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Abstract. We give simple conditions implying the well-posedness of the Cauchy
problem for the propagation of classical scalar fields in general (n+2)-dimensional static
and spherically symmetric spacetimes. They are related to properties of the underlying
spatial part of the wave operator, one of which being the standard essentially self-
adjointness. However, in many examples the spatial part of the wave operator turns
out to be not essentially selfadjoint, but it does satisfy a weaker property that we
call here quasi essentially self-adjointness, which is enough to ensure the desired well-
posedness. This is why we also characterize this second property.

We state abstract results, then general results for a class of operators encompassing
many examples in the literature, and we finish with the explicit analysis of some of
them.

arXiv:1304.7041v2 [gr-qc] 24 Sep 2013

1. Introduction

Hawking and Penrose have shown that, according to general relativity, there must exist
singularities of infinite density and space-time curvature in many physically reasonable
situations. This phenomenon occurs in the big bang scenery at the very beginning of
time, and it would be an end of time for sufficiently massive collapsing bodies (see, for
example, [I] and references therein). At these singularities all the known laws of physics
and our ability to predict the future would break down.

However, in the case of black holes, any observer who remained outside the event
horizon would not be affected by this failure of predictability, because neither light
nor any other signal could reach him from the singularity. This notable feature led
Penrose to propose the weak cosmic censorship hypothesis: all singularities produced by
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gravitational collapse occur only in places, like black holes, where they are hidden from
outside view by an event horizon [2].

The strong version of the cosmic censorship hypothesis states that any physically
realistic spacetime must be globally hyperbolic [3]. The concept of global hyperbolicity
was introduced for dealing with hyperbolic partial differential equations on a manifold
[4]. A spacetime is said to be globally hyperbolic if, given any two of its points, the set of
of all causal curves joining these points is compact (in a suitable topology). Only in this
case there is a Cauchy surface whose domain of dependence is the entire spacetime. This
is a reasonable condition to impose, for example, to ensure the existence and uniqueness
of solutions of hyperbolic differential equations [4 [5].

Nevertheless, the relevant physical condition to assure predictability is not global
hyperbolicity, but the well-posedness of the field equations. Indeed, there are many
examples of spacetimes that are not geodesically complete and violate cosmic censorship,
but where there is still a well-posed initial-value problem for test fields. Global
hyperbolicity is sufficient, but not necessary for this. This suggests that, in more general
situations, we could find a weaker condition to replace the notion of global hyperbolicity
by making direct reference to test fields [6 [7, [§].

The above considerations motivate a deeper study of the well-posedness of the
initial-value problem for fields in more general singular spacetimes.

This paper is a continuation of a previous one [9], tackling the well-posedness of
Cauchy problem for waves in static spacetimes. This subject has been launched by Wald
in [6], and further developed by, among others, the authors of references [7], [10, [I1].

The propagation of waves is, in such spaces, described by a classical equation of
the form

Oud + Ap = 0,

where A is a selfadjoint extension of a given symmetric and positive operator A which
reflects the underlying geometry.

Our motivation relies on the following observation: although A may not be
essentially selfadjoint (e.s.a.), boundary conditions are not necessary to construct A in
some geometries of interest. Such a situation arises when, even if A has many selfadjoint
extensions, only one has its domain included in the energy space naturally associated
to A. Here we call quasi essentially selfadjoint (g.e.s.a.) this property.

We have shown in [9] that operators A given by propagation of massless scalar
fields in static spacetimes with naked timelike singularities may be g¢.e.s.a. but not
e.s.a.. Thus, in such situations, demanding the finiteness of the energy is enough to
select one selfadjoint extension of A, and only one; in addition, we proved that the
solutions of the wave equation may have a non trivial trace at the boundary of the
geometrical domain, even though this trace is not imposed by any boundary condition
at all. This phenomenon never happens with e.s.a. operators.

Here we deeply examine the case of general (n+2)-dimensional static and spherically
symmetric spacetimes. More precisely, the concrete setting is the following.
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The domain is of the form I x .#, where I C (0, +00) is an open interval and . is
a compact, oriented Riemannian manifold without boundary. The operator A is defined
on C§°(I X M) as

Ap(z.) = = { 0. (421022, 0)) — A0 p(2.3) + (el M

where A, is the Laplace-Beltrami operator on .#, and a, b, ¢ and d are suitable positive
coefficients only depending on the radial variable z € I. No condition is prescribed on
the coefficients at the boundary of the domain.

For this class of operators we fully characterize e.s.a. and q¢.e.s.a. properties.
More precisely, under rather general conditions on the coefficients, we give a necessary
and sufficient condition for g.e.s.a. depending only on the integrability of the function

1
(@ +d(z) + a(z)) at the boundary of I. We also give a necessary and sufficient

condition for e.s.a., in this case the condition depends also on the integrability of the
functions a(z) and B(z)%a(z) at the boundary of I, where 3(z) is a particular solution
of the ordinary differential equation — (b(z) B’(z))/ +d(z)B(z) =0.

We then apply this analysis to scalar fields propagating in static spherically
symmetric spacetimes of arbitrary dimension, solutions of the Einstein equations with
cosmological constant and matter satisfying the dominant energy condition or vacuum.
The criteria for e.s.a. and g.e.s.a. on the coefficients of the operator A are then
translated into criteria on the components of the metric tensor. This provides a
systematic procedure to analyze the situations where boundary conditions are, or are
not, necessary for the Cauchy problem to be well-posed.

A significant physical result is stated in theorem 5.5: in the outer region of a static,
spherically symmetric and asymptotically flat spacetime where the dominant energy
condition holds, the operator A is essentially selfadjoint, i.e. the Cauchy problem is
well-posed without any boundary conditions, if, and only if, an observer at infinity
measures that it takes an infinite time to a photon to reach the boundary.

Finally, we directly apply the developed theory to the discussion of some exact
vacuum solutions as explicit examples. We discuss the (n + 2)-dimensional Minkowski
spacetime with a removed spatial point and the higher-dimensional generalization
of Schwarzschild and Reissner-Nordstrom geometries; we systematically describe the
situations where boundary conditions are, or are not, necessary for the Cauchy problem
to be well-posed.

The outline of the paper is as follows. Section 2 is devoted to abstract results on
e.s.a. and q.e.s.a. properties. In section 3 we completely characterize e.s.a. and q.e.s.a.
properties of the operator given in (Il). We show, in section 4, the well-posedness of
the Cauchy problem when the operator A is ¢.e.s.a. but not necessarily e.s.a.. In
section 5 we apply our results to the study of propagation of scalar fields in general
(n + 2)-dimensional static and spherically symmetric spacetime with n > 1. We close
by discussing the examples in section 6.
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2. Quasi essentially and essentially selfadjointness

Let Q C R"! be a Lipschitz domainH and H a Hilbert space such that C'2°(£2) is dense
in H, where C°(€) is the space of the restrictions to Q of C5°(R"™). We consider
an unbounded symmetric definite positive operator A, whose domain is C§°(£2). We
assume the existence of a Hilbert space £, continuously embedded in H, and a related
bilinear symmetric form b with domain £ having the following properties:

(i) if g € &, [16llz = oI5 + b(¢, 6);
(il) C(Q) is dense in &;
(iii) if ¢, € C3°(Q), then b(p, ) = (¢, AY).

The reader should note that A is defined only on C§°(£2), and that consequently
the relation between the form b and the operator A is only stated for functions in
C§e(2) as well, although C2°(€2) is dense in both spaces H and £. This is motivated
by the difficulties arising with boundary conditions: whether they must be specified
in advance or not is the question we consider in the subsequent theorem 2.2. We will
show that there is a “natural” self-adjoint extension of A, defined without specifying
any boundary condition, if and only if C§°(£2) is dense in €. We will also show that this
density property is always true when A is essentially self-adjoint, but may occur even
when A is not. Various examples are given at the end of the paper.

Definition 2.1 We shall say that A, any given selfadjoint extension of A, is of finite
energy when D(A) C £, with continuous injection.

Calling &Y the closure of C§°(2) in €, we have the following result:

Theorem 2.2 Under these hypotheses we have:
(i) The operator A has only one selfadjoint extension with finite energy if and only if

EY = &. If this is the case, this extension is A, the Friedrichs extension.
(ii) If EY = &, then C§(Q) is dense in D(Ay) if and only if A is essentially selfadjoint
(e.s.a.), i.e., A has only one selfadjoint extension.

Proof:

(i) To prove this assertion, we begin with assuming that A has only one selfadjoint
extension with finite energy. Let A be the selfadjoint operator associated with the
energy form b; let Ay be the selfadjoint operator associated with the restriction of b to
&Y. Both are extensions of A with domains included in &, and so, are equal. But then
we must have D(A?) = D(Aé), which is £ = £°.

Reciprocally, if £ = £°, the only selfadjoint extension of A with domain in & is

its Friedrichs extension, because the form b defined on & is the closure of the form b
defined on C§°(92).

1 Being Lipschitz is not the weakest possible hypothesis on 2 for our results to hold, but it is enough
for the examples we have in mind.
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(71) Recall that
D(A") ={pe H:3C >0 :Vy € C5°(Q), [{p, AP)| < C[[¢]|u},
and that
D(Ap) ={p€&:3C>0 :Vne&, bly,n) <Clnlu} (2)

We assume first that C5°(Q2) is dense in D(Aj). It is enough to see that D(A*) C D(Ay).
Taking ¢g € D(A*) and 1y = (A* + )¢y, we have for all ¢ € C5°(Q)

and then, since C§°(£2) is dense in D(Ay), for all ¢ € D(Aj)

(G0, (Ap +1)p) = (N0, ).

Taking into account that (A, + I)™! is defined on all H, by calling ¢, =
(Ap + 1)ty € D(A) we have

(0. 0) = {(Ar + D) (Ar + 1) "0, ) = (0, (Ar + I)ip) for all p € D(Ap),

and then
{po— @0, (Ar + 1)) =0 for all p € D(Ay).
Since Im(Ay + I) = H, we have ¢y = ¢o. It implies D(A*) C D(Az) and so
A* = A,. Then A is essentially selfadjoint.

On the other hand, if C§°(Q2) is not dense in D(Aj), there exists ¢ € D(A) such
that Ap¢ # 0 and
(App, Apyp) =0 Vi € C(())O(Q)
Let us call n = App. If n € &, then b(n,v) = (n, AY) = (n, Apyp) = 0 for all Y € C5°(Q2)
and then by density of Ci°(2) in &, b(n,n) = 0. Since by hypothesis 7 # 0, we have

ne¢e.
Therefore, we have proved that there exists n € H, such that n € ker(A*) but

n ¢ &, so A cannot be essentially self adjoint. O

Definition 2.3 Under the preceding hypotheses, the operator A is quast essentially
selfadjoint (q.e.s.a.) if it has only one extension with finite energy.

Lemma 2.4 If A is a q.e.s.a. operator, then D(Ap) = D(A")NE.

Proof:
Since D(Afr) C D(A") by definition of A* and D(Af) C € by definition of A, then
D(Ap) C D(A")NE.
Conversely, let ¢ € D(A*) N E, then
b(o,v) < ClYllm V¥ € C5°(Q)
by definition of D(A*). Since C§°(Q2) is dense in £ and ¢ € &, this inequality extends
to any ¢ € &, proving that ¢ € D(Ap). O
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Lemma 2.5 If A is a q.e.s.a. operator, then the three following statements are
equivalent

(i) A is not an e.s.a. operator.
(1) there exists ¢ € D(A*) but ¢ ¢ E.
(i1i) there exists p € D(A*) non vanishing and such that (A* + I)p = 0.

Proof:

(i) < (ii): Observe that A is an e.s.a. operator if and only if A* = Ap, thus, by
lemma 24] A is e.s.a. operator if and only if D(A*) C .

(ii) < (i1i) Let oo € D(A*) and ¢y ¢ &, and define f = (A" + I)py € H,
o = (Ar+I)"'f € D(Ar). We have (Ax + I)p = (A* + I)po and since ¢ € D(A*),
this implies A*(¢o — ) + (¢o — ¢) = 0. Finally ¢y — ¢ cannot identically vanish, since
o ¢ € while p € £. Thus (uii) holds.

Conversely, let ¢ # 0 a.e., ¢ € D(A*) such that (A*+ 1) = 0. If ¢ € &, by
lemma 24 ¢ € D(A;) , then ¢ = 0 a.e. since A + I is injective, which is a contradic-
tion. Thus, ¢ ¢ &€ and (7) holds. O

3. A characterization of some ¢.c.s.a. and e.s.a. divergence type operators

Let .# be a Riemannian manifold of dimension n with a metric (g;;). We also assume
that .# is compact, connected, without boundary and with a given orientation.
In local coordinates, for u € C°(.#') the Laplace-Beltrami operator is

> ij=10i (v/9970u)
VI 7

where g is the determinant of the metric. Let us consider in 2 = (0,400) x ., the

A u=div(V,u) =

operator A given by
{0 (1000:0:.%)) — Aol + ez 3)

for all ¢ € C3°(Q2), where the functions a,b, ¢ and d satisfy the following hypotheses:
ea,c,de L}, ((0,400)) and b e C((0,+)),

loc

e a>0,b>0,¢c>0andd >0 in (0,400),
ea bt et e L, ((0,400)).

loc

Ap(z,x) =

Examples will be presented in the two last sections. Let us state in advance that
the coefficient d is non vanishing only in the massive case. This is why we will call
massless the case d = 0.

We define the Hilbert spaces

H={pcI(Q) / (2 %) Pa(2)due dz < 0o},
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and the energy space
E={p e HNHy(Q) :b(p,p) < +o0},
where we denote w, the natural measure in .#, and
b 0) = [ 62 Dol ) TR s d + [ () Vil ) - Voo s d

+ /Q d(z) o(z,x) Y(z,%x) dw, dz,

for p, 1 € C§°(2).
Thus, H and & are Hilbert spaces, equipped with their canonical norms:

el = / (2, %)%a(z) dw, dz and ||z = [[¢ll}; + b(e, ). The operator A is well

Q
defined on C§°(2) and it is symmetric in H by definition.
We shall explore when A is a ¢.e.s.a. operator by using Theorem Then the
question is to determine under which conditions on the coefficients of A, C§°(£2) is dense

in £. A related one is whether C2°(2) N € is dense in £.

21 20+€ 21
Notation 3.1 From now on, / and / respectively denote / and / for a
20 -

20 21—€

+oo
positive and small enough €. And / < 400 means that their exists z > 0 such that

“+oo
/ < +400.

Theorem 3.2 Let A be the operator defined in (3). Then

_ +oo 1
(i) C*(Q)NE is dense in € if and only z'f/ (@ +d(z) + a(z)) dz = 400,
(ii)) A is a q.e.s.a.  operator (i.e. C§() is dense in &£) if and only if
oo ) 1
—+d(z) +a(z) | dz = +0 and/(——i—dz +az)dz:+oo.
[ (5 + a0+ at (55 + ) +at2)
Proof:
The proof goes through three steps: first reducing the problem to a one dimensional
case, second proving that compactly supported functions are dense under the given

hypotheses, and finally getting the desired result.

Step 1: reduction to the one dimensional case.

Let {Ax, & > 0} be the spectrum of —A,, with Ay = 0 and \; an increasing sequence,
and let (¢4)x>0 be an associated orthonormal basis of L?(.Z).
We define, for each k > 0,

Apu(z) = % (- (b(z) u'(z)>/ + (/\k c(2) + d(z)) u(z)) , (4)
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for u € C§° ((0,400)), with the underlying Hilbert space Hy = L? ((0,+00), a(z) dz)
and energy spaces &, = {u € HyN H}, ((0,+00)) : by(u,u) < +oo}, where

by, ) = /0 ) () ) e+ /0 ()\kc(z)+d(z)> u(2)0(2) dz.

Then we consider the Hilbert spaces &, with their natural norms

||u||z,,c = /0+OO b(z) |u'(2)|*dz + /0+OO ()\k c(z) +d(z) + a(z)) lu(2)|? dz.

Lemma 3.3 C°(Q) NE (respectively C§°(Q)) is dense in & if and only if C2° ([0, 00))N
Ex (respectively C§° ((0,+00)) is dense in & for all k > 0.

—+00

Proof:
Given ¢ € &, it can be decomposed into a sum ¢ = Z U ® Y, where ug € &, and

k>0
lellz = luxll3,.

k>0
So, density in £ implies density in each &.
For the reciprocal, given ¢ € &£ we first approximate it by the functions ¢,, =

Zuk ® Yy, and density in & for all £ > 0 implies that each ¢,, can be approximate

k=0
by functions of C2°(2) N E (respectively C§(2)). O

Step 2: density of compactly supported functions in &,.

Here, for convenience we shall restrict our attention at first to the case £ = 0 and
d(z) =0.
We define

Eo.c = & N {functions with compact support in [0, +00)},
Eo.0 = & N {functions with compact support in (0, +00)}.

+00 1
Lemma 3.4 & is dense in & if and only if/ (T

5+ a(z)) dz = +oo.

Proof:

00 1
Assume first that/ (m + a(z)) dz < +oo. Ifu € &, then v’ € L' ([2/,400))
z
+o0o
for any 2/ > 0, since / mdz < 400 and using Holder inequality. Moreover
2 z
+00

lim u(z) exists and is not necessarily zero because a(z) < +4oo. Thus, there
Z—00

exists a linear functional on &, which vanishes on &, but not everywhere, showing that
&o,c is not dense in &. Such functional may be

s = [ (i)
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where 7(z) is a smooth function such that n(z) = 01if z € [0, 2] and n(z) = 1 if z > 22/,
o0 1
Assuming now that / <— + a(z)) dz = 400, we shall see that & is dense

b(2)

in g().
+0c0 1
If there exists 2z’ > 0 such that / m dz < +o00, taking u € &, we have again
5 z
+oo
that u' € L' ([2/,+00)), but now lirf u(z) = 0 necessarily, since / a(z)dz = +o0.
Z—r+00

Thus, we have

+00
Hence, defining fy(z) = / ) dz and using Holder inequality we have
. z
1/2

il < VaE ([ s era:) 5)

Since |Jullg, < +o00, for € > 0, there exists zp > 0 such that

[ @R @ e e < e (©)

20

Define x(z) on [0, +00) by

1 if 0<z2<2
X(z) =< In (5)0((51))) if zp<z<2z
0 if 2z <z<+4o00

with z; given by the equation By(z1) = e By(2p). Then we have

ot < [ o) (1-x@) R+ [ ) (1-x:) W

20 20

+/mwwwmmmz

20

The first two terms are small by (@), and for the third one, we have from (Bl) and (@)

[ e erere < [ P

20 20 (Z) 50(2)
[ i
<e —dz
20 b(Z) ﬁo(z)
< Ce.
Since u x € &, the density of & in & is proved.
+oo 1 z 1
For the case when / —— dz = +o0, given 2/ > 0 we define fy(z) = / —— ds,
b(z) 2 b(s)

and we choose z*, z such that 2/ < z* < z. We have

|waﬂmw§1]wﬂ@s(ﬂmwmwmw§%zma
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hence

el < ot + ([0 leoPas) VARG

This implies

)l
z—>400 BO(Z) 0. (7>

Now, by (@) for any ¢ > 0, there exists zp > 0 such that

|Z£22|)2 + /:Oo (b(Z) [/ (2)]* + a(z) |u(z)|2) dz < e

Then,
u(2)| < |u(z0)| + Ve Bo(2),

when z > z;. We define x(z) by

1 if 0<z2<g
X(z) =< In (%0((21))> if zp<z<z
0\ %
0 if 2z <z<+4o00

with z; given by the equation ((z1) = e fy(20), and we can prove, as above, that there
exists a constant C' such that

lu—uxllg, < Ce.

Thus, in this case also, & is dense in &. U

Lemma 3.5 (i) The set of all u € & which vanishes in some neighbourhood of 0

(depending on u) is dense in & if and only zf/ (% + a(z)) dz = +00
0 z
o0 1
1) Ego 1S dense in £ if and only if —— +4a(z) ) dz=+o00 and
’ b(2)

/0 (% o a(z)) dz = +oo.

Proof: ]
(i) We consider the transformation ¢(z) = = : (0,4+00) — (0, +00), and let
z

& = {u € (0,400 [ulls = [ (5o W + ag() ) dx < 40,

where by(2) = 22 b (1/2) and a4(z) = a (1/2) /2*.
Then &£, and & are isomorphic, through the application ® : & — &4 given by
O(v) =u=wvoqp.
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+o0 1
By lemma B4, &;. is dense in &, if and only if / (b—() +a¢(z)) dz =
P\~

1
/ <m + a(z)) dz = oo, and we observe that v € & vanishes in a neighbourhood
0 z

of 0 if and only if ®(v) € &
(1) follows directly from both assertion (i) and lemma [3.4] O

In this step we have done the assumption that d = 0 and £ = 0. When d or &
are not vanishing, then it suffices to replace a(z) by a(z) + d(z) + A\xc(z) to obtain the
appropriate versions of lemmas 3.4 and 3.5.

Step 3: conclusion in the one dimensional case

Lemma 3.6
+oo
(i) C ([O, —l—oo)) N &y is dense in &y if and only if/ (le)
“+oo
(it) C3° ((0,+00)) is dense in & if and only zf/ (L +a(z)) dz = 400 and

: b(z)
/0 (@ - a(z)) dz = +o0.

Proof.
(i) Assume first C5° (0, 4+00)) is dense in &, then £yp must be dense too, and this

implies, by lemma B / - (le) + a(z)) dx = /0 (% + a(z)) dz = +oo.

Feo 1 1
Reciprocally, if / (— + a(z ) dz = / <— + a(z ) dz = 400, by lemma
TERE) R AVE R

B.5 o, is dense in &;. Therefore it suffices to prove that C§° ((O, —l—oo)) is dense in & .
For this purpose we will show that for any compact interval I = [z, 2] C (0,400),
C5e(I) is dense in & = {u € & : suppu C [}. .

Let m = /b(z) dz and define ¢ : [ — J = [0,m] by ¢(z) :/ b(s)ds. Then,

I P

L? (I,b(z)dz) and L*(J,ds) are isomorphic through the application D : L*(J,ds) —
L? (1,b(z)dz) such that ®(v) =vo ¢.

Let u € &, and denote f =« and g = fo ¢!, g € L?(J,ds), then there exists
a sequence (g,)n>o such that g, € C’o(j for all n > 0 and g, — ¢ in L?*(J,ds). Let
fn=gnoo,then f, € CO(IO) and f, — fin L? (I, b(z)dz), we also have that

+ a(z)) dz = 400,

[l = niala <o ([ 156 - halaz)

I I

by Cauchy-Schwarz inequality and because % € Ly, ((0,00)). Since / f(z)dz =0, we
T

°

§ Cp(J) is the space of continuous functions with compact support in (0, m).
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deduce that
lim [ fn(z)dz=0.

n—oo I

Choose x € Co(I), such that /X(z) dz =1, and define
I

fo=Tn— (/I fn(Z)dZ) X-

Then / fa(2)dz =0, f, € Co(I) and f, — f in L? (I,b(2)dz):
1

[o (10 - 2@t < [0 (56 - 5) 't ([ nr02) [
— 0. (8)

n—oo

Set

since /fn(z) dz =0, @,(z) € CL(I) for all n > 0, and by &),
I

2
lim [ b(z) |u'(2) —a),(2)| dz =0,
n—o0 I

and
lim [ju—a,|,, =0
n—oo

because

dz = 0.

n—oo

i [ |2) = )

Hence we have
2
lim [ a(z) ‘u(z) - ﬂn(z)‘ dz =0,

n—oo I

so that, finally,
lim ||u — a,|ls, = 0.
n—oo

This proves the density of C3(I) in &. To pass from C}(I) to C5°(I), a classical
regularization procedure is enough: it shows that C§°(I) is dense in C3(I) for the
topology given by the norm

sup [u(z)] + sup [u'(z)];

zel zel
since a and b are integrable on I, this implies the same density for the topology induced
by &, and part (ii) of the lemma is completely proved.
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Regarding part (i), we will be sketchy. The necesity of the condition
+00 1
/ (— + a(z)) dz = 400 follows from lemma B4l Its sufficiency needs only to be

b(2)
1
proved when C§° ((0, 00)) is not dense, that is to say when / (m + a(z)) dz < +o0.
o \ b(z

But then, the same proof as above works, even when I = [0, z,].

Proof of theorem

Let us now prove theorem (11): if C3°(Q2) is dense in &, by lemma
cge ((0,+oo)) is dense in & for all & > 0, in particular for £ = 0, then by lemma

3.6, we have /+Oo (ﬁ +d(z) + a(z)) dz = /0 (ﬁ +d(z) + a(z)) dz = +00.

Conversely, if /+OO <ﬁ +d(z) + a(z)) dz = /0 (le) +d(z)+ a(z)) dz = 400,

we also have

oo /] 1
—+d A dz = —+d A dz =
/ (b(z) +d(z) +a(z) + kc(z)) z /O<b(z) +d(z) +a(z) + kc(z)) Z = 400,
then C§° ((0,+00)) is dense in & for all k, we can see it changing a(z) by d(z) +a(z) +
Ak ¢(2) in all the previous results, and again by lemma B3 C§°(€) is dense in €.

The proof of (i) analogously follows. Theorem is completely proved. O

Remark 3.7 Under different hypotheses, when the coefficients of the operator A
depend on (z,x) we have given a characterization of q.e.s.a. operators in [9]. Warning:
in page 21 of that reference, the integrand of (43) was mistakenly written as W

7L+1(27x)
instead of (M ™)1 1m41(2,%).

Essentially selfadjointness characterization

The characterization of e.s.a. for the operator A defined in (B)) will rely on the real-
valued solutions of the O.D.E.

~ (b)) + dz)u(z) =0 ()

on (0,2') and on (2', 4+00).
+o0o
A typical case is when /a(z) dz < +oo, but / a(z)dz = +oo. Then
0
since we may assume A to be ¢.e.s.a. (otherwise it cannot be e.s.a.), we have

1
/ (m + d(z)) dz = +00. In such a case, we will show that there is a unique solution
0 z
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of (@), denoted by «, such that
« is a solution of (@) in (0, 2'),

a(z') =1, (10)

/OZ (b(z) o/ (2)? + d(2) a(z)z) dz < +00 .
Then, we define 5(z), z € (0,2), by

? 1
B(z) = a(z) /Z ) a(s)? ds. (11)

Note that, by construction, § is another solution of (@) in (0, 2’). We shall prove that:

!

Ais e.s.a. if and only if /5(2)2 a(z)dz = 4o0.
In the case where the0 role of 0 and +o0 are exchanged, the result is similar. We
will show that there exists a unique function « such that
a(z) is a solution of (@) in (2, +00),
a(z) =1,

/Z+00 (b(z) o (2)* +d(2) a(z)2> dz < 400 .

!

(12)

Then, we define f(z), z € (2, +00), by

N 1
B(z) = az) /Z, ) a(s)? ds , (13)

+o0
and we shall prove that: A is e.s.a. if and only if/ B(2)*a(z) dz = +o0.

Note that, when d(z) = 0 the problem considerably simplifies since, in this case,
] * 1
a = 1 and f(z) turns out to be either [Fy(z) = /Z %dz or fy(z) = /Z/ @dz

respectively.

Notation 3.8 We denote (a(z), 3(z)) the above couples of solutions of (@); the context
will indicate whether z € (0, 2’), in which case («(z), 3(z)) are given by (I0) and (),
or z € (#/,+00), where (a(2),3(z)) are given by [[Z) and ([I3).

With this notation, the result is the following.

Theorem 3.9 Assume the operator A given in (3) to be g.e.s.a., that is to say

[ (i@ +a@)) o= [ (G +ate) +ate)) d = v

There are four cases:

+oo
(i) ]f/a(z) dz = / a(z)dz = +oo, then A is e.s.a.;
0
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+o0o
(i) If /a(z) dz < 400 and/ a(z)dz = +oo, then A is e.s.a. if and only if
0

/ B(2)%a(z) dz = +00 ;

0
+o00
(111) If /a(z) dz = +oo cmd/ a(z)dz < +oo, then A is e.s.a. if and only if
Jo
Bl

2)%a(z)dz = +o0 ;

(i) If /a(z) dz < 400 and /+OO a(z)dz < +oo, then A is e.s.a. if and only if
0
/5(2)20(2) dz = i B(2)%a(z)dz = +o00 .
0

Remark 3.10 Take care of the uniqueness of o (and thus the meaningfulness of the

1 teo ]
definitions above): it holds when /0<% +d(z)) dz = 400 or / (m +d(z)) dz =
+00, according to where the variable z lives.

Preliminary step: study of solutions of (@)

Lemma 3.11 Let u(z) be a solution of ([3) in some interval I C (0,400). Then the
function b(z) u(z) u(z) is increasing in 1.

Proof:
From (@) we obtain

— (b(z) u(z)’ u(z))/ +b(2)u(2)* +d(2)u(z)* =0,

!/
showing that (b(z) u(z)’u(z)) is nonnegative. O

Lemma 3.12 Let u(z) be a solution of (9) in (0,z"). Then

/Ozl (b(Z) U/(Z)2 +d(z) u(2)2) ds — 400
if and only if

Zli)r(lgl+ b(z)u'(2)u(z) = —00.

Proof:
Since u(2') and u/(z") exist, the proof follows immediately from the fact that, for
0 < 2y < 7, we have

/ /

/ ) (b(z) ()2 + d(z) u(z)2> dz = / )

(b(z) u(z)’ u(z)) / dz
=b(2") ' (2" ) u(z") — b(z0) u'(20) u(z0) -
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Lemma 3.13 Let 2/ > 0 be chosen.
(i) There exists at least one solution a(z) of (@), in the interval (0,z2"), such that
alz)y=1

and

“/<Mdd@f+ﬂ@a@f%k<+m.

0

This solution is positive and increasing in (0, 2'), satisfying
lim b(z) o/ (2) a(z) =0.
z—07F

!

? 1
(i) If in addition / (m + d(z)) dz = 400, this solution is unique.
0 z

Proof:
Let L? ((0, 2 )) be the space of measurable functions f(z) such that

!

Aﬂwn@f@<+m.

We define, for any f in this space, the function 7'f by

Tf(2) :1—/z £(s)ds.

so that T'f € C((0,2")) N HL, ((0,2")), with (T'f)'(z) = f(z). Let

/

i = [ (06 17+ ate) (1))
taking values in (0, +oc], and

qo = inf Q(f)

2
fer?

1
Note that qq is finite since, for example, for f(z) = ———1, .(z) for some 0 < 2y < 2/,
Z— 20
q(f) < +o00. We shall show that g is in fact a minimum. To this end, let (f,,)nen be a

minimising sequence

n——+0oo
Then, by construction,

sup ||l 3 < +00.
neN

so that (up to extracting a subsequence) we may suppose that the sequence (f,,) has a
weak limit fy in L? ((O, z’)) Let us prove that ¢(fo) = qo-
For any z € (0, 2') and for all z > z

41 1/2
T <1+ ( / @dz) 1Fullzz < Clz0).
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and
TfO(Z) 1[20,2’}(z) = nl—l>r—iI-100 Tfn(2> 1[2072/](2) :
So, by dominated convergence, we have

im [ d(z) (Tfn(z)>2dz: / e (Tfo(z)>2dz.

n—-+4o00o 20 20

Also we know that

! !

/ ) b(2) fo(2)? dz < liminf / ) b(2) fa(2)*dz,

20 n—-+4o00 20

since fo = W-lJirm fnin L} ((O, 2 )) as well. From these two facts, we deduce
n—-—+0o0

/

/ZOZ (b(z) fo(z)? +d(z) (Tfo(z))2) "

< liminf / (b(z) Fule)? +d(z) (T fn(z)>2> iz < qo.

n—-4o0o

Letting zo — 07, we obtain ¢(fo) < qo, and thus ¢(fo) = qo as desired.
Let now a(z) = Tfo(z). For any u € C ((0,2)) N Hp, ((0,2)), with u(z') = 1,
define

Q(u) = q(u)

-/ (W ) o)
We have proved that
Qa) = muin Qu) .

We define
T ifta>0 and 01 @ ita<0
] 0 ifnot ] 0 ifnot
so that « = ot — a” and ata™ = 0. Then we have that Q(a™) < Q(a) with

strict inequality if and only if @~ # 0, and since ™ € C ((0,2')) (N Hp, ((0,2)) with
at(Z') =1, we must have
Qa™) = Q(a),
and o = a, i.e., a is positive in (0, 2/].
If ¢ € C((0,2) N HL. ((0,2")) is such that Q(a + t¢)) < +oo for all ¢ € R and
¥(2') = 0, we must have

Qa) < Qla+tv),

and this implies

!

/Oz (b(z) a(2)(2) 4 d(2) a(2) ¢(Z)) ds—0.
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This, in particular, is true for all ¢ € C§° ((0, 2 )), implying that

/!
— (b(z) a(z)/) +d(z)a(z) =0
in (0,2).
But then, this means that

!

/Oz (b(z)oz(z)/Wz)’ + (b(z)a(z)/>,¢(z)) ds— 0

for all » € C ((0,2')) N H}, ((0,2)) with Q(a + 1)) < 400 and ¥(z) = 0. Therefore

lim b(z) &/(z)¥(z) =0.
2z2—0t
Choosing 1 = an, where n € C* (0, +oo)), n =1 near 0 and n = 0 near 2/, we get
lim b(z)a/(2) a(z) = 0.
2z2—0t

With lemma BTT], this shows that (recall that « is positive) o® and hence « are both
increasing in (0, 1). Thus, part (i) is entirely proved.
(1) Let

/

B(2) = al2) / m ds .

Then, 3(z) is another solution of ([@)) in (0, 2), so that any solution writes A a(z)+pu B(2),
A, it € R. The uniqueness of a(z) will follow from the proof of

/0 ’ (b(z) B'(2)2 + d(z) B(z)2> dz = +00. (14)

A direct calculation shows that §(z') = 0 and (') = —
@), we obtain

! . Thus, from the O.D.E.
b(z")

!

1 1 z
—B(2) = —~+ —~ d ds .
CRbeRye ILEECL
Since 3 is positive by construction, it turns out to be decreasing in (0, '), with
1
|ﬁ/(2)|2w, O<Z§Z/,

and

/

5> [ ﬁds — fol2) (15)

Hence, there exists a constant C' such that 5(z) > C'if z < 2//2, and we obtain

/0 . (b(z) B'(2)? +d(2) B(z)2) dz > /0 . % dz + C? /0 ” d(z) dz

= 400.

The lemma is proved. U

Lemma [B.13] has an analogous counterpart near +oo, which is the following.



On well-posedness of the Cauchy problem. . . . 19

Lemma 3.14 Let 2/ > 0 be chosen.

(i) There exists at least one solution «(z) of (D), in the interval (2, +00), such that
alz')=1

and

/Z+°0 (b(z) o (2)? +d(2) oz(z)2> dz < 400.

/

This solution is positive and decreasing in (2',+00), satisfying

lim b(z)d/(z)a(z) =0.

Z—r+00

+o0 1
(i) If in addition / (m + d(z)) dz = 400, this solution is unique.
z
Proof: .
By making the change of variable z — — the proof immediately follows from the
z

previous lemma. O

Remark 3.15 The function a(z) given in (0, z') (respectively in (2/,4+00)) by lemma
(resp. lemma [B.14) is not a solution of [@) on (0, +0c0), but of

~(b2) o/(z))' +d(2) alz) = Aba(2),

+00
where §,/(2) is the Dirac measure at z = 2/, and A = / (b(z) o (2)? +d(2) a(z)z) dz.
0

Main step: e.s.a. characterization in dimension one

Let us consider now the operator

Apu(z) = ﬁ (-(b(z) u’(z)>/ + d(z)u(z))

defined as in (@) with

/0 (ﬁ + d(Z)) dz = /+Oo (ﬁ + d(z)) dz = +00. (16)

“+oo
Lemma 3.16 ]f/a(z) dz = / a(z)dz = +oo, Ap is an e.s.a. operator.
0

Proof:
Assume Ay is not e.s.a.. By lemma [2.5] there exists u € Hy such that

~(b2) u'(z))' +d(2) u(z) + a(z)u(z) = 0,

and u ¢ &, i.e., either /(b(z)(u’(z))2 + (d(z) + a(z)) u(z)2> dz = 400 or

0

/+°° (b(z)(ul(z))Q + (d(z) + a(z)) U(z)2> dz = 400 (or both).
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If /(b(z) u'(2)? + (d(z) + a(z)) u(z)z) dz = +00, by lemma (changing d in
0
d + a) we have

Zli)lgl+ b(z) v (2)u(z) = —o0.

In particular, v/(z)u(z) < 0 for z < z, for some zy > 0, so that u? is decreasing in

+oo

(0, z9]. But since / a(z)u(z)*dz < 4oo, this implies /a(z) dz < 400, which is a
0 0

contradiction.

If / <b(z) u'(2)? + (d(z) + a(z)) u(z)2) dz = 400, a change of variable reduces
the proof to the preceding case. 0

+00
Lemma 3.17 Assume /a(z) dz < +o0 and/ a(z)dz = +oo. Then, Ay is an
0

e.s.a. operator if and only if/ﬁ(z)za(z) dz = +o0.
0

Proof:
We first assume that /ﬁ(z)%(z) dz < +o0o. We set u(z) = B(2)n(z) with

0
ne C*([0,400)), n =1 near 0 and n = 0 for z > . Then u € Hy and Aju € Hy. But
by the hypotheses ([I0]), u ¢ & (see ([Id) in the proof of lemma BI3). Thus A, is not

€.5.0..
Reciprocally, assume that Ag is not e.s.a.. Then there exists u € Hy such that

—(b(2)w(2)) + d(=) ulz) + a(2) u(z) =0,
and u ¢ &.
+00 +oo
Since a(z) dz = 400 and / u(2)%a(z) dz < 400, the same argument as in

lemma [3.16] shows that necessarily

+o0o
/ <b(z) u'(2)? + d(2) u(z)z) dz < 400.
Thus we must have

/(b(z) u'(2)* + d(z2) u(z)2> dz = +00.

0
By lemma B.12, lim b(z) u'(2) u(z) = —o0, and in particular, u? is decreasing in (0, 29)
z—0

for some zy > 0. We may assume that u(zg) > 0 and u'(z) < 0 (up to changing u in
—u). Let C7 and Cy be two constants such that

Cra(zy) + Cy 5(20) = u(z0),

C1d/(20) + C B (20) = u'(20) -
They exist because we know that the Wronskian b(z) (a(z)ﬁ’(z) — o/(z)ﬁ(z)) is never
vanishing m Moreover, we must have Cy # 0, otherwise u(zp) and u/(z) would have

| In fact, it is a constant, equal to —1.
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the same sign (recall that « is positive and increasing, by lemma B.I3]). We even have
Cy > dﬂ
Let v(2) = u(z) — Cr az) — Cy B(z). We have

!/
— (b(z) z/(z)) +d(z)v(z) +alz)u(z) =0,
with v(29) = v'(20) = 0, u > 0 in (0, zp]. By classical arguments, v must be positive and
decreasing in (0, 2o

/
e [t is so in some neighborhood of zy, because (b(z) v’(z)) > 0 near zg and v'(zo) = 0,
so that v/(2) < 0in (z9 — €, 29);
e it cannot change its sense of variation in (0, z9) (v(z1) > 0, v'(21) = 0, v"(21) <0

at some 2 < 2 is impossible).

Hence, since C5 > 0, we have

5 < g (u(2) - Cra(2))

in (0, zg]. Since a is bounded, /a(z) dz < +oo and u € Hy, this implies
0

/B(z)za(z) dz < 400,

0
and the proof is finished. O

+o0o
Lemma 3.18 Assume /a(z) dz = +o0 and/ a(z)dz < +oo. Then, Ay is an

0
—+00

e.s.a. operator if and only if B(2)?a(z) dz = +o0.

Proof:
The result follows by a change of variable and the preceding lemma. 0

+00
Lemma 3.19 Assume /a(z) dz < +o0 and/ a(z)dz < +oo. Then, Ay is an

0
—+00

e.s.a. operator if and only if B(2)?a(z) dz = +oo.

Proof:
If Ap is not e.s.a., there exists u € Hy solution of

~(b(2) () + d(z)ulz) + az)u(z) = 0.,
and either /0 (b(2) (=) +d(2) u(2)?) d= = +oo or / +°° (b2 (2 +d(2) u(:)?) dz =

+00. Use the arguments of lemma [3.17 or lemma [3.18] depending on the case.
Reciprocally, as we have done in lemma B.I7, we consider u(z) = ((z)n(z) for a
suitable n and the result follows. U

9 Cy = b(20)[u(20)a’ (z0) — u'(20)a(z0)] > 0
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Final step: reduction to the one-dimensional case

Defining the operators A as in (), i.e.,

Apu(z) = <— (b(z)u'(z)>/ + (Ak c(z) + d(z))u(z)) ,

1
a(z)
we have the following result:
Lemma 3.20 A is an e.s.a. operator if and only if for all k > 0 A is an e.s.a.
operator.

Proof:

We use the notation introduced in step 1 of the proof of theorem By Lemma
2.0 if Ay is not e.s.a., there exists u € Hy, u € D(A}) but u ¢ &. This implies that
p=u®, € D(A*) and ¢ ¢ &, so that A is not e.s.a. .

Reciprocally, if A is not e.s.a., there exists ¢ € H non vanishing, such that

Ao+ ¢ =0.
Decompose
Y= Z Uy & wka
k>0

there exists k such that uy # 0. If ¢ € C§° ((0,00)), we have

0=<¢, Al ®@Up) + O @Y >u=< up, Ad + ¢ >y,
which means that Ajuy + ur = 0. Thus Ay is not e.s.a. by lemma again. O

Proof of theorem

+o0o
(i) If /a(z) dz = 400 and / a(z) dz = +o0, then /(a(z) + A c(z)) dz = 400
0 0
“+oo
and / (a(z) + g c(z)) dz = +oo, for all £ > 0. Therefore A is e.s.a. by lemma

with a changed in a + A\; ¢(z), and by lemma Ais e.s.a..

In the cases (i), (iii) and (iv) if A is e.s.a. it follows by lemma that in
particular Ag is e.s.a.. Then lemmas [3.17], [3.18 and give the result.

For the converse, let us take the case (ii). If A is not e.s.a., by lemma there
exists k > 0 such that Ay is not e.s.a.. Then by lemma [3.17

/ﬁk(z)Qa(z) dz < 400, (17)
0
where ) is the solution of

(M) w'(2) + (eI + () ulz) =0
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1
n (0,2") with Cauchy data u(z’) = 0 and u'(2) = )
2

principle, applied to the functions S, and f, defined in ([Il), give us 0 < 5 < % on
(0,2"). Then ([IT) implies

A classical comparison

/5 z)dz < 400,

as desired.
The other cases are analogous.
Theorem is completely proved. O

Remark 3.21 The precise definition of the function B(z) is needed only for the
sufficiency of the condition

/B z)dz < 400

for A to be e.s.a.. This is not used in the reciprocal, where the “massless-3”

!

Bol2) :/: ﬁds

would have worked as well (see ([[H)). But, for the sufficiency, if we choose u(z) =
Bo(2) n(2) in lemma B.I7 with n € C*°([0,+00)), n = 1 near 0 and n = 0 for z > %,
then
1 , !
5 (~(EAETE) + @ ae ).

Aju(z) = e

and this belongs to Hy only when

1
/0<>50<>ﬁdz<+oo

This gives a necessary and sufficient condition for e.s.a. in terms of fy(z) only, not

B(z), when % is bounded:

d oo
Corollary 3.22 When % is bounded near 0, /a(z) dz < 400 and/ a(z)dz =
< 0

+00, A is e.s.a. if and only if/ﬁo(z)Qa(z) dz = +o0.
0

There are similar statements in the other cases.

Remark 3.23 The previous results in the domain (z, z;) X .#
In some relevant examples one is lead to consider Q = (zg,21) X A, 0 < 25 < 21 <
oo, and a differential operator A defined as in (3] by

Ap(z.3) = = {0, (6200002 ) = (2D (. 3) + dlp(z. 0}

for all ¢ € C3°(Q2), where the functions a, b, and ¢ satisfy the following hypotheses:



On well-posedness of the Cauchy problem. . . . 24

e a,c de L, ((z0,21)), b€ C((20,2))
e a>0,b>0,¢c>0andd>0in (2,2)
L4 CI,_I, b_ _1 S Lloc ((20,2’1)) .

The previous results straightforwardly generalize to such a case. For the convenience
of the reader, we state the two main theorems.

21 1
Theorem 3.24 A s a q.e.s.a. operatorin H if and only if/ (m +d(z) + a(z)) dz
z
1
= 400 and /ZO (% +d(z) + a(z)) dz = 400.

Theorem 3.25 We assume A is a q.e.s.a. operator, There are four cases:

(i) ]f/ a(z)dz :/ a(z)dz = +oo, then A is e.s.a.;

(i1) ]f/ 2)dz < +00 cmd/ a(z)dz = +oo, then A is e.s.a. if and only if

/B 2)dz = 400 ;

(11i) ]f/ dz = +o00 cmd/ a(z)dz < +oo, then A is e.s.a. if and only if

/ B(z)°a(z)dz = 400 ;

21
(iv) If/ z)dz < 400 and/ a(z)dz < +oo, then A is e.s.a. if and only if

/ﬁ dz-/ B(z)%a(z) dz = +oo.
1

21
A typical situation where these results apply is when / (m +d(z) + a(z)) dz =
z

+o0 but / (Wl) +d(z) + a(z)) dz < +oo. Then C§°(Q2) is not dense in &£, but the
20 z

only non trivial linear forms continuous on &, vanishing on C§°(€2), are supported on

{z0} x . This means that a boundary condition must be chosen at z = zy, but not at
z= 2. .

Moreover if we have, for example, 1 a(z) dz = +o00, the selfadjoint extension A,
defined from A with an appropriate boundary condition at z = z, will be unique.
In particular, considering null Dirichlet boundary condition, A will be the selfadjoint

extension of A constructed from the restriction of the bilinear form to £°.
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4. Well-posedness of the Cauchy problem

Let A and €2 be as in the previous section. We assume A to be at least g.e.s.a. but not
necessarily e.s.a.; we denote in the same way its unique selfadjoint extension with finite
energy. We take functions f € £ and g € H and consider the Cauchy problem

Oup + Ap =0,
Op(0,-) =g

Theorem 4.1 Under the hypotheses above, the problem (P) has a unique solution
¢ € C([0,00); ) N CH([0, 00); H),

and there exists a constant C' > 0 such that

V>0 (o, )le+ 100, )a < CUflle + llgllz)-

In this case, the energy

B6) = 5 [ (@(:) 00)* +H(=) (0.0) + c(2) V0P + d(:)oF) d

s well-defined and conserved:

V>0 E(,t) == (llgl%+0f,f)).

N —

Proof:
Let D be the domain defined in (2)), given f € D and g € &£, the solution of (P) is
given by (see, for example, [0] and references therein)

o(t,-) = cos <tA%)f +A: sin(tA%)g. (18)

Taking into account that D(A2) = &, we have ¢(t,-) € D and d,é(t,-) € €. That ¢(t,-)
and 0y¢(t,-) are continuous vector-valued functions (in D and in & respectively) rely
on a classical density argument we only sketch. For ¢ > 0 we set f. = (I +¢cA)71f,
g = (I +eA)tgand ¢. = (I +cA)"1¢. Then d;¢.(t,-) € D and 9u¢.(t,-) € &, with
their norms uniformly bounded in ¢, while ¢.(¢,-) — ¢(t,-) in D and 0;¢.(t, ) — Oo(t,-)
in & when € — 0. The conclusion readily follows.

When f € £ and g € H, we define ¢(¢, -) by ([I8). Then ¢(¢,-) € £ and 9,4(t,-) € H.
The continuity results are obtained by density arguments in the same way as above.

The reader should notice that in this case we have dy¢(t,-) + A(o(t,-)) = 0 in
&', where £’ is the dual space of £; hence ¢ is a weak solution of (P). Regarding the
conservation of the energy, although the argument here is standard, we recall it for its
convenience. We assume first that f € D and g € £. Then ¢(¢, ) is a strong solution of
(P) and we have

| [[at:) 010 @us+ 4)dean =0 (19)



On well-posedness of the Cauchy problem. . . . 26

We consider each term separately, obtaining for the first one

/Q/: a(2) 8 B dit dpu = %/a(z) (0,6 dy

Q

to

: (20)

t1

and for the second one (see for instance [12])

/tt2 /gﬁt(b Apalz) dtdp = /t2 < 010, A >y dt

t1

=Afw¢@@ﬁ

_ 1 /Q (a(z) (0:9)* + b(z) (0:0)* + c(2) |Vo|* + d(2)|¢]*) dp

2 ”
(21)
Now, by ([I9), adding (20) and (21]), we have for all t > 0
B(61) = 5 | (a2) 01007 +b(2) (0.0)" + c(2) VO + d(:)IoF) d

— > (gl +0(1.)

Again, by a density argument as before, this result remains true when f € £ and
ge H. 0

5. Propagation of classical scalar fields in static spherically symmetric
spacetimes

We consider a (n+2)-dimensional static and spherically symmetric spacetime with n > 1
and metric signature (— + ...+). Due to the required isometries the more general line
element can be written as

ds* = —F(r)dt* + G(r) dr* +r* dl%. (22)

where df%, is the metric on the unit n-sphere S™ and r in (0,+o00). For a non-
degenerate Lorentzian metric g, (22)) makes sense only for those values of r such
that 0 < F(r)G(r) < +oo. On the other hand, since gq;(9;)%(9;)" = —F, the Killing
vector field J; is timelike only in the region F'(r) > 0, and so spacetime is static only
in this region. Therefore, without loss of generality, from now on we shall restrict
ourselves to the region where F(r) and G(r) are both finite and positive. In addition
we shall assume that F' and G are such that the condition 0 < F(r),G(r) < +oo
") of (0,+00) and

[

holds in a finite union of disjoint non empty open subintervals (r;
m

F F'G e Cl(U(r;,r;r)). If the spacetime is asymptotically flat, in the outer region
i=1
(r,.,+00), we can find coordinates such that liIJP F(r)= liT G(r)=1.
r—+00 r—r+00
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Due to the required symmetries the more general energy-momentum tensor can be
written as

Tzf = diag{—p(r),pr(r),pg(r), s ’pe(T’)} ) (23)

where p(r) is the energy density, and p,.(r), pg(r) are the principal pressures. We shall
assume that p(r) is bounded and the dominant energy conditior& is satisfied, which, in
this case, is equivalent to

[pe ()], Ipo(r)| < p(r) < +o00. (24)

From [22)) and ([23)) we get that Einstein’s equations, i.e., Gup + A gay = 87Ty,
become

Gl = ((n—l) (1— Gb)) +7"G(r)2> — _8rp(r)—A,  (25)
Gr=_" ( TF,<T)>+(n—1) (Gir)q)) —8rp(r)— A,  (26)

__ ') PG | (- DF(r) F'(r)?
2F(r)G(r) 4AF(r)G(r)?  2rF(r)G(r) 4F(r)>G(r)
_(n—l)G’r)_(n—Q)(n—l)(l_ 1 )
2rG(r)? 2r2
=8mpy(r) — A, (27)

where A is the cosmological constant. Furthermore, the local energy-momentum
conservation (V,7% = 0) gives
: p(r) +pe(r) F'(r) — (pr(r) — po(r))
S — : 28
pr(r) 2 F(r) " r (28)
Of course, due to Bianchi’s identities, (23])-(28]) are not independent. These are a system
of three linear independent ODE’s and, in order to find the five unknown functions F(r),

G(r), p(r), p-(r) and py(r), we have to provide equations of state relating the functions

p(’/’), pr(r> and pg(’f’).
From (25) and (26) we can write down a more handleable set of two equivalent
independent equations

(rn—l (1 _ %)) =2 (8 p(r) + ), (29)

' (F(r) G(r)) = 167” (b(r) +pr()) G (1), (30)

which in the vacuum cases, leads readily to the solution.
Indeed, if we for instance set p(r) = —p,(r) = pa(r), from ([28)) we immediately get
that

* See for example [1]
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where the constant C} must be positive by (24]). Then, we find from (29) that
1 02 167 Cl 2A 7“2

-1 _ _
G(r) rn=1 * n(n—1)r=2 nn+1)’
where (5 is a new arbitrary constant. And (B0) immediately gives F'(r) G(r) = Cs,

and we can always set the constant C3 = 1 by scaling the time. This family of
solutions, depending on three parameters, includes the higher-dimensional generalization
of Schwarzschild, de Sitter and Reissner-Nordstrom geometries.

For future use, we shall prove the following result.

Lemma 5.1 If 0< F(r),G(r) < +oo in some interval (r; ,r}), then

(i) F(r)G(r) is a nondecreasing function of r in (r;,r;), and then bounded in a

neighborhood of r; .
(ii) In the outer region of an asymptotically flat spacetime, F(r)G(r) is bounded.

Proof:

(i) As a consequence of the dominant energy condition (24]) the right hand side of
([B0) cannot be negative, then F(r)G(r) cannot be decreasing.

(i1) Since F(r)G(r) is nondecreasing, we get that 0 < F(r)G(r) < 1 since

lim F(r)= lim G(r)=1. O

r——+00 r—-+00

In these spacetimes, we shall consider the propagation of a scalar field ¢ with
Lagrangian density

1 2
L= = VOV~ ’%w?,

where the constant m is the mass of the field and V denotes the covariant derivative
(Levi-Civita connection).
As usual, we obtain the field equations by requiring that the action

5= / L(Vato, b, gur) V19 iy

be stationary under arbitrary variations of the fields v in the interior of any compact
region, but vanishing at its boundary. Thus, we have the Euler-Lagrange equation

. (L) -2

OV oY’
which, in our case, becomes the Klein-Gordon equation

Oa ( lg] g 8b¢) ,
Ve = Oy = —m?y. (31)

Vol

Therefore, we get from (22]) and (BI]) that the field equation may be written as
O = — A
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where

1 F(r) W [ F(r) n—2 2
v =l e o ( G(T)aw)w VEWIGE) Bswts | +mi? Fr) o

TTL

(32)

where Agn is the Laplacian on the unit n-sphere. Then, by comparing with the operator
defined in (3)), we get the identification of the coefficients

o faw o [F0)
CI,(T’) =T F(’f’) ) b(’f’) =T G(T) )
c(r) =r"*/F(r)G(r) | d(r) =m*r"\/F(r)G(r) . (33)
: . .. dt G(r)
Remark 5.2 From (22) we get that radial null geodesics satisfy = + Fr) Then,
r r

if 7o and r belong to the closure of a connected region where 0 < F'(s),G(s) < +o0, we
find from (B3] that the coordinate time t a radial photon takes to travel from r to rq is

0 T0
/ GEs) 4l = / ) gl
P\ F(s) P\ b(s)
We shall see that it is actually this time which plays a crucial role in the analysis
+

of e.s.a. when there is a horizon at 7o (g = r;” or ro = r; ) in the spacetime, i.e.,
T(r — rg) = 4o00.

T(r—ry) = (34)

Lemma 5.3 In the outer region of an asymptotically flat spacetime one has

/+oo a(r) dr = +o0.

Proof. If lim F(r) = lim G(r) =1 by (B3) we have that lim alr) =1, and then

r—+4o00 r—+4o00 r—+4oco 17

+oo
/ a(r) dr = +00. O

Lemma 5.4 If 0 < F(r),G(r) < +oo in (r;,r]), with r; > 0, the three following

P00

statements are equivalent

/Ti%dr:%—oo, /Tia(r)dr:jtoo and /Ti\/%drzﬂx)'

On the other hand, if v} is finite, the three following statements are equivalent

/rjwlr)dr:jtoo, /Tja(r)dr:—l—oo and /Tj\/%dr:—l—oo.
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Proof.
By [B3) we have that a(r)b(r) = r?". For r, < r < r* < +oo, we readily get the
inequalities

e e n @ a(r " @
b(r) <alr) < b(r) and T b(r) <alr) < b(r) -

Now, by integrating these expressions between r, and r*, we get the result. O

Observe that by the properties of the functions F' and G, under the hypotheses of
lemma [5.4] we have

eab c,deC ((ry,rf))

Z ? Z

ea b c>0andd>0in (r;,r)

Z ’ 0

ea b et el ((ry,r)).

Z P2

Then, if we consider the operator defined by [B2) in Q = (r;,7;) x S", we have:

Theorem 5.5 For 0 < r, < oo, let A be the operator corresponding to the

propagation of a scalar field in Q = (r,,00) x S™ in a static, spherically symmetric

m7

and asymptotically flat spacetime where the dominant energy condition holds. The three
following statements are equivalent:

(i) The time T(r — r..) is infinite.
(i1) A is a g.e.s.a. operator.

(111) A is an e.s.a. operator.

Or, in other words, A is e.s.a. if and only if a radial photon needs an infinite amount

of time to get r,,.
Proof:

+oo
(i) = (ii) and (74): By lemma [5.3] we have that / a(r) dr = +00. On the other

hand, if T'(r — r,,) = +00, it follows by ([B4]) that / ”% dr = 400, and then from

lemma [5.4] we have / a(z) dz = +oo. Therefore, it follows from theorem B.24] that the
operator A is g.e.s.a and from theorem 523 (i) that the operator A is e.s.a.

(1)) = (i): Conversely, assume that T(r — r) < 400, then H d <

+oo. And it immediately follows from lemma [E.4] that / r)dr < +4oo and

Tm

1
/ mdr < 400. On the other hand, since F(r)G(r) is bounded by lemma 5.1
T'm r

d(r)dr =m / "/ F r)dr < +o0o. Therefore, it follows from theorem
that the operator A'is not g.e.s.a.
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(#4i) = (ii): This is obvious by definition. O

Remark 5.6 Note that the boundedness of F'(r)G(r) is only used in the proof of the
sufficiency of the condition T'(r — r,) = 400, to guarantee that d(r) is integrable
at .. Therefore, for massless fields, since in this case d(r) = 0 the theorem follows
without invoking any energy condition.

Similar results also follow from remark and lemma [5.4] at internal horizons.

6. Examples

6.1. (n + 2)-dimensional punctured Minkowski spacetime

Here we consider the flat (n + 2)-dimensional Minkowski spacetime with a removed
spatial point. We chose the origin of coordinates at this point and then the line element
can be written as

ds® = —dt* + dr* + r* dl%. |
where —oo < t < 400 and 0 < r < 4+o0o0. This spacetime has a time-like singular
boundary along the ¢ axis. In this case, Q = (0,00) x S™ and F(r) = G(r) = 1, so the
coefficients in [B3) are a(r) = b(r) =", c(r) = r"~2 and d(r) = m?r". The operator A
in (32)) turns out to be

1 1
AY = —— 0, (" 0) — — Agnth +m*
r r

which formally is nothing but —A + m?.

+00 d
Now, for n > 1, we have that / a(r)dr = 400 and /TT) = 400. Then it
o b(r

immediately follows from theorem that A is a ¢.e.s.a. operator for every m? > 0
and every n > 1.
We turn now to explore whether A is an e.s.a. operator too. Taking into account
+00
that d(z2)/a(z) = m?, /a(z) dz = /7’" dz < +oo and / a(z)dz = 400, we can
0

0
apply corollary [3.22]
Now, for 0 < r; < 400, we have

- —In (L) if n=1
Bo(r) :/ d_u = "

b l-n __ 1—-n
() U if n>2
n—1
Thus,
r1
/ 502(7')&(7’)(17’ < +00
0

if and only if n = 1,2. Therefore, it immediately follows from corollary B.22] that A is
an e.s.a. operator only if n > 3. This is a well known result, see for instance [13] [14].
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6.2. (n+ 2)-dimensional anti-Schwarzschild (M < 0) spacetime

Here we consider the (n + 2)-dimensional spacetime with line element

2 T?_l 2 T?_l ! 2 2 2
dS:_ 1+ dt“— 1+ d?“ —|—7“ dgsn,

Tn—l Tn—l

where —o0 < t < 400, 0 < r < 400, r, is a positive constant and n > QH This
spacetime has a naked timelike singularity at » = 0 where some components of the Weyl
tensor diverge.

In this case, = (0,00) x S™ and we get from (B3) that the coefficients of the

operator A are

T2n—1

a(r) = e e b(r) =r(r" =t +r7h)  o(r)

We get therefore

/ﬁ =400 and /+ooa(r)dr— +00
0 b(r) .

Then it immediately follows from theorem that A is a g.e.s.a. operator for every

"2 and d(r) =m*r" .

m? > 0 and every n > 2.

For m = 0 and n = 2, we have already proved in [9] that A is not an e.s.a. operator.
Here, we shall analyze the general case.

We first consider the case m = 0. Taking into account that

+o0o
/a(r) dr < 400, / a(r)dr = 400 and d(z) =0,
0

we can apply corollary [3.22
For 0 < r < r,, we have

" ds -1 271
w0 = [ = = ()

/0 " B2(r)a(r)dr < +oo.

Thus, in the massless case, A is not an e.s.a. operator for every n > 2 thanks to the
corollary [3.22

For m? > 0 we cannot apply corollary since d(z)/a(z) is not bounded near
0. Nevertheless, the ordinary differential equation (), satisfied by the function «(z) of
lemma BI3] becomes in this case

~(r " ) P alr) =0,

and

and a straightforward computation shows that

sl 25 (5 (1))

* The case n = 1 is 3-dimensional Minkowski spacetime already discussed in
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near 0. Furthermore, since by lemma [B.13] a(r) is positive and increasing in (0,7), and
by definition a(rs) = 1, we get that 0 < «(0) < 1.
Therefore

" ds 1 " ds 1
5(”‘0‘(”[ W)l a<r>/r ZORTORGE

/ B( dr< / BE(r)a(r)dr < +oo.

It follows from theorem [3.9] (1) that A is not an e.s.a. operator for every n > 2 and
2
m* > 0.

and

Remark 6.1 Note that the estimate
ds 1

=0 | ey < )

when a(0) # 0, also gives a necessary and sufficient condition for e.s.a. in terms of
Bo(z) only.
For analytic b(z) and d(z), as in our example, «(0) # 0 if one of the roots of the
indicial polynomial of (@) is zero and the other non positive, which requires that
2 /
lim d(2) = and im 2V(z) >1.
2z2—0t b(Z) z—0*t b(Z)

6.3. (n + 2)-dimensional Schwarzschild-Tangherlini spacetime

Here we consider the (n 4 2)-dimensional spacetime with line element

n—1 n—1
ds® = <1 T )dt2 ( _ Ts_l) dr? + 1 dQ%. |
rm rn

where r, is a positive constant, —oo < t < +00, 0 < r < ryorry < r < +oo and

n > 2. This spacetime has a spacelike irremovable singularity at » = 0 where some
components of the Riemann tensor diverge and an event horizon at r = r,, the latter
may be removed by introducing suitable coordinates and extending the manifold to
obtain a maximal analytic extension [15]. As already mentioned, our wave formulation
only makes sense in the static region (rs < r < 4+00), and we will use it to explore the
properties of the wave equation (BII) in this region.

Thus, we consider the operator A given by [B2]) in = (7, 00) x 5™, and we see

from (B3] that
2n—1
a(r) = 771—: — , b(r)= r(r" =™ and  d(r) = m*r" .
=t — T

Now, we get from (34]) that

r % r n—1
T(r—ry) = / (%) ds = / 75"—18— e ds = +00 .

Therefore, it immediately follows from theorem that A is an e.s.a. operator in
Q = (ry,00) x S™ for every n > 2 and any m? > 0, and the Cauchy problem is well-
posed without requiring any boundary condition at the event horizon.
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6.4. (n+ 2)-dimensional Reissner-Nordstrom spacetime

Here we consider the (n 4 2)-dimensional spacetime with line element

n—1 2n—2 n—1 m—2 \ —1
2 Ts q 2 Ty q 2 2 2
ds” = — <1 ~ o + 4r2"—2) dt” + <1 ~ o + 4r2"—2) dr® +r° dQg. |

where r, and ¢? are positive constants and n > QH If ¢> > r? the metric is non-singular
everywhere except for the timelike irremovable repulsive singularity at r = 0. If ¢* < r2,
the metric also has singularities at r, and r_, where r. " = (#7714 /r2n=2 — g2n=2) /2
it is regular in the regions defined by co > r > ry, v >r >r_and r_ > r > 0 (if
¢* = r2 only the first and the third regions exist). As in the Schwarzschild case, these
singularities may be removed by introducing suitable coordinates and extending the
manifold to obtain a maximal analytic extension [16] [17]. The first and the third regions
are both static, whereas the second region (when it exists) is spatially homogeneous but
not static.

We shall study the properties of the wave equation in the static regions. For
convenience we shall analyze separately the three cases. Note that, in the three cases
this spacetime is asymptotically flat.

6.4.1. Case ¢> > r2 This spacetime has only a naked timelike irremovable repulsive
singularity at » = 0. In this case, we consider the operator A given by (B2) in
= (0,00) x S™, and from (33)) we have

frw” L q2n—2 )
a(r) = T T b(r)y=r"—rl""r+ 12 and d(r) =mr".
1= yn—1 + 4 p2n—2
Then

dr
/0%+a(r)+d(r)dr < +00.

Hence it follows from theorem [B.2] (47) that A is not even a g.e.s.a. operator in this case,
for every n > 2 and any m? > 0. Therefore, in contrast to the anti-Schwarzschild case,
in order to have a well-possed Cauchy problem a boundary condition at the singularity
must be given.

6.4.2. Case r?> = ¢* (extreme case) This spacetime also has a removable singularity
-1
at 7, = 2»-1r,. In this case, we consider the operator A given by ([B2) in two regions
Q=(0,7.) x 8™ or Q = (r,,00) x S".
We get from (33) that
3n—2 n—1 n—1)2
rtTt—r

o (" =

b(r) = — and d(r) =m?r" .
r

r

(T’n_l . Tf_1)2 )

# The case n = 1 is again 3-dimensional Minkowski spacetime already discussed in
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We first consider the outer region (. < r < +00). In this case, we get from (34))

that
" (a(s) : ’ 52n—2
T(r —r, :/ <—) ds:/ ds = +00 .
( ) - \0(5) - (s"_l - rﬁ_l)z

Therefore, it follows from theorem that A is an e.s.a. operator in 2 = (r,,00) x S"
for every n > 2 and any m? > 0, and the Cauchy problem is well-posed without requiring

any boundary condition at the event horizon.
Regarding the inner region 0 < r < r,, we get that

/0 (ﬁ +d(z) + a(z)) dz < +00.

Hence it follows from theorem [3.24] that A is not even a g¢.e.s.a. operator, for every
n > 2 and any m? > 0.
However, we have

T T 7,3n—2
/ a(r)dr = / e dr = +00,

so it follows from remark [B.23] that in order to have a well-posed Cauchy problem in

Q= (0,7.) x S™ a boundary condition at the singularity (r = 0) must be given but not
at the horizon (r = r,).

6.4.3. Case r> > ¢*> This spacetime has, besides the timelike irremovable repulsive
singularity at r = 0, two removable singularities at v, and r_. In this case, we consider
the operator A given by ([B2) in two regions Q = (0,7_) x S™ or Q = (r;,00) x S™, by
abuse of notation we call A these two different operators.
From (B3]) we can write
() = nj:’m—z i - b} = (,r,n—l _ Tﬁ—l) _(,r,n—l _ 761—1)
= )

and d(r) =m*r" .

We first consider the outer region (ry < r < 4o00). In this case, we get from (34))
that

T(r—r)= /TT <%) ’ ds = /T: = Tﬁ_slz)”(‘;_l — ds = +00 .

Therefore, it follows from theorem [E.5] that A is an e.s.a. operator in £ = (ry,00) x S”

for every n > 2 and any m? > 0, and the Cauchy problem is well-posed without requiring
any boundary condition at the event horizon.
Regarding the inner region 0 < r < r_, we get
/ (L +d(z) + a(z)) dz < 4+00.
o \b(2)
Hence it follows from theorem that A is not even a g.e.s.a. operator, for every
n > 2 and any m? > 0.
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However, we have

Tx Tx T3n—2
/ a(r)dr = / (rﬁ_l — rn_l) (ri_l — Tn_l) dr = 400,

so it follows from remark [3.23] that in order to have a well-posed Cauchy problem in

Q= (0,r_) x S™ a boundary condition at the singularity (r = 0) must be given but not
at the horizon (r =r_).
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