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Abstract

Aims—In the present study we evaluated the antiviral activity of subtilosin, a cyclical peptide

isolated from Bacillus amyloliquefaciens, against herpes simplex virus type 2 (HSV-2) in cell

cultures and we investigated subtilosin mode of action.

Methods and Results—We determined, using a virus yield inhibition assay, that non cytotoxic

concentrations of subtilosin inhibit HSV-2 replication in Vero cell cultures. Subtilosin strongly

inhibited extracellular and total virus production even when it was added at 8 h post-infection

indicating that not only virus release but also viral particle formation is impeded by the antiviral

peptide. Although viral glycoprotein gD level of expression is not affected by the bacteriocin, an

altered pattern of gD intracellular localization was detected by immunofluorescence assay in

subtilosin treated culture. On the other hand, at high concentrations subtilosin displays virucidal

action.

Conclusions—Subtilosin displays antiviral and virucidal actions against HSV-2. The target of

subtilosin inhibitory effect would be late stages of the viral replicative cycle such as viral

glycoprotein intracellular transport.
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Introduction

Subtilosin, a ribosomally-synthesized 3.4-kDa cyclical peptide (Marx et al., 2001) produced

by both Bacillus subtilis (Babasaki et al. 1985) and Bacillus amyloliquefaciens (Sutyak et al.

2008a), is a bacteriocin that has the potential for applications in contraception and

reproductive health due to its unique properties, such as natural origin, biodegradability,

antimicrobial properties, lack of immunogenicity, overall safety, ease of production and

formulation (Sutyak et al. 2008b; Noll et al. 2012; Turovskiy et al. 2012; van Kuijk et al.

2012). Previous studies have demonstrated that subtilosin reduces sperm motility in vitro in

a dose dependent fashion (Sutyak et al. 2008b). This compound also displays antimicrobial

activity against the foodborne pathogen Listeria monocytogenes Scott A (van Kuijk et al.

2012) and against bacterial vaginosis-associated pathogen Gardnerella vaginalis, including

their antibiotic-resistant forms (Noll et al. 2012; Turovskiy et al. 2012).

Herpes simplex virus types 1 and 2 (HSV-1 and HSV-2) are human viral pathogens that

cause serious clinical diseases comprising genital ulcerations, corneal blindness, cold sores

and encephalitis. Patients with immune deficiencies have an increased risk of developing

severe HSV infection and vertical transmission of HSV-1 or HSV-2 to the newborn can

cause fatal neonatal encephalitis (Chentoufi and Benmohamed 2012). Over 530 million

people worldwide are infected with HSV-2, which can cause recurrent and painful genital

lesions, being recurrent genital herpes, the most prevalent sexually transmitted disease

(STD) (Fife et al. 2008; Chentoufi and Benmohamed 2012). On the other hand,

epidemiologic studies suggest there is synergy between HSV-2 and human

immunodeficiency virus type 1 (HIV-1); HSV-2 reactivation increases HIV-1 concentrations

in plasma and genital secretions whereas co-infection with HIV-1 would increase HSV-2

transmission risk (Freeman et al. 2006; Thurman and Doncel 2012; Des Jarlais et al. 2014).

The first antiviral chemotherapy for the management of herpetic infections was treatment

with acyclovir (ACV), an analogue of the natural nucleoside guanosine. The triphosphate

form of this analogue selectively inhibits the viral DNA polymerase activity thus inhibiting

viral replication. Drug-resistant HSV isolates are frequently found in-vitro and in

immunocompromised patients (Choong et al. 2010; van Velzen et al. 2012). Foscarnet

(FOS), a pyrophosphate analogue, is often administered in ACV resistant HSV infections.

Nevertheless, its use is reserved to patients where other drugs fail due to its high toxicity and

low bioavailability (Chilukuri and Rosen 2003). Furthermore, it has been shown that

antiviral treatment of herpetic infection fails to completely prevent HSV and HIV

transmission (Johnston et al. 2012). Considering that even in treated patients the infection

persists during the lifetime of the host (Efstathiou and Preston 2005), the lack of an effective

vaccine (Belshe et al. 2012) and the reported emergence of HSV resistant mutants, there is a

need to develop new antiherpetic compounds with different mechanisms of action.

Interestingly, in a previous study we reported that subtilosin affects HSV-1 infectivity by

two mechanisms: the bacteriocin acts as a virucidal agent and as an inhibitor of HSV-1

multiplication in cell cultures (Torres et al. 2013). In addition to its antimicrobial properties,

subtilosin does not harm vaginal tissues, and does not interfere with the healthy vaginal

lactobacilli (Sutyak et al. 2008b; Noll et al. 2012; Torres et al. 2013). Therefore, subtilosin
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is a promising non-toxic spermicide and has concomitant antimicrobial properties that may

promote healthy vaginal microbiota. In the present study we examined the susceptibility of

HSV-2 to subtilosin treatment in cell cultures and explored subtilosin mode of action.

Materials and Methods

Compounds

Subtilosin was purified from cultures of Bacillus amyloliquefaciens KATMIRA1933, as

previously described by Sutyak et al. (Sutyak et al. 2008a). Essentially, the overnight

culture’s supernatant was filter-sterilized (0.45 μm filter, Millipore, Billerica, MA, USA),

concentrated using 30% ammonium sulfate, re-suspended in water and fractionated using

Sep-Pak® Light C18 cartridges (Waters, Milford, MA, USA). The sample was subjected to

the step-gradient Tricin-SDS PAGE (Bio-Rad, Hercules, CA, USA) and silver-stain

visualized as a single band. In the overlay test with the bacteriocin-sensitive reference strain

of Micrococcus luteus this PAGE protein band produced a single zone of inhibition (data not

shown). Subtilosin was diluted with maintenance medium (MM) consisting of minimum

essential medium (MEM) (Gibco, Carlsbad, CA, USA) with 2% inactivated fetal bovine

serum and 50µg/mL of gentamycin.

Cells and viruses

African green monkey kidney (Vero) cells were grown as monolayers in MEM

supplemented with 5% inactivated fetal bovine serum and 50µg/mL of gentamycin. HSV-2

strain G was obtained from the American Type Culture Collection (Rockville, MD, USA).

Virus stock was prepared in Vero cells.

Cell cytotoxicity assay

To assess the effect of subtilosin on cell viability, confluent monolayers of Vero cells grown

in 96-well culture plates, were incubated with different concentrations of subtilosin for 48 h

at 37°C. Then, cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl

tetrazolium bromide (MTT, Sigma-Aldrich, St. Louis, MO) procedure (Denizot and Lang

1986). Cytotoxicity was expressed as the 50% cytotoxic concentration (CC50) which is the

concentration of subtilosin that reduced cell viability by 50% with respect to the cellular

control.

Virus yield inhibition assay

Antiviral activity was evaluated by a virus yield inhibition assay. To this end, Vero cells,

grown in 24-well culture plates, were infected with HSV-2 at a multiplicity of infection

(m.o.i.) of 1 PFU/cell. After 1 h of adsorption at 37°C, virus inoculum was discarded and

cells were covered with MM (control) or MM containing serial dilutions of subtilosin. After

24 h of incubation at 37°C, the supernatants were harvested and extracellular virus yields

were determined by a plaque formation assay. The antiviral activity was expressed as the

50% effective concentration (EC50), i.e. the compound concentration of subtilosin required

to reduce virus yield by 50% compared to the untreated infected culture. The selectivity

index (SI) was calculated as the ratio between CC50 and EC50 values.
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Virucidal assay

To assay virucidal activity of the bacteriocin, HSV-2 was incubated with subtilosin at

concentrations ranging from 25 to 200μg/mL or MM for 90 min at 37°C. After the

incubation period, aliquots were conveniently diluted in MM and remaining infectivity was

determined by plaque assay on Vero cells.

Time of addition experiment

Subtilosin (50μg/mL) was added to Vero cells, either during 6 h before the infection with

HSV-2 (m.o.i.=1) or at 1, 3, 5 or 8 h post-infection (p.i.) Cultures were incubated up to 24 h

p.i. and at that time supernatants were harvested to assess extracellular virus titer. Another

set of identically infected-treated cultures were subjected to two freeze-thaw cycles,

followed by low-speed centrifugation in order to quantify total (extracellular and

intracellular) viral infectivity. Virus titers were determined by plaque formation assay.

Indirect immunofluorescence assay

Vero cells grown on glass coverslips were infected with HSV-2 at an m.o.i. of 1 PFU/cell.

After 1 h adsorption at 37°C, cultures were incubated in MM containing or not subtilosin 25,

50 or 100μg/mL and incubated at 37°C for 24 h. After the removal of culture supernatants

cells were washed with cold PBS, fixed with cold methanol (20 min at −20°C) and then

incubated with a mouse monoclonal antibody reactive against gD viral glycoprotein (Santa

Cruz Biotechnology Inc., Santa Cruz, CA, USA) for 45 min at 37°C. The indirect staining

was carried out by using goat anti-mouse immunoglobulins conjugated to FITC (Sigma

Aldrich, St. Louis, MO, USA). Fluorescent cells were photographed with a Zeiss

microscope with epifluorescence optics.

Western blot assay

Vero cells were infected with HSV-2 (moi=1) and after virus adsorption cells were

incubated in MM containing or not subtilosin 25, 50 or 100μg/mL and incubated at 37°C for

24 h. Then cells were lysed and samples were subjected to SDS-PAGE and transferred to

PVDF membrane (Perkin Elmer Life Sciences, Inc., Waltham, MA, USA) in a dry system

(LKB Multiphor II, Pharmacia, Sweden). Viral glycoprotein gD was revealed using mouse

anti-gD (Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) and GAPDH, used as

loading control, was detected with mouse anti-GAPDH (Abcam, United Kingdom).

Peroxidase-conjugated anti-mouse immunoglobulin G (Promega, Madison, WI, USA) was

used as secondary antibody. The intensities of protein bands, visualized by

chemiluminescence detection, were quantified by using Image J software and the relative

intensity gD/GAPDH was calculated for each sample.

Statistical analysis

The 95 % confidence intervals (CI) of virus titers were calculated according to Poisson

distribution.
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Results

Antiviral activity of subtilosin against HSV-2

First, we evaluated the effect of treatment with different concentrations of subtilosin on

Vero cell viability using the MTT method. The CC50 value of subtilosin in Vero cells was

316.8 µg/mL. Then we performed a virus yield inhibition assay using non-cytotoxic

concentrations of subtilosin. A dose-dependent inhibition of virus yield was observed in

subtilosin treated cultures (Figure 1). At 25μg/mL, subtilosin inhibited virus replication by

almost 90%, whereas at 200μg/mL a reduction over 99.9% in virus titer was achieved

(Figure 1). The EC50 and SI values of subtilosin against HSV-2 were 18.2μg/mL and 17.4,

respectively.

Virucidal action of subtilosin

Taking into account previous studies that showed that at high concentrations subtilosin

display virucidal activity against HSV-1 (Torres et al. 2013), we evaluated the effect of

subtilosin on HSV-2 particles by incubating aliquots of viral stock with different

concentrations of subtilosin during 90 min at 37°C. As can be seen in Fig. 2, at the highest

concentration tested (200μg/mL), subtilosin exhibited a direct inactivating effect on viral

particles since after 90 min of treatment a 99,99% reduction of HSV-2 infectivity was

observed. However, at 100, 50 or 25μg/mL, concentrations that displayed antiviral activity

(Figure 1), subtilosin showed no relevant virucidal effect (Figure 2).

Characterization of subtilosin antiviral activity

To characterize subtilosin inhibitory action against HSV-2, a time of addition experiment

was performed. Vero cells were treated with subtilosin (50μg/mL) for 6 h prior to infection

or at different times after infection. In all cases, extracellular and total virus production was

determined at 24 h p.i. Subtilosin treatment of cells before infection did not affect virus

production indicating that the peptide does not induce an antiviral state on the cell culture.

On the contrary, the presence of subtilosin from 1, 3, 5 or 8 h p.i reduced total virus titer by

approximately 6 log units and the amount of infectious virus released to the extracellular

medium was also strongly inhibited (Figure 3). The same level of reduction in virus

production was observed when subtilosin was added at 1 or 8 h p.i., thus a possible

explanation for these results is that a late stage on the viral replicative cycle would be

blocked by subtilosin.

In order to further investigate which is the step of viral replication affected by subtilosin, we

performed an IF assay to analyze the effect of the bacteriocin on viral protein expression

employing a monoclonal antibody that recognizes gD glycoprotein. We observed that gD

was localized predominately in the perinuclear region of cells treated with subtilosin,

whereas in untreated cells a more diffuse and homogenous pattern of cytoplasmic

fluorescence was detected. Changes in gD intracellular distribution were more evident in

cultures treated with the highest concentration of subtilosin assayed (Figure 4 b). To

determine whether treatment with subtilosin also affects gD production, we performed a

comparative analysis of gD total level of expression between cultures treated with different

concentrations of subtilosin and untreated infected cells. The analysis by western blot shown
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in figure 5 revealed similar gD levels in treated and untreated cells indicating that the

antimicrobial peptide does not impair viral protein synthesis. Altogether these results

suggest that subtilosin would not affect gD production but interferes with gD intracellular

transport therefore affecting formation of mature viral particles.

Discussion

The lifelong HSV-2 infection is the principal cause of genital ulcer disease and it is also a

contributing factor in the increase of acquisition and transmissibility of HIV infection

(Gottlieb et al. 2014; Des Jarlais et al. 2014). In the last years, great efforts have been made

to develop new antiviral molecules effective against HSV including those viral strains that

are resistant to nucleoside analogues (Wald et al. 2014). In a previous work we have

described the ability of subtilosin to inhibit the multiplication of ACV-susceptible and ACV-

resistant strains of HSV-1 (Torres et al. 2013). Here we demonstrate that subtilosin is also

an effective inhibitor of HSV-2 multiplication and we further characterize the antiviral mode

of action of this bacterial peptide.

Although antiviral activity of several antimicrobial peptides isolated from different bacteria

genera has been previously reported (Wachsman et al. 1999, 2003; Serkedjieva et al. 2000;

Todorov et al. 2005, 2010; Saeed et al. 2007; Férir et al. 2013) no virucidal effect was

described for these bacteriocins and up to now much remains unknown about their inhibitory

mechanism of action. CRL5, peptide isolated from Enterococcus faecium, exhibits an

inhibitory effect on HSV-1 late viral protein synthesis (Wachsman et al. 2003) whereas the

lantibiotic peptide Labyrinthopeptin A1 produced by Actinomadura namibiensis blocks an

early after-adsorption step of HIV multiplication (Férir et al. 2013).

Our results show that pre-treatment with subtilosin did not protect cells from infection. This

indicates that subtilosin should be present during viral multiplication to exert its inhibitory

action and also suggests that the bacteriocin does not cause an irreversible effect on host cell

functions. However, the addition of subtilosin after HSV-2 infection strongly inhibited both

extracellular and total virus production, indicating that not only virus release but also viral

particle formation is blocked by bacteriocin treatment. The same level of inhibition was

achieved when subtilosin was added between 1 and 8 h p.i. indicating that early events of

HSV-2 multiplication cycle are not affected by the bacteriocin.

Furthermore, the analysis of the expression of viral glycoprotein gD showed that although

gD production is not affected by the bacteriocin an altered pattern of gD intracellular

localization in subtilosin treated cultures was observed suggesting that subtilosin would

affect gD intracellular transport. Future studies will be necessary to establish the precise

cellular compartment in which gD accumulates after subtilosin treatment. Taking together

these results indicate that the target of subtilosin antiviral action are late stages of virus

replication, thus hindering viral particle formation.

Besides its inhibitory effect and in coincidence with the results obtained with HSV-1 (Torres

et al. 2013), at high concentrations, subtilosin also exhibits virucidal action against HSV-2.

Altogether our results show that subtilosin mode of antiviral action seems to be clearly

Quintana et al. Page 6

J Appl Microbiol. Author manuscript; available in PMC 2015 November 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



different to those previously described for other bacteriocins (Serkedjieva et al. 2000;

Wachsman et al. 2003; Férir et al. 2013).

Control of transmission of STDs includes the use of topically applied microbicides that

inactivate the relevant pathogens, thus virucidal agents provides a good source of developing

new microbicidal formulations. Bacteriocins are attractive natural alternatives to classic

antibiotics and virucidal agents, which could be used for the treatment of bacterial and viral

infections. The ability of subtilosin to inactivate both HSV-1 and HSV-2 particles, together

with its spermicidal activity and safety of subtilosin based nanofibers for use on human skin

tissues (Sutyak et al. 2008b; Torres et al. 2013) makes this peptide a promissory candidate

to be included in new studies concerning the design of nanofiber systems containing a

combination of antimicrobial and anti-inflammatory drugs to be proved in animal models.
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Significance and Impact of Study

Given its antimicrobial activity and its safety for human tissues, subtilosin could

represent a valuable alternative to be considered in the development of new microbicide

formulations.
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Figure 1. Dose-dependent inhibition of HSV-2 multiplication by subtilosin
Vero cells infected with HSV-2 (m.o.i. =1) were incubated with different concentrations of

subtilosin. At 24 h p.i. virus yield was quantified by plaque assay. Data represent mean

values from duplicate determinations ± standard deviation (SD).
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Figure 2. Virucidal activity of subtilosin
HSV-2 suspensions were incubated with different concentrations of subtilosin during 90 min

at 37°C. Remaining infectivity was determined by plaque formation assay. Data represent

mean values from duplicate determinations ± SD.
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Figure 3. Effect of time of addition of subtilosin on HSV-2 production
Vero cells were treated with subtilosin during 6 h previous to infection (−6) or were

incubated with subtilosin from different times after infection (1, 3, 5 or 8 h p.i.). At 24 h p.i.

extracellular (grey bars) and total virus (black bars) production were determined. U =

untreated infected culture. Data are mean values of virus titers from duplicate determinations

± 95% CI.
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Figure 4. Intracellular localization of gD glycoprotein in subtilosin treated cells
Cytoplasmic immunofluorescence staining of HSV-2 infected Vero cells in the absence (a)

or in the presence of 100μg/mL (b), 50μg/mL (c) or 25μg/mL (d) subtilosin. Magnification

400×.
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Figure 5. gD production in subtilosin treated cells
HSV-2 infected Vero cells were treated with different concentrations of subtilosin and at 24

h p.i. the expression of viral protein gD and cellular protein GAPDH, used as loading

control, was assessed by Western blot. The relative intensity of gD band with respect to

GAPDH band for each sample of one representative experiment is shown.
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