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Abstract

To minimize fuel consumption in hybrid electric vehicles it is necessary to
define a strategy for the management of the power flows within the vehicle.
Under the assumption that the velocity to be developed by the vehicle is
known a priori, this problem may be posed as a non linear optimal control
problem with control and state constraints. We find the solution to this prob-
lem using the optimality conditions given by Pontryagin Maximum Principle.
This leads to boundary value problems that we solve using a software tool
named PASVA4. On real time operation, the velocity to be developed by the
vehicle is not known in advance. We show how the adjoint state obtained
from the former problem may be used as a weighing factor, called “equivalent
consumption”. This weighing factor may be used to design suboptimal real
time algorithms for power management.

Keywords: non linear constrained optimal control, Pontryagin Maximum
Principle, boundary value problems solvers, hybrid electric vehicles,
equivalent consumption minimization algorithms

1. Introduction

Hybrid Electric Vehicles (HEVs) are those where the power needed to
drive the vehicle is provided by one or more electric motors fed by electro-
chemical batteries and that in addition have on board an internal combustion
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engine. The engine power not only contributes to the traction when neces-
sary but also is used to recharge the batteries. Among the many advantages
that these vehicles present concerning fuel economy and reduction of pollu-
tant emissions, it is that of regenerative braking. That means that during
braking, electric motors may change their operation mode, turn into genera-
tors and recover the kinetic energy accumulated on the vehicle by turning it
into electrical energy that is sent back to the batteries. In order to achieve
an efficient operation, a sophisticated control system that optimizes all the
energy flows that take place within the vehicle must be defined. This energy
management problem is usually referred to as the “supervisory control” and
is usually stated as a high level control problem, whose commands have to
be obeyed at a lower level by the controllers of the particular vehicle devices.

Many real-time supervisory control algorithms for HEVs are based in the
so called “Equivalent Consumption Minimization Strategy” (ECMS) ([1],
[2],[3]). This strategy consists of multiplying the power supplied by the bat-
teries by a weighing factor in order to turn it into an equivalent power that
can be added to the power supplied by the internal combustion engine. The
interest of this approach raises from the fact that by means of this equiv-
alence the problem of minimizing consumption during a whole mission (a
global problem), may be turned into an instantaneous minimization of this
weighted sum of powers, thus allowing its use in a real time algorithm. In
this way, the optimal control problem reduces to determining this “equivalent
consumption” factor ([1], [3], [4]).

However, this weighing factor varies according to the relative efficiency
of the energy sources and to the features of the velocity cycle required of the
vehicle. A great effort in current research is devoted to the determination of
this parameter ([1], [2], [3]).

In a previous work [5] we formulated the supervisory control problem in
HEVs as an optimal control problem with state and control constraints and
derived the optimality conditions given by Pontryagin Maximum Principle
([6], [7], [8], [9], [10]). In this approach, it is observed that the equivalent
consumption factor is related to the adjoint state of the optimal control
problem [1] . Hence, by solving the optimality conditions and obtaining
the evolution in time of the adjoint state it would be possible to obtain an
estimation of the equivalent consumption factor. This is the purpose of this
work.

It is worth noting that the numerical solution of these problems is not
straightforward. Generally, the optimality conditions are differential-algebraic
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equations ([11], [12]). Sometimes, the algebraic equations may be solved in-
dependently and, after suitable replacements, the problem may be turned
into an ordinary differential equations boundary value problem. It is then
needed to use a solver for this kind of problems. In addition, in this partic-
ular problem, the control and state constraints introduce discontinuities in
the solution and in the right hand side (RHS) of the differential equations.
Moreover these discontinuities occur at unknown times, since they depend
on the solution itself [5].

PASVA4 is a software tool able to solve non linear boundary value prob-
lems with discontinuities in the RHS and in the solution, even in unknown
locations, multipoint boundary conditions and unknown algebraic parame-
ters ([13],[14]). This tool has been successfully used for problems with the
above difficulties that appear in geophysics, electronics, mechanics, etc. and
hence, we will use it to solve this problem. We hope the same approach can
be used for other optimal control problems with constraints.

In what follows we will first present the model we use (section 2) and the
statement of the problem (section 3). Later, by taking a particular case, we
will describe how we obtain the off-line solution. We start from two simpler
formulations of the problem where the state constraints are not taken into
account and then we show some results (sections 4 and 5). With these
results we propose an algorithm to implement a primitive suboptimal power
management strategy (section 6). Finally we mention some final comments
and the work in progress in section 7.

2. Model

2.1. Power flows

In order to consider the supervisory control problem, a simplified scheme
for the system that represents the vehicle ([16], [17], [15]) is normally used.
In this scheme, the intermediate energy conversion devices of the power-
train such as generators and electronic converters are replaced by the net
power flow from each energy source (the fuel tank and the electrical stor-
age system). We will use u to indicate the power flow at time t in the
fuel tank/engine/generator path (which we shall call fuel-path henceforth),
(see Figure 1). We establish the following convention: a positive power flow
means power flowing away from the sources towards the vehicle. That means
that a negative flow will take place in the electrical path during regenerative
braking. Besides, the power flow from the fuel tank cannot be negative, as
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Figure 1: Simplified scheme of a series hybrid electric vehicle.

it cannot absorb any power. The velocity profile to be performed by the
vehicle is considered a given function. The required power is computed from
this profile using a model of the inverse longitudinal dynamics of the vehicle
and it will be denoted by r(t) (in the real case, the required power is not
known a priori since it depends on the transit and road conditions). In order
to maintain drivability it is required that the sum of the power from both
sources be equal to the required power at all times. Then, the energy flow
from the electrical source has to be equal to r(t)− u(t).

2.2. Energy from the sources

Regarding the net energy consumed from each source it must be taken into
account that not all the power delivered by the sources can be actually used
to supply the demand, since in the intermediate energy conversion processes
there are losses. This fact will be represented by means of two functions
fC and fB that depend on the power flows. We consider that these are
known functions that in practice will be obtained by interpolation of a set of
values determined by laboratory tests, setting the vehicle at different power
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operating points. This functions are normally increasing and non linear.
The fuel consumption during a time interval [0, T ], where T is known, is

represented by the net energy consumed from the fuel source in the interval,
i.e.:

∫ T

0

fC(u)dt. (1)

Our control objective will be the minimization of this energy or equiva-
lently, the maximization of the negative of this functional. To compute the
net energy in the batteries it has to be considered that the effect of losses
implies a power contribution from the batteries greater than that required
during acceleration (i. e., for r−u > 0), but a power income lower than that
produced by regenerative braking (i. e., for r − u < 0). This fact is repre-
sented by means of the function fB. Then, the net energy in the batteries at
time t is

x(t) = x0 −
∫ t

0

fB(r(s)− u(s))ds (2)

where x0 is the initial energy. From (2) we arrive at

ẋ(t) = −fB(r(t)− u(t)). (3)

This will be considered the state equation with initial condition x0. The
losses in this path will probably also depend on the state, increasing as it
deviates from the nominal value, since it is clear that common batteries are
less efficient as they get depleted and also when overcharged. So, we will
modify the state equation with a new function fB of the following form.
Note that the state equation is non linear.

ẋ(t) = −fB(x(t), r(t)− u(t)). (4)

It is not necessary to impose a terminal condition to the state. It may be free,
which means that it does not matter how much energy is there in the batteries
at the end of the cycle (charge depleting operation mode). However, for
brevity, we shall limit the exposition to the case of a fixed terminal state xf .
If it is equal to the initial state, it represents a “charge sustaining operation
mode” of the vehicle.
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2.3. Constraints

Clearly, the power flows are physically limited, hence:

0 ≤ u(t) ≤ umax (5)

and

Kmin ≤ r(t)− u(t) ≤ Kmax. (6)

In addition, the bank of batteries has to be protected from depletion and
from overcharge. This implies that the net energy in the electrical storage
system has to be maintained between proper limits. Hence,

xmin ≤ x(t) ≤ xmax. (7)

Summarizing, there are constraints on the control action and bounds on
the state variable.

3. Optimal control problem statement

Find a piecewise continuous control u that maximizes

−
∫ T

0

fC(u)dt (8)

subject to

ẋ = −fB(x(t), r(t)− u(t)) ∀t ∈ [0, T ] (9)

x(0) = x0, x(T ) = xT (10)

U(t) ≤ u(t) ≤ Ū(t) (11)

xmin ≤ x(t) ≤ xmax (12)

where

U(t) = max(0, r(t)−Kmax), Ū = min(umax, r(t)−Kmin) (13)
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and where Kmax, Kmin, umax, xmin and xmax are known.
Much of the difficulty of the problem arises from the form of the function

r(t). For the case of our prototype, a neighborhood electric vehicle, it is
interesting to consider the case where this function presents a highly non
linear form since it follows from the train of successive accelerations and
decelerations that such a vehicle must perform in any urban mission required
of it. This required power function determines in turn the form of U and Ū .
We based our tests on the Normalized European Driving Schedule (NEDS),
scaled to fit the power capabilities of our vehicle. A piece of this driving
cycle corresponding to the urban section is shown in the top graph of figure
2. The middle graph of that figure shows the power that this vehicle requires
to perform the above driving cycle. A negative power means that the vehicle
is braking. The bottom graph shows the resulting functions U and Ū . Note
that the searched control function u must lie between this two limits.

To solve this problem using the optimality conditions given by Pontryagin
Maximum Principle, it is necessary to define the corresponding Hamiltonian
function which in this case is

H(t, x, λ, u) = −fC(u(t))− λ(t)fB(x(t), r(t)− u(t)),

where λ is a new state variable, called the adjoint state or co-state whose
dynamics is inherited from the fact that the state equation is a dynamical
constraint. Later, the algebraic constraints will be taken into account in
the so called augmented Hamiltonian or Lagrangian. The optimal solution
is the function u(t), t ∈ [0, T ], that maximizes H or equivalently minimizes
−H, over the set of all functions satisfying the constraints. That means
that the optimal u minimizes the sum of the power (including losses) that
has to be supplied by the fuel-path plus the complementary power that has
to be supplied by the electrical path times the adjoint state. Hence λ(t)
can be thought of as a weighing factor that scales the “cost” of using power
from the electrical path against the “cost” of using power from the fuel
path. If this “equivalent consumption factor” were known in advance we
could compute the optimal control just by an instantaneous minimization of
the Hamiltonian using only the current required power r(t). Unfortunately,
the optimality conditions must be solved globally, using the knowledge of
the power requirements r(t) in the whole interval [0, T ]. Nevertheless, the
computation off-line of λ(t) over intervals with typical forms of r(t) or over
short time intervals, previous to the current one, may allow the design of
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Figure 2: Required velocity cycle, corresponding required power for our neighborhood
electrical vehicle and upper and lower control limiting functions.
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algorithms to compute suboptimal control functions by an instantaneous
optimization. This is our purpose.

To address this problem we begin by solving formulations of the problem
that, although physically meaningful, are simpler to be treated. Then, as
usual in constrained control, we will be progressively adding difficulties step
by step. So, at this first step we will ignore the bounds on the state. In
addition, we chose to approximate the functions fC and fB by quadratic
polynomials in u, in order to obtain analytical expressions for the maximizing
control. In the general case a numerical constrained maximization algorithm
must be used to derive the control function.

4. Linear state equation case

To simplify the treatment of the above problem, we will additionally
assume that fB(r − u) = r − u. Note (see (2)) that this means that we
are not taking into account the losses in the electrical path. Instead, all the
power flow in the electrical path is supposed to enter or to go away from the
electrical storage system. This approximation is somehow acceptable since
electrical losses are much smaller than losses in the fuel path. Normally losses
in the electrical path are less than 30% while those in the fuel-path are about
70%. Note also that this choice of fB implies that the power flow from the
batteries do not depend on their state of energy, represented by the state
variable x. We also assume we can fit a quadratic polynomial to fC . As our
prototype has not yet an internal combustion engine, we used an hypothetical
efficiency function. To design this function we took into account three typical
features of internal combustion engines: 1) their energetic losses are greater
than 60%; 2) the few losses occur at an operating point which is a bit to the
left of the highest power that they can deliver; 3) losses increase at lower
delivered power. These features constraint the set of possible quadratics.
In the examples below we used fC(u) = aCu2 + bCu + cC , u ∈ [0, umax],
umax = 15kW , aC = .0476, bC = 1.7517, cC = 3.2738.

Under the previous assumptions, the problem is then the following:
Find a piecewise continuous control u that maximizes

−
∫ T

0

fC(u)dt (14)

subject to
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ẋ = −(r(t)− u(t)) ∀t ∈ [0, T ] (15)

x(0) = x0, x(T ) = xT (16)

U(t) ≤ u(t) ≤ Ū(t). (17)

4.1. Optimality conditions

To derive the optimality conditions we need to define the Hamiltonian or
Lagrangian [6]

H(t, u, x, λ, θ̄, θ) = −(aCu2 + bCu + cC)− λ(r − u) + (18)

+θ(u− U) + θ̄(Ū − u).

where θ(t) and θ̄(t) are the Lagrange multipliers functions (see [7] for details).
Then the optimality conditions are:

u = argmaxH (19)

u ≤ Ū θ̄ ≥ 0 θ̄(Ū − u) = 0 (20)

U ≤ u θ ≥ 0 θ(u− U) = 0 (21)

ẋ = −(r(t)− u(t)) ∀t ∈ [0, T ] (22)

λ̇ = 0

x(0) = x0, x(T ) = xT .

4.2. Solving the problem

Using (19),(20),(21), we get:

u =





U if λ−bC

2aC
< U

λ−bC

2aC
if U ≤ λ−bC

2aC
≤ Ū

∆
= sat(λ−bC

2aC
, U, Ū)

Ū if λ−bC

2aC
≥ Ū .

(23)

Then the ODE system to be solved is
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ẋ = −(r(t)− sat(
λ− bC

2aC

, U, Ū) (24)

λ̇ = 0

x(0) = x0, x(T ) = xT .

The RHS is piecewise defined according to the adjoint state values. This
situation is typical of control constrained fuel optimal problems. Note that,
as fB does not depend on the state, λ results constant.

4.3. Solution
We set up this boundary value problem to be solved using PASVA4. This

entails the computation of the Jacobian of the differential equation RHS with
respect to the state and to the adjoint state variable and the Jacobian of the
boundary values with respect to x(0), λ(0), x(T ) and λ(T ). In most cases,
the solver could find the solution even if the starting point was not close to
the true solution. Particularly, the solution could be found if the starting
point was taken as the state trajectory corresponding to the case of pure
electric operation mode, i.e., if u(t) = 0 for all t. Hence, this state trajectory,
not necessarily a feasible solution but able to be computed a priori from the
input data, can be taken as starting point for the state variable in all cases.

Concerning the starting point for the adjoint variable, independently of
the starting point for the state and for several values for the starting point
of the adjoint state, including 0, the solver converged to the same value for
the adjoint state.

In figure 3 we show the results obtained for the case considered over a
urban driving cycle. In the figures we used Kmax = 6kW , Kmin = −6kW ,
T = 200sec and x0 = 400kWsec. The first two graphs show respectively the
control u that minimizes fuel consumption and the complementary power
that has to be supplied by the batteries. The required power r was also
included (dotted line) as a reference. In the bottom graph it is represented the
corresponding state trajectory, i. e., the evolution of energy in the batteries.
Note that in this example it was set x0 = xT . The objective value and the
equivalence consumption factor λ are indicated.

5. Non linear state equation case

Next we solved the problem using fB(u) = aB(r − u)2 + (r − u). This
function is fictitious since up to date we had only one experimental value of
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Figure 3: Results for the case where electrical losses are not considered; urban cycle.
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the efficiency of the electrical path of our vehicle, namely that correspond-
ing to the electrical motors nominal power (u = 3kW ). The choice of the
quadratics fulfils two requirements in order to emulate a typical behaviour
of these efficiency functions: a) fB(u) must be always greater than u, which
means that if power is positive, a greater amount must be delivered to com-
pensate for losses; if power is negative, that means regenerative braking, not
all the mechanic energy will be sent back to the batteries, since in this case
there also will be losses. Then, the absolute value of the power entering the
batteries will be less than the originated by regenerative braking. b) It is
needed that fB(0) = 0. We set aB = 0.0684

The corresponding expression for the Hamiltonian is now

H(t, u, x, λ, θ̄, θ) = −(aCu2 + bCu + cC)−
−λ(aB(r − u)2 + (r − u)) +

+θ(u− U) + θ̄(Ū − u). (25)

The derivation of the maximizing control is analogous to what was done in
the previous section, leading to the following optimality conditons

u = argmaxH (26)

u ≤ Ū θ̄ ≥ 0 θ̄(Ū − u) = 0 (27)

U ≤ u θ ≥ 0 θ(u− U) = 0 (28)

ẋ = −(aB(r(t)− u(t))2 + (r(t)− u(t)) ∀t ∈ [0, T ] (29)

λ̇ = 0

x(0) = x0, x(T ) = xT ,

where

u =





U if bC−λ(2aBr(t)+1)
2(aC+aBλ)

< U
bC−λ(2aBr(t)+1)

2(aC+aBλ)
if U ≤ bC−λ(2aBr(t)+1)

2(aC+aBλ)
≤ Ū

Ū if bC−λ(2aBr(t)+1)
2(aC+aBλ)

≥ Ū
∆
= sat( bC−λ(2aBr(t)+1)

2(aC+aBλ)
, U, Ū).

(30)

5.1. Solution

To run PASVA4, we took as starting point the solution found for the pre-
vious formulation. The optimal power split appears in figure 4. Because of
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Figure 4: Results for the case where electrical losses are considered; urban cycle.

the addition of the electrical losses effect in the model, the power contribution
from the fuel-path (top graph) increased with respect to the previous case
and, consequently, consumption increased. Instead, the equivalent consump-
tion factor decreased, which means that the cost of using the electrical-path
is now comparatively closer to the cost of using the fuel-path. In the middle
and bottom graphs, a minor contribution from the batteries is apparent.

6. Example of a real time algorithm

After a number of runs, we observed that λ changes according to

1. the relative size of xT with respect to x0,

2. the shape of r(t),
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3. the length of the time interval T ,

4. the shape of fC ,

5. the shape of fB.

Concerning 1) it is found that λ decreases as the difference xT − x0 de-
creases. Table 1 shows the values found for the cycle in figures 4 and 3 for
different values of that difference.

Table 1
xT − x0 40 kWsec 0kWsec -20 kWsec

λ 1.774 1.691 1.631

Concerning 2), if the vehicle is to fulfil a driving cycle where the speed
remains constant for a longer period of time, e.g., a path on an avenue or
higher speed road, the corresponding required power will be lower, since no
power for acceleration or deceleration is needed. Only the necessary power
to compensate for the losses in the system will be required in constant speed
intervals. In figure 5 such a situation is depicted. It should be expected that
the value for λ is greater in this case, since in the absence of regenerative
braking situations, the cost of using the electrical path should increase. We
found λ = 1.885 against λ = 1.691 obtained for a urban path of similar
features (equal time length and similar power peaks).

Concerning the remaining aspects, the way λ changes is far from being
intuitive. This is why any on-line algorithm must update permanently its
value. There are many possibilities to design suboptimal real time algorithms.
For instance, we now propose the following simple algorithm to be used on-
line. Basically it consists in updating λ each 200 seconds, using as required
power the data of the previous 200 seconds and imposing a terminal condition
equal to the initial condition in each subinterval.

6.1. Real time algorithm

Array r[1...200]
Initialize λ
For INTERV AL = 1, NINTERV AL

For t = 1, ..., 200
s = t + INTERV AL ∗ 200
read r[s]
Compute u∗ = argminu(fC(u) + λ ∗ fB(r[s]− u))

end for

16



Compute λ using r[1, ..., 200]
end for

Application of this algorithm to a modification of the Normalized Euro-
pean Driving Schedule is shown in figure 6. This cycle presents an urban
interval [0 sec,800 sec] followed by an interval [800 sec,1200 sec] at approxi-
mately constant speed, i. e., without accelerations and decelerations. It was
chosen to highlight the behaviour of the algorithm with respect to changes
in the driving mode. Figure 6 shows the minimizing control obtained by
solving the optimality conditions in the whole interval setting xT = x0 (top
graph) and suboptimal controls given by the algorithm when λ initial was
simply set equal to 0 (middle graph) and when a better initial guess for λ is
used (bottom graph). It can be seen that for this driving cycle the only sig-
nificant differences among the resulting control functions appear in the first
interval, due to the arbitrary choice of initial λ, and in the last intervals, due
to the changes in the driving mode. Fuel consumption and electrical energy
consumed from the batteries are also indicated in the graphs. Note that fuel
consumption was smaller for the suboptimal controls, but at the expenses of
a positive energy consumption from the batteries.

7. Discussion and conclusions

In the above sections we computed the equivalent consumption factor λ
under the condition that the final state was equal to the initial state. As it
can be seen in the examples of figures 4 and 5, for many driving cycles this
condition is sufficient to ensure that the state trajectory does not deviate very
much from that initial value and so the bounds for the state are not reached
during the whole cycle. This particularly occurs in algorithms like the one
presented, where the control problem is to be solved in a short time window.
Moreover, the final state value is a parameter of the algorithm that may be
modified along the iterative process in order to force a stable trajectory.

Most authors do not take into account the bounds on the state. Usually
some function of the difference x(T ) − x(0) is added as a penalty term to
the objective to penalize battery use (see [1]) and obtain a state trajectory
that remains within bounds. This approach led to optimal control problems
that can also be solved in a similar form using PASVA4. For example, we
tested the case where the penalty term was 1

2
(x(T )−x(0))2, which leads to a

boundary value problem with mixed boundary conditions. Results from this
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formulation were quite similar to those presented here. The case where the
penalty term was |x(T )− x(0)| leads to two different values for λ depending
of the sign that is imposed to that difference.

Nevertheless, there may be driving cycles for which including the state
constraints in the form (12) is necessary to ensure that the trajectory will re-
main within the bounds. It is in that case where the facilities of PASVA4 will
be most useful. It can be seen that the boundary value problem that results,
has switchings in the RHS, that occur at unknown locations. These locations
are determined by the junction points, where the state trajectory enters or
leaves the binding interval. We are currently working on this problem where
these junctions points are also estimated. Tests made by using PASVA4 for
the classical linear time invariant fuel optimal state constrained control prob-
lem, in which analytical solutions can be obtained and used as a reference,
were successful and will be included in detail in a future publication.

Our future work will also be concerned with the use of numerical al-
gorithms to obtain the control from the maximization of the Hamiltonian,
without the need of the assumption that a quadratic polynomial may be
fit to the experimental efficiency functions. The maximization must be fast
enough to allow the whole algorithm to run in real time.

Summarizing, altough this work is still in progress, we think we have done
a first step in the design of a real time control strategy for optimizing power
management in HEVs. In addition, we gained experience in the numerical
solution of constrained control problems, by means of solving the bound-
ary value problem that results from the statement of Pontryagin Maximum
Principle optimality conditions.
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