energy ΔΔG*, a thermodynamic quantity that is a measure of the 

excess free energy needed for a folded mutant protein to adopt the correct active 

conformation. The stress model considers the effect of the stress free energy difference 

ΔΔG* but not that of possible mutational changes on global stability ΔΔG. However, most 

proteins will function properly if they have folded stably into the correct conformation. To 

what extent stability constraints shape site-specific sequence evolution is not known.

Recent work has shown that describing protein evolution from the perspective of 

thermodynamic stability provides a wealth of insight into important aspects of protein 

evolution, such as the evolution of mutational robustness (Bloom et al. 2007), the origin of 

epistatic interactions (Bershtein et al. 2006, Gong et al. 2013), lethal mutagenesis (Chen & 

Shakhnovich 2009), determinants of evolutionary rate at protein level (Drummond & Wilke 

2008, Serohijos et al. 2012), the evolution of novel function (Bloom et al. 2006, Tokuriki et 

al. 2008), and the expected equilibrium distributions of stability and the explanation of 

marginal stability (Taverna & Goldstein 2002, Goldstein 2011, Wylie & Shakhnovich 

2011). Moreover, some studies suggest that ΔΔG-based models are useful to study site-

specific constraints. For example, Bloom & Glassman (2009) have shown that changes in 

stability upon mutation (ΔΔG values) are intimately linked to the patterns of amino-acid 

substitutions observed over evolutionary divergence, to the extent that ΔΔG values can 

actually be inferred with accuracy comparable to state-of-the art structure-based methods 

solely from an alignment of diverged protein sequences. More recently, Arenas et al. (2013) 

have used stability-based models to predict site-specific amino acid distributions. Despite 

the recognized importance offolding stability, stability-based models have not been used to 

predict the variation of evolutionary rates among sites.

Here, we investigate the relationship between mutational changes of stability and the site-

dependency of rates of substitution. Following Bloom & Glassman (2009), we derived a 

neutral “stability model” of evolution which relates the ΔΔGs due to mutations at a site with 

the site’s rate of substitution. For a diverse set of more than 200 enzymes, we compare the 

predicted rates with empirical rates (inferred from multiple sequence alignments) and with 

predictions of the stress model. The ΔΔG-based and ΔΔG*-based predictions have on 

average similar correlations with empirical rates. However, the two models make significant 

independent contributions, which suggests that both stability and stress mould sequence 

divergence.

2. Stability Model: ΔΔG-based rates

Our stability model is based on earlier work by Bloom and coworkers (Bloom & Glassman 

2009, Bloom et al. 2005). The core idea of Bloom’s model is that there is a stability 

threshold ΔGthreshold such that all proteins more stable than the threshold are neutral (i.e. 

have all the same fitness) whereas all proteins less stable than the threshold are inviable 
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(have fitness = 0). Thus, if ΔG is the stability of a protein, then its fitness f(ΔG) is assumed 

to be:

(1)

It is convenient to define

(2)

so that

(3)

We further assume that the mutational effect on stability of a mutation i → j at site k is 

independent of the sequence background. We refer to this stability change as . 

Because of the assumption of sequence independence, the stability difference between two 

sequences can be written as

(4)

where i1, i2, … and j1, j2, … represent the amino acids of the two sequences, respectively. 

While this assumption cannot strictly be true, in practice it has worked well in several 

applications (e.g. Bloom et al. 2005, Bloom & Glassman 2009). The assumption is further 

supported by the observation that mutational effects on stability are frequently additive 

(Wells 1990, Serrano et al. 1993, Zhang et al. 1995) and tend to be conserved during 

evolution (Ashenberg et al. 2013).

Next we describe the evolutionary process. Throughout this work, we assume that the 

product of the protein-wide mutation rate μ and the effective population size Ne is small, μNe 

≪ 1. As a consequence, our populations are monomorphic, and we only have to track the 

evolution of a single representative sequence over time. We further assume that at most a 

single mutation arises at each time step.

The probability that a substitution i → j occurs at site k in a single time step, , can be 

written as the product of the probability that the mutation i → j occurs, Mij, and the 

probability it goes to fixation

(5)

Here, we have assumed that all sites experience the same mutational process, so that Mij 

does not depend on k. Note that Mij scales with the effective population size Ne, since all 

sequences in the population may mutate in one time step, and pfix scales with 1/Ne, because 
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we are modeling the case of neutral evolution (Eq. 3). Thus Ne cancels, and we can set it 

equal to 1 without loss of generality.

Under the assumption of neutral evolution, the fixation probability is either one or zero, 

depending on whether the mutation keeps the extra stability in the negative or not. Because 

we have previously assumed that stability effects are independent of the sequence 

background (Eq. 4), they are fully specified by i, j, and k. (In other words, a mutation from i 

to j at site k always has the same stability effect .) However, the extra stability after 

the mutation, , depends on the sequence background through the value of 

ΔGextra before the mutation. From Eq. 3 we find the conditional fixation probability

(6)

If , then the mutated protein is viable, and hence it fixes with 

probability 1. (Recall that we set Ne = 1.) By contrast, if , then the 

mutated protein is not viable and will not fix.

To proceed, we could write down a Markov process that keeps track of the extra stability at 

all time points (Bloom et al. 2007, Raval 2007). Instead, here we employ the “mean field” 

approximation of Bloom & Glassman (2009), in which we assume that ΔGextra before 

mutation is drawn randomly from the steady-state distribution of ΔGextra values, p0(ΔGextra), 

so that we can write the unconditional fixation probability as

(7)

For p0(ΔGextra), Bloom & Glassman (2009) make the ansatz that it has an exponential 

probability-density function p0(ΔGextra):

(8)

where α > 0 is a free parameter. This form cannot be derived from first principles, but it is 

justified by visual inspection of the probability density functions obtained under simulations 

(Bloom et al. 2007) (but see Wylie & Shakhnovich 2011).

Inserting Eq. 6 and Eq. 8 into Eq. 7, we obtain

(9)

After taking the integral, we find
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(10)

The stability model is completely specified by Eq. 5 and Eq. 10.

Next we consider the calculation of site-specific substitution rates. The substitution process 

at site k is described by a rate matrix Qk with elements

(11)

The stationary distribution  of the substitution process is given by the left null eigenvector 

of Qk, normalized such that . The rate of substitution at site k, , follows as

(12)

The subscript “stability” emphasizes that this rate estimate is calculated using the stability 

model.

In the case of symmetric mutations, Mji = Mij, the equilibrium frequencies can be expressed 

as

(13)

where  is the stability change relative to an arbitrarily chosen reference amino acid at 

site k. In the limit of unbiased mutations, Mij = const for i ≠ j, the rate can be simplified to

(14)

Here,  represents the rank order of , from largest to smallest. (The advantage of 

using Eq. 14 instead of Eq. 12 is that the latter contains a double-sum and hence is slower to 

evaluate.)

3. The Stress Model: ΔΔG*-based rates

The stability model is based on the assumption that fitness depends on whether the protein is 

stable enough to fold, so that the probability of fixation of a mutation will depend on the 

difference of folding free energy between the mutant and the wild-type, each in their 

respective equilibrium conformations. A different mechanistic model, the“stress model,” 

was recently derived based on the idea that, to be viable, a mutant must not only be stable, it 

must also be able to adopt a correct active conformation (Huang et al. 2014). Following this 

idea, the fixation probability of a mutant was modeled as the mutant’s probability of 
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adopting the active conformation. According to this model, the rate of substitution for site k 

is

(15)

where ΔΔG* = ΔGmutant(ractive) − ΔGwt(ractive) is the free energy difference between mutant 

and wild-type when both adopt the active conformation and 〈ΔΔG*〉k is its average over 

random mutations at site k. Since in general the active conformation will not necessarily be 

the relaxed equilibrium conformation, ΔΔG* represents the energy needed to stress the 

protein into adopting the right active conformation.

Further assuming that the active conformation is the wild type’s equilibrium conformation 

and approximating the free energy landscape using the parameter-free Anisotropic Network 

Model of Yang et al. (2009), it can be shown that 〈ΔΔG〉k ∝ WCNk, where 

 is the Weighted Contact Number introduced by Lin et al. (2008) and 

found to be among the best structural predictors of site-dependent evolutionary rates (Yeh et 

al. 2014a, Yeh et al. 2014b). Because of the proportionality between WCNk and 〈ΔΔG*〉k, 

we can also write Eq. 15 as

(16)

In practice, we obtain rates  by calculating the WCNk for each site k in a protein 

structure, fitting the linear expression a + b̃ WCNk to a set of empirically estimated rates, 

and then using Eq. 16 to calculate a predicted rate at each site.

It is worthwhile to keep in mind that while the stability model takes into account whether the 

mutant is able to fold, the stress model takes into account the probability that the mutant 

adopts the right conformation. In principle both factors can affect fitness independently and 

therefore may both have an influence on substitution rates. If this is the case, both models 

are incomplete: the stability model does not consider the effect of possible conformational 

changes as long as the mutant is stable and the stress model takes stability for granted and 

considers only the destabilzation of the active structure.

4. Comparing the theoretical models with empirical data

4.1. Data set and calculation of empirical and predicted evolutionary rates

We tested our theory on the data set of Huang et al. (2014), which consists of 213 

monomeric enzymes of known structure covering diverse structural and functional classes. 

Each structure is accompanied by up to 300 homologous sequences. In our analysis, we 

omitted four structures (1bbs, 1bs0, 1din, 1hpl) that had missing data at insertion sites. We 

aligned the homologous sequences for each structure with MAFFT (Multiple Alignment 

using Fast Fourier Transform) (Katoh et al. 2005, Katoh & Standley 2013). Using the 

resulting alignments as input, we inferred Maximum Likelihood phylogenetic trees with 

RAxML (Randomized Axelerated Maximum Likelihood), using the LG substitution matrix 

(named after Le and Gacuel) and the CAT model of rate heterogeneity (Stamatakis 2014).
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For each structure, we then used the respective sequence alignment and phylogenetic tree to 

infer site-specific substitution rates with Rate4Site, using the empirical Bayesian method 

and the amino-acid Jukes-Cantor mutational model (aaJC) (Mayrose et al. 2004). The aaJC 

model poses equal probabilities for all amino-acid mutations, so that it is consistent with the 

theory presented in Section 2 and with the assumption of modeling amino-acid mutations as 

completely random perturbations made in the derivation of the stress model (Huang et al. 

2014). Site-specific relative rates were obtained by dividing site-specific rates by their 

average over all sites of the protein, so that the mean relative rate of all sites in a protein was 

1. In the following, we will refer to the rates inferred by Rate4Site as empirical rates, and 

will denote them by KR4S. We will refer to the rates calculated according to the stability 

model (Kstability) or the stress model (Kstress) as predicted rates. If necessary, we will 

distinguish between the predictions of the stability and stress model using the terms ΔΔG-

predicted rates and ΔΔG*-predicted rates, respectively.

We calculated ΔΔG values with the program FoldX, following the default protocol (Guerois 

et al. 2002, Schymkowitz et al. 2005). Specifically, we first optimized the energy for each 

structure, using the RepairPDB method. We then calculated a  value for all possible 

19 amino-acid substitutions at all sites in all proteins, using the PositionScan method, and 

considering the amino acid present in the PDB structure at each site as the reference amino 

acid at that site.

Rates predicted by the stability model were obtained using Eq. 13 and Eq. 14 either with α = 

1 or with α chosen specifically for each protein. To determine the appropriate scale factor α 

for each protein, we maximized the correlation coefficient between the predicted site-

specific rates as given by Eqs. 13 and 14 and the empirical site-specific rates as calculated 

by Rate4Site. To calculate the rates predicted by the stress model, we performed a linear fit 

between the site-dependent KR4S and WCN for each protein, and then used Eq. 16 to 

calculate Kstress at each site.

All statistical analysis was carried out with R (R Core Team 2014). To fit the stability model 

to the data, we used the built-in function optimize() with default parameter settings. To fit 

the stress model to the data, we used the built-in function lm(). Correlation coefficients 

between predicted and empirical rates were calculated using cor() and partial correlations 

were obtained using the function pcor.test() of package ppcor.

All data and analysis scripts necessary to reproduce this work are available at: https://

github.com/wilkelab/therm_constraints_rate_variation/.

4.2. Relationship between empirical and predicted evolutionary rates

We found that rates predicted by the stability model correlate significantly with the 

empirical rates. Correlation coefficients ranged between 0.25 and 0.75, with a median of 

0.57 (Figure 1A). Scale values α fell between 0.52 and 2.63, with a median of 1.19. We 

further found that correlation coefficients and scale values were not correlated (r = 0.05, P = 

0.47). To determine to what extent optimizing α for each protein affected the resulting 

correlation coefficients, we also calculated correlation coefficients with α = 1 for all 
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proteins. We found that adjusting α made only a small difference, resulting on average in an 

increase in correlation coefficient of 0.007 (Figure 1A).

We next investigated the functional relationship between empirical rates and rates predicted 

by the stability model. We pooled the data from all sites in all 209 proteins and calculated 

the joint distribution of the two rates. We also grouped sites into 20 bins of similar number 

of points using quantile breaks along the predicted rates axis. Figure 2 shows the joint 

distribution as well as the mean empirical rates and the 25% and 75% quantiles for each bin. 

The mean empirical rates fall nearly on top of the x = y line (which represents a perfect fit), 

with only a small amount of curvature around the mean predicted rate. The correlation 

between average empirical and predicted rates is r = 0.995, consistent with a very good 

linear fit. Despite the good fit of avarage rates, there is significant variation around x = y, as 

can be seen from the dispersion of the joint distribution around the x = y line and the error 

bars in Figure 2. The overall square correlation between ΔΔG-predicted rates and empirical 

rates is r2 = 0.31, so that 69% of the variance of empirical rates is not explained by the 

stability model.

Next, we compared the predictions of the stability model with those from the stress model 

(Huang et al. 2014), which describes site-specific evolutionary rates in terms of the 

increased stress that results in the protein’s active conformation due to mutation (ΔΔG*). In 

a protein-by-protein comparison, the stability model is somewhat better (dots above the x = y 

line in Figure 3) for 127 of the 209 proteins, a proportion significantly larger than 50% 

(binomial test: 61%, P = 0.002). When considering all sites together, the two models 

perform comparably. The correlations between empirical and predicted rates for all sites are 

0.56 with ΔΔG-based predictions and 0.55 with ΔΔG*-based predictions. However, even 

though the two models perform comparably on average, there is substantial variation around 

the mean trend (Figure 3). For some proteins, the ΔΔG model clearly outperforms the stress 

model and vice versa. Also, considering all sites, the partial correlations between empirical 

rates and predicted rates for one model controling for the predictions of the other are 0.33 

and 0.31 for the ΔΔG model and the stress model, respectively. These values are large and 

highly significant (P ≪ 10−3), showing that the predictions of the two models are quite 

independent and may be accounting for different constraints.

The relative independence of stress and stability as determinants of site-specific 

evolutionary rates suggests that considering both factors should improve predictions. To 

verify this hypothesis, we fit empirical rates to a linear combination of rates predicted from 

ΔΔG* and ΔΔG. Considering all sites of all proteins, the two-variable model results in a 

square correlation R2 = 0.38, approximately a 23% improvement over R2 = 0.31 of the 

stability model and R2 = 0.30 of the stress model. Both predictors in the two-variable model 

are highly significant (P < 10−15). These results further support the idea that stability and 

stress provide significant independent constraints to evolutionary divergence at site level.

All ΔΔG-based predictions presented above used ΔΔG values calculated by FoldX. It is 

possible that a different ΔΔG predictor would yield substantially different results. In 

particular, even though FoldX is a state-of-the-art ΔΔG predictor its predictions explain only 

25% of the variance in measured ΔΔG values (Potapov et al. 2009, Thiltgen & Goldstein 
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2012), indicating a substantial need for improved ΔΔG prediction methods with higher 

accuracy. Therefore, we also asked to what extent our results depended on the method by 

which we calculated ΔΔG values. We calculated a second set of ΔΔG values, using the ddg 

monomer application in Rosetta (Kellogg et al. 2011). Because this application runs 

approximately 500 times slower than FoldX, we could not run it on all proteins in our data 

set. Instead, we arbitrarily selected five proteins (PDB IDs 1bp2, 1lba, 1ljl, 1pyl, and 2acy) 

as a test case. We found that FoldX performs similarly or better than ddg monomer (Figure 

4). Thus, in our application here, we could not identify any major differences between 

predictions obtained from FoldX and those obtained from Rosetta ddg monomer.

5. Conclusion

We have developed a biophysical model linking stability changes ΔΔG due to mutations at 

individual sites in proteins to site-specific evolutionary rates. This stability model predicts 

site-specific rates in very good agreement with empirical rates. Indeed, the overall 

correlation between empirical rates and ΔΔG-based predictions is similar to the correlation 

with the best structural determinant, the packing density measure WCN, which, according to 

a recent mechanistic stress model, is a measure of the local stress introduced by mutations 

into the active protein structure ΔΔG* (Yeh et al. 2014b, Huang et al. 2014). However, 

despite the similar performance, large partial correlations show that the two factors ΔΔG and 

ΔΔG* result in largely independent predictions. Moreover, there are proteins for which the 

stability model performs significantly better than the stress model, while for other proteins 

the reverse is true. Consistently, a two-variable model that combines stability and stress 

significantly improves predictions. Therefore, both the overall stability ΔΔG and the stress 

ΔΔG* seem to capture distinct thermodynamic constraints on protein evolution.

The stability model presented here is a neutral model in which mutations are either neutral 

or completely deleterius according to whether the mutant’s stability is above a certain 

threshold (Taverna & Goldstein 2002, Bloom et al. 2005, Bloom & Glassman 2009). A 

presumably more sophisticated model is based on posing a continuous dependence between 

fitness and ΔG (Tokuriki & Tawfik 2009, Chen &Shakhnovich 2009, Goldstein 2011, Wylie 

& Shakhnovich 2011). However, even though the continuous fitness models appear to be 

more realistic than the neutral stability-threshold models, in a recent study Arenas et al. 

(2013) found that the neutral model leads to better predictions of site-specific amino-acid 

distributions. This finding provides additional support for our choice of using a neutral 

ΔΔG-based model. In future work, it will be worthwhile to explore the site-dependency of 

substitution rates using continuous fitness-stability models.
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Figure 1. 
Correlations between rates predicted from ΔΔG and rates inferred by Rate4Site. (A) 

Correlation coefficients vs. the fitted, protein-specific scales α. Each dot represents data for 

one protein. There is no relationship between the correlation coefficients and α (r = 0.10, P 

= 0.16). (B) Fitted α values provide only a small benefit over α = 1. Fitting α to each protein 

increases correlation coefficients, on average, by 0.007 (paired t-test, mean difference d̄ = 

0.007, df = 208, P < 10−10).

Echave et al. Page 12

Phys Biol. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
The relationship between rates predicted from ΔΔG and rates inferred by Rate4Site is nearly 

linear. The joint distribution of empirical vs. predicted rates is shown using shaded areas. All 

sites were grouped into 20 bins of approximately equal number of sites using quantile breaks 

on the predicted rate axis. Yellow dots are the mean rates obtained by averaging over sites 

within a bin. Yellow error bars correspond to the 25% and 75% quantiles for each bin. 

Average empirical rates (yellow circles) are very close to the x = y line that corresponds to a 

perfect empirical-predicted fit (the correlation coeffient between mean empirical and 

predicted rates is 0.995). However, there is substantial variation around the mean trend, as 

can be seen from shaded areas and yellow error bars (correlation between non-averaged 

empirical and predicted rates is 0.558).
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Figure 3. 
Correlations between rates inferred by Rate4Site and rates predicted by either the stress 

ΔΔG*-based model (shown along the x axis) or the stability ΔΔG-based model (shown along 

the y axis). The correlation coefficients from the two models are significantly correlated (r = 

0.64, P < 10−10). Correlations have similar magnitudes, with the ΔΔG-based model giving 

slightly better results on average (paired t-test, mean difference d̄ = 0.026, df = 208, P < 

0.001). For 127 of the 209 proteins the stability model gives better correlations while for 82 

of the 207 proteins the stress model gives better results.
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Figure 4. 
Rates predicted using ΔΔG values obtained from FoldX perform as well as or better than the 

ones obtained from the ddg monomer protocol in Rosetta. Shown are the correlation 

coefficients of measured rates with rates predicted using the stability model with FoldX 

ΔΔG values (y axis) vs. Rosetta ΔΔG values (x axis) for five proteins.
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