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Abstract: Accurate gathering of phenotypic information is a key aspect in several subject matters, including biometrics,
biomedical analysis, forensics, and many other. Automatic identification of anatomical structures of biometric interest, such as
fingerprints, iris patterns, or facial traits, are extensively used in applications like access control and anthropological research, all
having in common the drawback of requiring intrusive means for acquiring the required information. In this regard, the ear
structure has multiple advantages. Not only the ear's biometric markers can be easily captured from the distance with non
intrusive methods, but also they experiment almost no changes over time, and are not influenced by facial expressions. Here we
present a new method based on Geometric Morphometrics and Deep Learning for automatic ear detection and feature
extraction in the form of landmarks. A convolutional neural network was trained with a set of manually landmarked examples.
The network is able to provide morphometric landmarks on ears' images automatically, with a performance that matches human

landmarking. The feasibility of using ear landmarks as feature vectors opens a novel spectrum of biometrics applications.

1 Introduction

Several kinds of data able to capture aspects of the human facial
morphology may provide valuable information in the field of
physical anthropology and biometrics. Facial phenotypes are at the
foundation of studies on the genetic basis of many characters that
recently gathered significant attention, including traits of
biomedical and forensic interest, facial identification, perception
analyses, to mention just a few [1-3]. In particular, ears have
several advantages over other biometric structures such as
fingerprints, iris patterns, or facial recognition [4]. For instance,
they can be easily captured from the distance with non-intrusive
methods. Also, the ear structure has less variation over time and is
not much influenced by changes in facial expressions [5, 6].
However, there are issues such as potential occlusion by hair and
earrings, which are almost certain to happen in images or video
taken in the open.

These and other advantages are making research in ear
detection and feature extraction remarkably active. Most of the
proposals in the literature, however, try to take advantage of the
ear's specific shape frequently using engineered features (in this
context, detecting specific geometric configurations like the
occurrence of certain characteristic edges, curvature dispositions,
or frequency patterns in the ear using image processing
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techniques). In general, these procedures are unstable under
homographies or change in luminance conditions, and also require
several special case considerations. In this way, the ears’ biometric
properties are not fully leveraged, and thus these proposals are not
robust against acquisition uncertainties (e.g. illumination, camera
position, resolution etc.).

A much less explored strategy for ear detection and recognition
is to represent ears’ shape and phenotypic attributes in the form of
landmark coordinates. In particular, landmarking based on
Geometric Morphometrics (GM) provide a wide-spectrum and
robust methodology for shape analysis and evaluation [7]. Manual
landmarking, however, is not feasible for a massive sample, since it
takes considerable supervised time, increases the likelihood of
operation mistakes due to operator visual fatigue, intra- and inter-
observer error, and is prone to distractions or confusions during the
landmarking sequence. Automatic 2D or 3D landmark acquisition
appears to be a promising venue to explore since it may overcome
both limitations (the lack of robustness in most ear detection and
recognition proposals, and difficulties associated to manual
landmarking).

This work introduces a flexible and versatile method for
automatic detection and selection of 2D landmarks, aimed to
improve the capture of ears’ form and shape phenotypic attributes.
Even though the main intended use of this method is on population
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Tragus superiorious
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Fig. 1 Landmark and semi-landmark configuration and anatomical
description [16, 17]

and quantitative genomic, biomedical, or forensic studies based on
2D data, it is easily adaptable to be useful in other contexts, like
biometric identification. The main idea consists on designing and
training a convolutional neural network with a set of manually
landmarked examples, which in turn are represented as a uniform
feature vector (resampled and normalised region of interest (ROI)).
In this way, the trained network is able to provide for adequate
morphometric landmarks on ears’ images taken in the open.

2 Related work

This section briefly summarises the state of the art in automatic ear
detection and feature extraction in 2D. Basically, all ear detection
approaches rely on shape properties of the external -ear's
morphology, like the occurrence of certain characteristic edges,
curvature dispositions, or frequency patterns. A more thorough
description of current advances in ear detection, feature extraction
and biometric recognition methods can be found in [8].

The French criminologist Alphonse Bertillon was the first to
recognise the biometric potential of human ears. Empirical
evidence supporting the ear's uniqueness was later provided in
studies by lannareli [9]. As mentioned above, the human ears (the
pinna) present some advantages over other biological features for
biometric identification purposes. For instance, the acquisition is
less intrusive with respect to iris or fingerprint information capture,
the ears’ features do not vary over time, and are not susceptible to
expression variation.

For these and other reasons, a significant effort was recently
devoted to ear detection and feature extraction methods. Among
the most widespread ideas, the use of shape models appears to be
extensively used. Shape models aim to recognise specific
distributions of shape indices that are characteristic to the object
under study, in this case the ear's surface. For instance, Chen and
Bhanu [10] propose to detect image regions with large local
curvatures with a technique they call step edge magnitude. Then,
template matching is performed with typical shapes of the outer
helix and anti-helix. Later, in [11] the number of possible ear
candidates was narrowed by detecting skin regions first before the
helix template matching is applied, also reducing spurious
detections. This method, however, by its very nature is not robust
under homographies, making it unsuitable for most applications
where a careful and calibrated acquisition may not be performed.

Following a similar shape-based approach, Attarchi ez al. [12]
use contour lines for ear detection. Their proposal locates first the
outer contour of the ear using a search method that finds the
longest connected edge in the ROI. Once located, this contour can
be used to define a triangle formed by the outermost points in the
top, bottom and left positions of the contour. Finally, geometric
properties of this triangle, for instance the barycentre, can be used
as a reference point for image alignment. Although less prone to
break under homographies, this method still requires noise-free and
white-balanced images to perform adequately.

Another method, related to edge detection properties, was
proposed by Ansari and Gupta [13]. First, they apply an edge
detector in which the edges are marked as convex and concave
segments, since the most likely candidates for the ear's outer
contour are convex edges. After that, the algorithm connects the
contour segments and selects the figure enclosing the largest area
for being the outer ear contour. Like other akin tracking algorithms,
several special cases must be accounted for, thus leading to very
complex algorithms.

In a similar vein, Prakash and Gupta [14] combine skin
segmentation and hierarchy edges. After being detected, the edges
located in the skin region are decomposed into edge segments. An
edge connectivity graph is constructed, integrating all these edge
segments. The connectivity graph is finally used to compute the
convex hull of the set of edge segments, which encloses the ear's
outer shape. Also significant is the proposal of Yan and Bowyer
[15], who developed an ear detection method which starts by
locating the concha (an anatomic part of the ear, see Fig. 1), which
is set as the initial shape for an active contour used for determining
the ear's outer boundary. Pflug and Busch [18] use a combination
of depth images and texture. Their method starts with a
preprocessing step, where edges and shapes are extracted from the
texture and the depth image, and edges and shapes are fused
together in the image domain. In the next step, the components are
combined with each other to find ear candidates and rank them
according to a computed score. Finally, the enclosing rectangle of
the best ear candidate is returned as the ear region.

Liu et al. [19] introduce the ear-parotic face angle of the person
as a novel 3D feature in ear images. The ear-parotic face angle
feature is defined as the angle between the normal vector of the
ear-plane and the normal vector of the parotic face-plane. Sibai et
al. [20] define a seven-element ear feature set, manually extracted
and design and train a feed-forward artificial neural network to
recognise a human ear. Like the other methods already mentioned,
the main disadvantage of these shape-model approaches is the fact
that they require specifically engineered features, which makes
them less flexible or adaptable to other landmarking problems, and
also fragile under homographies and luminance changes.

Instead of focusing on the unique geometric features of the ear,
a different approach regards the ear detection problem as an
instance of a pattern recognition problem. In this approach, the first
stage uses image processing techniques to extract features present
in the image, followed by a second stage in which pattern
recognition techniques are applied over the feature set to perform
detection and identification tasks. This approach is in general more
robust under homographies and luminance changes, depending on
the feature space used for the ear representation in the first stage.
Also, recent spectacular advances in pattern recognition techniques
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can be adopted in the second stage. Among the proposals based on
pattern recognition approaches, we can mention Abaza et al. [21]
and Islam er al. [22], which use weak classifiers based on Haar-
wavelets over regions of the image to find correlation with
previously learned patterns. These weak classifiers are then
combined with a standard AdaBoost procedure for ear localisation.
Yuan et al. [23] propose a dictionary-based sparse representation
and classification scheme, intended to work with partially occluded
ear imagery. An identity occlusion dictionary encodes occluded
parts in the source image to perform ear recognition. A non-
negative dictionary that includes a Gabor feature-set extracted from
ear images improves the sparseness of the coding representation,
thus circumventing the expense of a conventional occlusion
dictionary.

In [24], Kumar and Chan take advantage of the sparse
representation of the finite (discrete) Radon transform-based local
orientation information. The neighbourhood relationship of grey-
levels in the normalised ear images is encoded as the dominant
grey-level feature orientations in a local region using local Radon
transform. In a later contribution, Kumar and Wu [25] present a
pipeline for feature extraction and ear recognition based on
morphological operators and Fourier descriptors. In [26], the
authors develop an approach that encodes reliable phase
information using 2D quadrature filtering. They extensively
evaluated both quaternionic and monogenic quadrature filters and
develop a new quaternionic-code-based approach for the ear
identification. Their experimental results suggest that the
performance from the quaternionic quadrature filters and the
monogenic quadrature filters consistently outperform 1D log-
Gabor filter-based approach.

These proposals based on pattern recognition techniques are
more recent and tend to outperform shape-model methods.
However, the proposed feature spaces in general do not explicitly
take into account the specific phenotypic information present in the
ears. In particular, as will be presented in the following section,

Table 1 Classification table from data and methods

Reference Summary Method type Data
type
Chen and Bhanu  template matching with shape-model 2D
[10] shape index
histograms
Attarchi et al. [12] edge detection and  shape-model 2D
line tracing

Chen and Bhanu.
[11]
Ansari and Gupta.

helix shape model shape-model 3D

edge detection and  shape-model 2D

[13] curvature estimation
Prakash and skin colour and graph  shape-model 2D
Gupta. [14] matching

Yan and Bowyer. ICP using model shape-model 2D and

[15] points 3D
Pflug and Busch feature-level fusion  shape-model 2D and
[18] and context 3D
information
Liu et al. [19] ear-parotic face angle shape-model 3D
Abaza et al. [21] cascaded adaboost pattern 2D
recognition
Islam et al. [22] adaboost pattern 2D
recognition
Yuan et al. [23] non-negative pattern 2D
dictionary-based recognition
sparse representation
Kumar and Chan radon transform-based pattern 2D
[24] local orientation recognition
information
Kumar and Wu [25] phase encoding with pattern 2D
log Gabor filters recognition
Presented method ConvNets and GM pattern 2D
recognition
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using an anatomically inspired feature space (in our -case,
morphometric landmarks) greatly improves the ear detection
performance. In Table 1, we summarise all the methods reviewed
in this section, classified by method and data type.

3 Methods and implementation

Given the above-mentioned limitations of the current proposals in
ear detection and feature extraction algorithms, we propose a new
method, based on two well-established methodologies, GM and
Deep Learning algorithms. A set of 2735 manually landmarked
images, each with 45 interest points (landmarks and semi-
landmarks), was obtained to train a convolutional neural network,
using specific learning techniques to achieve a high generalisation
rate and to avoid overfitting. In this section, we describe the
complete processing pipeline, and for each of the processing steps
we provide a brief review of the underlying formalisms to make
this presentation self-contained.

3.1 Geometric Morphometrics

GM provides a set of methods for the quantitative analysis of the
size and shape of objects. GM is widely used in the study of
biological organisms [27], specially humans [28]. Methods in GM
propose to quantify the shape of each specimen according to the
location in space of a set of 2D or 3D reference points or
landmarks that are homologous across individuals. Among the
diverse traits used to represent craniofacial morphology, size and
shape in the form of landmark coordinates are usually preferred
because the methodologies underlying GM provide a versatile and
wide-spectrum set of analyses aimed to evaluate intra- and inter-
group variation patterns, integration, modularity, and multivariate
regression of shape on several independent variables [7].

The human pinna is made up of a piece of cartilage covered
with skin and attached to the skull by ligaments, muscles, and
fibrous tissue. This cartilage does not extend into the ear lobe,
which consists mostly of areolar and adipose tissue. There is a
wide non-pathological variation between humans in the pinna
shape and size, and this variation has been reported to be
influenced by age, sex, ethnicity and recently reported genetic
factors [5, 29-31]. The pinna shape variation was examined using
seven landmarks and 38 semi-landmarks. The specific
configuration and anatomical descriptions are shown in Fig. 1.

Then, the size and shape are split by means of the
superimposing Procrustes analysis, which removes the effects of
scaling, translation and rotation of the original configurations and
allows quantifying the multidimensional deviation from a
preconfigured reference specimen (usually the average of all the
configurations of the sample) [32]. In addition to landmark
configuration, several other magnitudes can be obtained, such as
among-landmark and semi-landmark Euclidean distances [16], and
angles of anatomical interest. These and other derived
measurements can be further used to create a robust feature vector
for identification purposes.

3.2 Deep learning and convolutional neural networks

In recent years, the computer vision literature has witnessed many
research efforts in descriptor engineering. A sought-for advantage
of these descriptors, when applied to recognition purposes, is that
they require the use the same operator to all locations in the image.
In this way, the design of workflows for specific recognition
purposes is greatly simplified. Moreover, and as more data
becomes available, learning based methods have started to
outperform engineered features, because they can discover and
optimise features without supervision for the specific task at hand
[33-37].

Deep learning allows computational models composed of
multiple processing layers to learn representations of data with
multiple levels of abstraction, and to discover accurate
representations autonomously from the data itself [36]. Each
subsequent layer extracts a progressively more abstract
representation of the input data and builds a new representation
from the previous layer. Layers higher in the hierarchy amplify
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aspects of the input that are important for discrimination, and
which might have been overlooked in supervised analysis. In an
image, for example, this could be the occurrence of edges at
particular orientations. The subsequent layer would detect specific
disposition of edges, and the next layers would probably identify
parts of objects.

Convolutional neural networks (ConvNets) [38, 39] constitute
the state of the art in many computer vision problems, since they
were shown to be very effective for large-scale image classification
[37, 40, 41]. Their outstanding performance is based in four core
concepts: local connections, shared weights, pooling, and the use
of several layers [36]. However, since the amount of learnable
parameters in these nets is huge, special care must be taken to
avoid overfitting (i.e. the network may just memorise the
examples, without generalisation).

Consider a regular neural network with N layers. The network's
input and output are represented, respectively, by vectors X, and
X, where the vector X, | is the input to layer n (with
n=1,...,N).If W, is a matrix of weights and b, a vector of biases,
then the output of layer, X,, can be represented as the following

vector:
anf(Wan—l+bn)’ (1)

where f'is the activation function — in our case, /inear rectification
f(x) = max (x,0). Given a particular recognition problem, the
training task consists on finding the optimal parameter set {W,, b, }

that minimises classification error. To determine how these
parameters should be changed to reduce error, it is a standard
practice to use the gradient descent algorithm. The definition of
classification error depends on the data type of the output. For
categorical (nominal) data it may be the proportion of misclassified
items, for scalar values it can be RMS error between the actual and
expected output and so on.

We define X . as the expected output corresponding to the
network input X. Through the training stage, all the network
parameters are optimised to make the output X, approximate X,
as much as possible. The prediction error is denoted as e(X y, X,,.)-
The gradient of e(X, X,,.) is then computed with respect to the

model parameters {W,, b, }. The parameter values of each layer are

true-

then modified by repeatedly taking controlled steps in the direction
opposite to the gradient:

de(Xy, X
W, W, =y T @
and
0e(X y, X )
bn “ bn - nTnlre’ (3)

where 7 is the learning rate, a hyperparameter controlling the
stride towards convergence.

In ConvNets, the connectivity patterns between some of the
layers are constrained in a way such to facilitate the processing of
input data that comes in the form of multiple arrays, for example
2D arrays containing pixel intensities or 3D for video or volumetric
images. Images commonly exhibit high correlation between values
in a local group, forming distinctive local patterns that are easily
detected. To take advantage of these properties, ConvNets contain
two types of layers: convolutional and pooling layers.

A convolutional layer is parametrised by a set of learnable
filters. The feature maps are taken as input and then a convolution
is applied to each with the set of filters to produce a stack of output
feature maps. This may be efficiently implemented by replacing the
matrix-vector product W x, | in (1) with a sum of convolutions

[37]. The input of layer n can be unfolded as a set of K matrices
X®  with k= 1,...,K. Each of these matrices represents a

n-1°

different input feature map. The output feature maps X(,f) with
[ =1,...,L are represented as follows:

K
X = | Z WX by @
k=1

Here, * represents the two-dimensional convolution operation. The
matrices W% represent the filters of layer n, and b? represents the
bias for feature map /.

Note that a feature map Xill) is obtained by computing a sum of
K convolutions with the feature maps of the previous layer. The
bias b can optionally be replaced by a matrix BY

n?°
spatial position in the feature map has its own untied bias. By
replacing the matrix product with a sum of convolutions, the
connectivity of the layer is effectively restricted to take advantage
of the input structure and to reduce the number of parameters. Each
unit is only connected to a local subset of the units in the layer
below, and each unit is replicated across the entire input [37]. This
parameter reduction enables ConvNets to achieve better
generalisation performance.

To reduce the dimensionality of the feature maps, a pooling
layer is located between convolutional layers. Pooling layers
eliminate non-maximal values by computing some aggregation
function (typically the maximum or the mean) across small local
regions of the input [42]. The main purpose of this pooling is to
reduce the computational cost in the remaining layers, reducing the
dimensionality of the feature maps and providing a form of
translational invariance.

so that each

3.3 Dataset

The images and manual landmarking data belong to the
CANDELA initiative (Consortium for the Analysis of the Diversity
and Evolution of Latin Americans), an international
multidisciplinary project including geneticists, anthropologists,
statisticians, bioinformatics, and social-anthropologists interested
on Latin American populations biodiversity and socio-cultural
environment [43] (https://www.ucl.ac.uk/candela. The dataset is
property of CANDELA and for privacy reasons cannot be made
openly available.). CANDELA has a database containing 7500
individuals that were photographed following a protocol for taking
standardised photographic data. The images consist of a lateral
view of the head, with a 2136 x 3216 pixel resolution, taken with
no specific illumination conditions, and without background
removal. The provided dataset contains 2735 images, one image
per individual, each with 45 landmarks and semi-landmarks
provided by human operators. It was split into a training set with
2051 images (75%) and a validation set of 684 images (25% of the
full dataset), both sets selected with a random permutation cross-
validation iterator. The dataset selection was restricted to the
availability of pairs (image, landmarks) from the CANDELA
database, images without landmarks associated were excluded for
the training and validation steps. The landmarks and semi-
landmarks used for training and testing were digitised and
processed manually using TPSDig and TPSUtil (http://
life.bio.sunysb.edu/morph/). In some of the images, ears were
partially occluded by hear, earrings were present, or the
illumination and background were not uniform. These images were
retained to test the robustness of our methodology against this kind
of semantic noise. An example of an individual image taken
following the CANDELA protocols can be seen in Fig. 2.

3.4 Preprocessing

To reduce unnecessary processing burden in the ConvNet, an initial
rough ROI is priorly located around the candidate areas in the
images. During training, the ROI was located using the landmark
positions themselves. During automated landmarking, the ROI is
found using the Viola and Jones [44] general object detection
framework. The Haar cascade filter was trained with 133 positive
and 667 negative regions (The Haarcascade file trained can be
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Fig. 2 Image from one of the authors (Mirsha Quinto-Sdanchez) taken
following the CANDELA protocols

INPUT:
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32x93x93 3249090 €5
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32x43x43 (&R
32x41x41 64x18x18

.
. .
b
R
B
1
.
.

performing architecture (Arch0) is shown. The underlying
architecture consists of two convolution layers with square filters,
followed with a max pooling and dropout layer. This structure is
repeated three times to obtain features at different levels of
abstraction, with different filter size, number of feature maps, and
probability values. The convolutional layers C1, C2, C5, and C6
have 32 filters of size 4 X 4 and 3 X 3. Layers C9 and C10 have 64
filters of size 3 X 3. All max pooling layers are of size 2 X 2, and
the probability values used for D4, DS, D12, and D14 are (resp.)
0.1,0.2,0.3,and 0.5.

After the feature extraction layers, the architecture contains two
fully connected linear layers with 1500 units each (F13 and F15 in
the diagram), and a dropout layer in between (D14). The output
layer contains 90 output units (45 [x, y] pairs) for the predicted
position of the landmarks and semi-landmarks. The
implementation used Python and the Lasagne library [45] (The
code is available at https://github.com/celiacintas/tests_landmarks/
blob/master/testing_output_ears.ipynb.). This allows the use of
GPU acceleration without considerable programming effort. The

M3: 2x2
D4: 0.1

M7 :2x2
D8: 0.2

Fig. 3 Outline of the best performing network structure

downloaded from https://github.com/celiacintas/tests landmarks/
blob/master/files/cascade_lateral ears.xml). As a validation set for
this filter, 185 images from the CANDELA dataset were randomly
selected. In 92.43% of the cases, the ROI was correctly found, in
1.62% of the cases the ROI was not found, and in 5.95% of the
cases the ROI was wrongly placed. After the ROI is found, a
histogram normalisation is performed, by means of which the
range of brightness values within the ROI is stretched to cover
most of the dynamic range. The histogram stretch parameters were
programmed to black-out at most 2% of the pixels in the ROI, and
to white-out at most 1% of the pixels. Finally, the ROI is resampled
to a final size of 96 X 96 pixels, using bilinear downsampling.

3.5 ConvNets architecture and training

Three different ConvNet architectures were designed and trained
for performing an automatic landmarking task, namely to detect
and identify anatomic parts of the ear in image datasets. These
architectures are different to each other in the number of
convolutional layers, the filter sizes, and the learning rates. A
single-channel profile ear image of size 96 X 96 pixels, with
brightness scaled to [0, 1], is taken as input. In Fig. 3, the best
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training of the network took roughly 25 h using NVIDIA GeForce
GTX 590 cards. Once trained, the network can be deployed in
conventional hardware and even in embedded systems.

3.6 Oveffitting reduction

ConvNets usually have a huge number of learnable parameters,
8.622.970 in the case of our model. Due to the limited size of the
training set, overfitting is almost certain to occur. The network will
tend to memorise the training examples instead of finding
abstractions therein, because it has enough memory to do so. This
obviously will not generalise well to new data. Two primary ways
to deal with overfitting were applied in our training:

Data augmentation: We artificially enlarged the dataset using
label-preserving transformations. At random, some of the pictures
and the associated landmarks were mirrored about the x-axis and
added to the training set (see for instance Fig. 4).

Regularisation: The model complexity was penalised through the
use of dropouts [46], which consists of setting to zero the output of
each hidden neuron with a certain probability. This technique
reduces complex co-adaptations of neurons, since during the



Fig. 4 Image taken at random with the associated landmarks, mirrored
about the x-axis

4.0
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Fig. 5 Learning curves for the ConvNets analysed in Table 1. The dashed

lines represent RMSE on the training set, and the solid lines represent the

validation error, for the three network configurations

training phase a neuron cannot rely on the activation of other
specific neurons [41].

4 Results and discussion
4.1 Performance assessment

Automatic landmark placement can be regarded as a regression
problem. Therefore, to assess the quality of the final landmarking,
the automated results were evaluated regarding the positioning
errors with respect to manually annotated landmarks, which served
as ground truth [47]. We evaluated the usual quality metrics for
regression problems, in particular /°, root mean square error
(RMSE), explained variance (EV), and Pearson's correlation. The
accuracy of the three implemented architectures can be seen in

Table 2 Performance of the three different ConvNet
architectures

ArchO Arch1 Arch2
P 0.709 0.678 0.698
RMSE 2.296 2.415 2.338
EV 0.976 0.974 0.975
Pearson 0.988 0.987 0.988
Table 3 RMS error for each anatomical landmark
# Landmark RMSE
1 1.8183
2 1.2216
3 1.08651
4 1.3291
5 2.4477
6 2.59746
7 1.17571
6

Table 2. Also in Table 3, the RMSE for each landmark is shown.
The regression metrics were computed using scikit-learn [48].

Also, the learning curves showing the training set error and the
validation set error with the three different network configurations
can be seen at Fig. 5. Fig. 9 shows the predicted landmarking over
previously unseen images in the validation dataset. Note that even
though some of these images are partially occluded by hair, the
landmarking is still sound. The full test set landmarked by the
ConvNet, the full structure, and an analysis of the net's behaviour
can be seen in https://github.com/celiacintas/tests_landmarks/blob/
master/testing_output_ears.ipynb. Also a subset of landmarked ears
over public datasets can be seen in Figs. 6-9. Despite that our
landmarking system was not trained with examples of rotated ears,
it still works well with the AMI ear database that includes such
cases.

To assess the performance of the trained network, a complete
landmarking workflow was deployed in a conventional PC
hardware (single core Intel 17-5500 2.40 GHz). In this conventional
hardware, a typical automated landmarking requires 4.68 ms in
average. Landmarking a batch of 684 images required 1.04 s. The
landmarking performance is comparable or above the quality of an
assisted procedure. Also a similar network was trained for full
profile faces, without the ROI extraction preprocessing step. In
average, the results were * = 0.884, RMSE =1.365, EV=0.951,
and Pearson correlation=0.976. The automated landmarking
results on whole head images were tested on a randomly chosen
subset of the CVL public dataset can be seen in Fig. 10. The
landmarking behaviour was also tested on less controlled images.
A randomly chosen subset the original CANDELA 2136 x 3216
whole head images dataset, without controlled illumination or
background removal, was automatically landmarked, and the
results can be seen in Fig. 11. In both cases, the quality of the
results is still comparable with the human-assisted landmarking.
Even though for this preliminary results it was chosen to work
within the resampled ears’ ROI, it is worth mentioning that the
whole experience may be repeated with different network
configurations trained with whole images, within which the ears
can be located.

4.2 People recognition

Even though the major purpose of this work is to show the
combined potential of GM together with CNNs, we performed
some preliminary recognition experiments, to assess as to whether
the proposed workflow can be used for identification purposes. For
this, we added an extremely randomised tree (ERT) as final
classification stage in our workflow. ERTs are classification trees in
which attribute and cut-point choices are partially or totally
randomised on splitting a node during training [50]. In an extreme
case, an ERT builds totally random classification trees whose
structures are independent of the output values of the learning
sample. The strength of the randomisation can be tuned to specific
behaviours by an appropriate parameter choice.

The ERT was trained with the landmark configuration of 1458
individuals, each individual with four to six images (both ears). A
total set of 8354 images where automatically landmarked with our
previous ConvNet detailed in the Section 3.5, after which a
generalised Procrustes fit was applied (see Section 3.1) to remove
translation, scale and rotation effects in the landmarks. In Fig. 12, a
subset of the training dataset can be seen. The training set of the
ERT included 6683 feature vectors v, each consisting of the 45

automatically generated landmarks (v; = [X,, y,, . X, ¥,,]) and the

target values ¢ with a label associated to the person. The remaining
1671 samples were saved for testing. The recognition scores were
remarkably high (in average, precision 0.95, recall 0.90, fI-score
0.91, and adjusted rand score 0.93). The confusion matrix over a
subset of test data can be seen in Fig. 13. We performed stratified
K-fold with 10 iterations and a test size of 20% of the sample,
yielding an accuracy mean score of 0.9114 with SD=0.0146. The
accuracy of each fold can be seen in Table 4.

ERTs are also useful as a means for explaining away the relative
weight or importance of each dimension in the feature space [51].
Given this, we analysed the relative contribution of each landmark
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Fig. 6 Results over images randomly chosen from the IIT Delhi ear database [25]

coordinate in the final recognition. The ten most important features
(landmark coordinates) are listed in Table 5). It is remarkable that
all of them correspond to the inner structure of the ear, which
suggests that this structure is more informative for differentiation
that the external ear traits.

5 Conclusions and future work

We presented a novel method for ear detection and feature
extraction. The method is based on GM and the use of ConvNet for
automatic ear landmarking. After training the net with human-
assisted landmarks over images of ears, the resulting algorithm is
able to accurately position landmarks and semi-landmarks with a
precision comparable to supervised landmarking. The quality of the
automatic detection and feature extraction was tested using the
automatically extracted landmarks for identification, yielding
accuracies akin to other biometric methods. Even though that other
ear detection methods in the literature may achieve a better
performance, they require more rigid acquisition constraints.
Instead, our method is fully automatic, with no supervised fine-
tuning requirements, and able to perform in the open even with
low-quality cameras. The fact that the method is based on
biological landmarks makes it more robust than other engineered
feature sets proposed in the literature, specifically under
homographies, resampling, or illumination changes. The whole
implementation was developed using open source tools, and the
source code is publicly available. Thus, the model can be freely
trained and used on consumer hardware.

Our proposal is general enough to perform with other physical
anthropological features, such as the outline of specific anatomical
or biological structures. Therefore it may be used for several other
studies, including the genetic basis of traits of biomedical and
forensic interest, biometrics, perception analysis, and many other
topics. Regarding the former, a range of disorders affecting human
pinna development have been described, occurring in isolation or

IET Biom.
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as part of complex syndromes with multiple affected organs [52,
53]. For instance, we have recently reported genomic associations
of seven genetic regions, including the Edar gene, with
macroscopic categorical phenotypes in the external ear. Thus,
further improvements in the capture of such a complex phenotype
are needed to complement the understanding of its genetic and
non-genetic basis.

Regarding biometric applications of unsupervised ear
landmarking, the set of landmarks per se is a feature vector well
known to be able to identify people. Therefore classifiers are under
research that aimed to identify individuals through this pinna
landmark configuration and derived measurements, such as relative
distances and angles, to create a strong feature vector for
identification. In a similar vein, the method is being tested with
images of large marine animals, as an aid to perform identification
in specific natural environments required in biological and
ecological research activities.

Finally, using automatically generated ear landmarks for people
identification produced promising results. Even though this was not
the intended goal of this work, the preliminary results showed good
accuracies. A remarkable finding is that the inner part of the ear
appears to be much more important in people identification than
the external outlines, a result first reported here. Therefore, future
research in landmarking-based identification appears as a venue
worth exploring.
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Fig. 8 Results over images randomly chosen from the CVL Face Database http://www.lrv.fri.uni-lj.si/facedb.html [49]
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Fig. 9 Results over unseen images from CANDELA database using the best performing network. Note that the method is able to withstand partial occlusions
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Fig. 11 Results over randomly chosen images in the CANDELA dataset with uncontrolled illumination and background
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Fig. 12 Landmark configuration of 500 images after applying generalised Procrustes fit used in training the ERT

IET Biom.
© The Institution of Engineering and Technology 2016

0.6

1



50

100

True label

150

200

1.0
0.9
0.8
0.7
0.6
0.5

Rt 0.4

.
|k

50 100
Predicted label

150 200 250 0.0
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Table 4 Accuracy score for each ERT training fold
Accuracy score # Fold
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