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Abstract

A global study of the negative parity non-strange baryon observables is performed in the frame-

work of the 1/Nc expansion. Masses, partial decay widths and photo-couplings are simultaneously

analyzed. A main objective is to determine the composition of the spin 1
2 and 3

2 nucleon states,

which come in pairs and involve two mixing angles which can be determined and tested for con-

sistency by the mentioned observables. The issue of the assignment of those nucleon states to the

broken SU(4)×O(3) mixed-symmetry multiplet is studied in detail, with the conclusion that the

assignment made in the old studies based on the non-relativistic quark model is the preferred one.

In addition, the analysis involves an update of the input data with respect to previous works.

PACS numbers: 14.20.Gk, 12.39.Jh, 11.15.Pg
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I. INTRODUCTION

The excited baryon states that correspond in the constituent quark model to the first

radial and orbital excitations fit well into respectively a positive parity symmetric and a neg-

ative parity mixed-symmetric irreducible representation of the spin-flavor group SU(2Nf ),

where Nf is the number of light flavors. For Nf = 2 both representations are 20-dimensional

and are respectively denoted by 20 and 20′. The negative parity non-strange excited baryons

states are empirically the best known ones [1], and are organized in the [20′, ` = 1] repre-

sentation of SU(4)× O(3) [2]. Their masses, partial decay widths and photo-couplings are

known to a degree where detailed analyses as the one presented here can be carried out and

lead to some clear conclusions. The states consist of two spin 1/2 nucleon states: N(1535)

and N(1650), two spin 3/2 nucleon states: N(1520) and N(1700), one spin 5/2 nucleon state:

N(1675) and two isospin multiplets: ∆(1620) and ∆(1700) of spin 1/2 and 3/2 respectively.

A very important issue, central to the study in this work, is the assignment of the physical

states to the pairs of spin 1/2 and 3/2 nucleon states, and also the accurate determina-

tion of the corresponding mixing angles θ2J=1 and θ3. In order to settle that issue in as

model independent as possible fashion it is necessary to carry out a simultaneous analysis

of masses, partial decays widths and photo-couplings, as presented in this work. The frame-

work used here is the 1/Nc expansion as presented elsewhere for masses [3, 4], decays [5] and

photo-couplings [6].

The advantage of using the 1/Nc expansion [7] is that, in principle, the analysis is based on

a framework which is true to QCD. It provides a justification for the approximate spin-flavor

symmetry observed in baryons [8–11], which permits the implementation of the 1/Nc starting

from that symmetry limit. From multiple applications it transpires that the 1/Nc expansion

works well in the real world with Nc = 3 [18]. In particular, its implementation in the

analysis of excited baryons (see e.g. Refs. [3–6, 12–17]), has shown to be phenomenologically

consistent in the sense that the sub-leading corrections are of natural size. In the present

work, the 1/Nc expansion is implemented as an operator expansion, where the coefficients

are determined by the QCD dynamics, and those coefficients are evaluated by fitting to the

pertinent observables. In addition, since usually at the first sub-leading order the number

of observable quantities exceeds the number of operators, there are relations independent of

the coefficients, which are exact up to sub-sub-leading order corrections, and which should
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serve as a good test of the framework. The physics of excited baryons thus gets sorted out

hierarchically in powers of 1/Nc, helping in this way to define and organize the discussion

of the different effects. It should be noted that the implementation for the negative parity

baryons is carried out under the assumption that SU(4) × O(3) configuration mixings,

i.e. mixings of different irreducible representations of that group, can be disregarded. A

discussion of such effects was presented in [19]. In the 1/Nc expansion, baryon observables

are represented by effective operators which are themselves decomposed in an operator basis

which is organized according to the 1/Nc power counting of the operators. The coefficients

of that decomposition are determined by the QCD dynamics. These are obtained by fitting

the corresponding observables to experimental data.

In the case of the negative parity baryons, the analysis of the masses suffers from the

four-fold ambiguity mentioned above in the assignment of the spin 1/2 and 3/2 nucleon

physical states to the theoretical ones. It turns out that such ambiguity cannot be resolved

by analyzing the masses alone, as acceptable fits, i.e. χ2
dof ∼ 1 can be obtained for all four

assignments. Because the strong decay partial widths with emission of a single pion, and

the EM transitions are more sensitive to those assignments, they must be used to arrive at a

definite conclusion. Historically, the first such analysis was carried out in the framework of

the quark model [20]. In the 1/Nc expansion the work of Pirjol and Schat [21] was the first to

address the problem , and it was also piecemeal addressed in other works on strong decays [5]

and EM transitions [6]. However, an exhaustive combined analysis was still lacking, which

is now presented in this work.

The present work is organized as follows. Sec. II provides a brief review of the framework

used to analyze the non-strange low-lying negative parity excited baryons in the framework

of the 1/Nc expansion of QCD. Some parameter independent relations valid to O(N0
c ) are

also presented and discussed in this section. Sec. III describes the procedure followed to

perform the global fits of the empirically known baryon properties to O(1/Nc) and analyze

the corresponding results. The main conclusions are presented in Sec. IV. Finally, includes

two Appendices: Appendix I gives the lists of operators furnishing the bases for the analysis

of the baryon properties considered in this work, while Appendix II gives some parameter

independent relations satisfied at LO by the photo-couplings.
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II. PROPERTIES OF THE LOW-LYING NON-STRANGE NEGATIVE PARITY

BARYONS IN THE 1/Nc EXPANSION

In the following a brief description of the 1/Nc expansion excited baryon framework is

presented.

The group SU(4) has 15 generators, namely, the spin, isospin and spin-isospin generators:

Si,T a,Gia , with i = 1, 2, 3 and a = 1, 2, 3, normalized to fulfill the following commutation

relations:

[
Si, Sj

]
= iεijkSk,

[
T a, T b

]
= iεabcT c,

[
Si, T a

]
= 0,[

Gia, Gjb
]

=
i

4
δijεabcT c +

i

4
δabεijkSk, (1)[

Si, Gja
]

= iεijkGka,
[
T a, Gib

]
= iεabcGic.

The matrix elements of Gia between baryons with spin of order N0
c are O (Nc).

Introducing the spherical notation for the group generators and omitting the projections

for simplicity, the generators are denoted by:

S[1,0], T [0,1] and G[1,1] , (2)

where the notation Λ[J,I] implies that the operator Λ transforms as the [J, I] irreducible

representation of the SU(2)× SU(2) spin×isospin subgroup of SU(4).

A. [20′,1−] states for arbitrary Nc

For arbitrary Nc, the states of interest here belong to the SU(4) mixed-symmetric rep-

resentation (p, q, r) = (Nc − 2, 1, 0), which has dimension ((Nc − 1)(Nc + 2)!)/2Nc!). These

states are constructed by coupling a fundamental SU(4) state to a totally symmetric state

with Nc − 1 indices, which is denoted as the core [4]:

Nc−1︷ ︸︸ ︷
. . . ⊗ =

Nc︷ ︸︸ ︷
S

. . . ⊕

Nc−1︷ ︸︸ ︷
MS

. . . , (3)

Denoting the core states by | Sc, Sc3, Ic3〉, where these states belong to the symmetric SU(4)

representation in which Ic = Sc is satisfied, the mixed-symmetric states of interest denoted

by | S, S3; I, I3〉 are given by [4]:
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| S, S3; I, I3〉MS =
∑
ξ=± 1

2

CMS(I, S, ξ) | S, S3; I, I3;Sc = S + ξ〉, (4)

where

CMS(I, S,±1

2
) =


1 si I = S ± 1

0 si I = S ∓ 1

±
√

(2S+1±1)(Nc+1±(2S+1))
2Nc(2S+1)

si I = S

, (5)

and

| S, S3; I, I3;Sc〉 =
∑
s3,i3

〈Sc, S3 − s3; 1/2, s3 | S, S3〉〈Ic = Sc, I3 − i3; 1/2, i3 | I, I3〉

× | Sc, S3 − s3; Ic = Sc, I3 − i3〉⊗ | 1/2, s3; 1/2, i3〉. (6)

S is the total spin of the baryon associated with the spin group SU(2), Sc is the core’s spin.

The SU(2) Clebsch-Gordan coefficients are defined with the standard Condon-Shortley phase

convention (see e.g. Ref. [22]).

The states belonging to the [20′, 1−] of SU(4)×O(3) are now expressed by including the

orbital angular momentum,

| J, J3; I, I3; `, S〉MS =
∑
m

〈`,m;S, J3 −m | J, J3〉 | `,m〉⊗ | S, J3 −m; I, I3〉MS. (7)

The symmetric states are given explicitly in Ref. [5].

The state mixings mentioned in the Introduction are induced by interactions that break

spin/isospin symmetry. These mixings are between the pairs of states that are in the two

octets with the same J = 1
2

or 3
2
. The mixings are defined according to:

 NJ

N ′J

 =

 cos θ2J sin θ2J

− sin θ2J cos θ2J

 2N∗J
4N∗J

 , (8)

where N
(′)
J are mass eigenstates. The mixing angles are determined by the diagonalization

of the corresponding 2× 2 mass matrices. The eigenvalues and mixing angles are given by:

mNJ ,N
′
J

=
MJ

2 +MJ
4

2
± sign(MJ

2 −MJ
4 )

√(
MJ

2 −MJ
4

2

)2

+ (MJ
24)

2
, (9)

θ2J =
1

2
arctan

(
2MJ

24

MJ
2 −MJ

4

)
(mod π) , (10)
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where MJ
2 = 〈2N∗J |M|2N∗J〉, etc. Angles can be defined to be in the interval [0, π) by

conveniently choosing the phase of the physical states.

As already mentioned there are four possible assignments of the states NJ and N
′
J to the

physical ones. They are:

Set 1 =
{
N 1

2
= N(1535), N ′1

2
= N(1650), N 3

2
= N(1520), N ′3

2
= N(1700)

}
Set 2 =

{
N 1

2
= N(1650), N ′1

2
= N(1535), N 3

2
= N(1520), N ′3

2
= N(1700)

}
Set 3 =

{
N 1

2
= N(1535), N ′1

2
= N(1650), N 3

2
= N(1700), N ′3

2
= N(1520)

}
Set 4 =

{
N 1

2
= N(1650), N ′1

2
= N(1535), N 3

2
= N(1700), N ′3

2
= N(1520)

}
(11)

It should be noted that in previous works [3, 4, 21] the mixing angles have been defined

using some specific state assignment. For example, in Ref. [21] they are defined in their Eqs.

(18) and (19), which only correspond to the definition Eq. (10) when states are assigned

according to Set 1 in Eq. (11).

B. Operator analysis

A local QCD color singlet operator, expressed in terms of the quark and gluon fields and

which has irreducible transformation properties under isospin and rotations, can be expanded

in the subspace of baryon states in powers of 1/Nc as an operator expansion consisting of

composite operators built with products of operators which are tensors of SU(4) × O(3)

[23, 24]. Those tensor operators have a well defined 1/Nc power counting, as described

below. Thus, a QCD operator has the 1/Nc expansion of the form:

OQCD =
∑
n,`

C
(n)
` O

(n)
` . (12)

The 1/Nc order of the composite operators is determined by the n-body character or degree

of these, which is given by the number of quark fields necessary to built an operator with

the same transformation properties [25], and by the Nc order of the matrix elements of the

tensor operators appearing as factors. Since an n-body operator requires the exchange of

n − 1 gluons to be produced, there is an overall factor 1/Nn−1
c , and thus the (naive) order

in 1/Nc of an n-body composite operator becomes:

ν(O(n)) = n− 1− κ, (13)
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where κ is given by the order of the factors, and n satisfies n ≤ Nc. The coefficients C
(n)
`

in Eq. (12) are the unknown dynamical coefficients of O (N0
c ), which are determined by the

QCD dynamics.

In the subspace of the MS states of interest, a basis of composite operators can be con-

structed by distinguishing two sets of generators according to whether they act on the core or

the “excited quark” which corresponds to the spin-flavor index associated to the second row

of the Young tableaux. Generators acting on the core will be denoted by
{
S

[1,0]
c , T

[0,1]
c , G

[1,1]
c

}
and those acting on the excited quark by

{
`[1,0], s[1,0], t[0,1], g[1,1]

}
. Then, n-body operators

can be those consisting of the product of n SU(4) generators acting only on the core, or

n−1 SU(4) generators acting on the core and at least one generator of SU(4)×O(3) acting

on the excited quark. It should be noted that the order κ appearing in Eq. (13) takes the

value κ = 0 for all the generators except the generator Gc for which κ = 1.

C. Mass operators

The basis of mass operators up to order 1/Nc is taken from that obtained in [4], and

shown here in Table VII of Appendix I. Convenient normalization factors have been included

in the definition of the basis operators in such a way that they have natural size matrix

elements. There is one operator O (Nc), namely the identity or baryon number. There are

only two operators O (N0
c ), both involving the coupling of the angular momentum `. The

first corresponds in the quark model picture to the Thomas precession spin-orbit interaction,

which for baryons in S representation is O (1/Nc) but in the MS representation is O (N0
c ),

and the second operator involves the couplings of the axial currents of the core and the

excited quark through a second rank tensor `(2). There are four operators at O (1/Nc):

M4 is a linear combination of two O (N0
c ) operators, M5 is a 2-body spin-orbit interaction

involving the spin of the core, M6 is the hyperfine core interaction which is known to play the

main role in the spin-flavor symmetry breaking of the masses, M7 is the hyperfine between

core and excited quark which in states with ` = 1 is expected to give suppressed matrix

elements, and finally M8 is the version of M3 without flavor. The matrix elements of the

basis operators were given (in a different normalization) in Table II of Ref. [4].

For the content of states for Nc = 3 there are seven possible masses and two mixing angles,

which means at most nine independent mass operators. Up to O (N0
c ) there are only three

7



operators, and thus there are six parameter independent relations. As noted in Ref. [21], two

of these relations are the values of the mixing angles, which are θ1 = cos−1(−
√

2/3 ) = 2.526

and θ3 = cos−1(−
√

5/6 ) = 2.721 in the present convention. It should be noted that using

the mass formulas up to, and including O (N0
c ) corrections, one can identify with the nucleon

states in the paper of Pirjol and Schat [21] in the following way: N 1
2

= NT=1
1
2

, N ′1
2

= NT=0
1
2

,

N 3
2

= NT=2
3
2

, N ′3
2

= NT=1
3
2

, where T indicates the tower to which the state belongs as

explained in [21]. Thus, their four alternative results for the O (N0
c ) mixing angles (see their

Fig. 3) follow from the four possible assignments Eq. (11) which basically imply shifting

each of the angles by π/2.

The remaining four relations involve only the physical masses and are as follows:

MN 1
2

= MN ′3
2

MN 3
2

= MN 5
2

MN 5
2

− 1

10
MN ′1

2

= 3

(
1

2
M∆ 1

2

− 1

5
M∆ 3

2

)
M∆ 1

2

=
1

6
MN 1

2

+
5

6
MN 5

2

(14)

Numerically, these relations are satisfied best with Set 3 in agreement with the result of Ref.

[21] where it was denoted “Assignment No.1”. However, as observed later at O (1/Nc) and

after performing the combined fits with decays and EM amplitudes, a different assignment

will be favored. The hyperfine interaction plays the key role in modifying the LO values of

the mixing angles and in permitting a different identification of states.

Up to O (1/Nc) there are eight operators, which means that there will be one mass

parameter independent relation which can be checked. Expressed in terms of the physical

masses and mixing angles this relation reads

3

(
MN 1

2

+MN ′1
2

− 4MN 3
2

− 4MN ′3
2

+ 6MN 5
2

+ 8M∆ 1
2

− 8M∆ 3
2

)
= (15)

[
13 cos 2θ1 +

√
32 sin 2θ1

](
MN ′1

2

−MN 1
2

)
− 4

[
cos 2θ3 −

√
20 sin 2θ3

](
MN ′3

2

−MN 3
2

)
.

Fig. 1 shows the correlation between the angles if the assignment of states is the one of

Set 1 in Eq. (11). For the other possible assignments one just shifts the angles by π
2

correspondingly.
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D. Strong decays

The partial decay widths for the strong decays of the negative parity excited baryons via

the emission of a π or η meson are given by [5]:

Γ[`P ,IP ] =
k1+2`P
P

8π2Λ2`P

MB∗

MB

∣∣∣∣∣
∑

q C
[`P ,IP ]
q Bq(`P , IP , S, I, J∗, I∗, S∗)√

(2J∗ + 1)(2I∗ + 1)

∣∣∣∣∣
2

, (16)

where the asterisk refers to the excited baryon, `P = 0 or 2 is the angular momentum of the

meson and IP its isospin, and Λ is an arbitrary scale introduced for convenience so that all

quantities in the sum are dimensionless. By choice in the calculations, Λ = 200 MeV will be

taken. Bq(`P , IP , S, I, J∗, I∗, S∗) are reduced matrix elements defined via the Wigner-Eckart

theorem as follows:

S〈S, S3; I, I3 |
(
B

[`P ,IP ]
[mP ,IP3

]

)
q
| J∗, J∗3 ; I∗, I∗3 ;S∗〉MS =

(−1)`P−J
∗+S+IP−I∗+I√

(2S + 1)(2I + 1)
×

〈`P ,mP ; J∗, J∗3 | S, S3〉〈IP , IP 3; I∗, I∗3 | I = S, I3〉 Bq(`P , IP , S, I, J∗, I∗, S∗) . (17)

The formulas above hold if the physical states have well defined quark-spin S∗. However,

the physical states are a mix of the S∗ = J∗± 1
2

quark spin states, and thus they need to be

modified in the obvious way via the corresponding mixing of the reduced matrix elements.

This of course only happens for the case of the N 1
2

and N 3
2

states, and thus the dependence

of these partial widths on the angles θ1 and θ3. Note that the analysis is restricted to the

S and D-wave decays, because the only possible G-wave transition in the decay N 5
2
→ ∆π

is not yet empirically sorted out, and is also irrelevant to the main discussion of this work.

The corresponding bases of baryon decay operators and their associated matrix elements

were obtained in Ref. [5]. For convenience those operator bases are depicted in Table VIII

of Appendix I. All O (N0
c ) operators are 1-body type except for one of the 2-body D-wave

for π emission. For S-wave π emission there is one O (N0
c ) and three O (1/Nc). For D-wave

π emission there two O (N0
c ) and six O (1/Nc) (two of which are 3-body). For S-wave η

emission there is one O (N0
c ) and one O (1/Nc).
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E. Photoproduction helicity amplitudes

The multipole components of the helicity amplitudes for photo-production of the [20′, 1−]

states can expressed in terms of the matrix elements of effective operators as follows [6]:

AML
λ =

√
3αNc

4ω
(−1)L+1 η(B∗)

∑
n,I

g
[L, I]
n,L (ω)

〈
J∗, λ; I∗, I3;S∗ | (Bn)

[L, I]
[1,0] |

1

2
, λ− 1;

1

2
, I3

〉
,

AELλ =

√
3αNc

4ω
(−1)L η(B∗)

∑
n,I

[√
L+ 1

2L+ 1
g

[L, I]
n,L−1(ω) +

√
L

2L+ 1
g

[L, I]
n,L+1(ω)

]

×
〈
J∗, λ; I∗, I3;S∗ | (Bn)

[L, I]
[1,0] |

1

2
, λ− 1;

1

2
, I3

〉
, (18)

whereML and EL indicates the respective multipoles. Note that, due to parity conservation,

only E1, M2 and E3 multipoles are allowed. Moreover, λ = 1
2
, 3

2
is the helicity defined along

the ẑ-axis which coincides with the photon momentum, and ω = (M2
B∗ −M2

N)/2MB∗ is the

photon energy in the rest frame of the excited baryon B∗. These amplitudes correspond

to the standard definition as used by the Particle Data Group [1], which includes a sign

factor η(B∗) that stems from the strong decay amplitude of the excited baryon to a πN

state making them independent of the phase conventions used to define the excited states.

The sign factors

η(B∗) = (−1)J
∗− 1

2 sign (〈`πN ||HQCD||J∗I∗〉) (19)

are on the other hand convention dependent. The sum over n is over all available basis

operators with the given [L, I] quantum numbers. The factor
√
Nc appears as usual for

transition matrix elements between excited and ground state baryons [19]. In the electric

multipoles there is a combination of the coefficients g
[L, I]
n,L−1 and g

[L, I]
n,L+1, and because the

operators appearing in these multipoles do not appear in the magnetic multipoles, one may

as well replace that combination of coefficients by a single term without any loss of generality.

Thus, in what follows only g
[L, I]
n,L−1 is kept. These and the coefficients g

[L, I]
n,L are going to be

determined by fits to the empirical helicity amplitudes. In order to streamline the notation

the coefficients will then be denoted by: XL
(I)
n , X = E or M , and I = 0, 1.

As in the case of decays, one must take into account the effects of state mixing for the

physical amplitudes.

The corresponding bases of operators and their associated matrix elements were obtained

in Ref. [6]. For convenience the list is depicted in Table IX of Appendix I.
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As in the case of the masses, which are linear in the effective couplings, there are linear

relations for the photo-couplings which are independent of those effective couplings. Those

relations at LO which involve either only neutral or only charged baryons are displayed

in the Appendix II. Their tests are at this point not significant because the errors of the

empirical amplitudes are still too large.

III. GLOBAL ANALYSIS AND DISCUSSION OF RESULTS

As discussed in the Introduction, the main aim of the present work is to perform a global

and consistent fit of the masses, strong decay widths an EM helicity amplitudes associated

with the low-lying negative parity baryons. A summary of the present empirical knowledge

of their Breit-Wigner masses, strong decay partial widths and EM helicity amplitudes for

photo-production taken from Ref. [1] is given in Table I.

In order to perform the fits one proceeds as follows. Starting with a certain set of initial

values for the parameters associated to the mass operators one determines the theoretical

masses and mixing angles. Next, with these values of the mixing angles and a set of values

for the strong decay parameters, one obtains the theoretical predictions for the strong widths

and the strong amplitude signs needed for the calculation of the EM helicity amplitudes,

Eq. (19). Finally, using again the same mixing angles together with the strong signs

just determined and a set of values for the helicity amplitudes parameters, one obtains the

theoretical predictions for the EM helicity amplitudes. With all these theoretical predictions

f theoi , and the existing empirical values f empi and associated errors summarized in Table I,

the χ2
dof =

∑
i[(f

theo
i −f empi )/∆f empi ]2/ndof is calculated. Here, i = 1, . . . , Nemp runs over the

different empirically known observables and ndof = Nemp−Nip, where Nip is the total number

of independent parameters used in the fit. This procedure is iterated using different sets of

values for mass, strong decay and EM amplitudes parameters until a (global) minimum of

χ2
dof is found. The minimization is carried out using the MINUIT program.

Using the procedure mentioned above, fits for the four possible assignments Eq. (11) were

performed. It is found that in all cases it is possible to obtain values of χ2
dof < 1. However,

these fits have qualitatively very different characteristics. This can be observed in Figs. 2

and 3, which depict the coefficients associated with mass and strong decay operators and

with the EM amplitude operators, respectively.
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In order to decide which assignments are acceptable from a physical point of view one

needs to consider a certain number of criteria. The first one has to do with the naturalness

of the coefficients. In fact, if the 1/Nc expansion is assumed to be an appropriate framework,

all the coefficients should be within a natural range in magnitude. It should be noted that in

the case of the strong decays and helicity amplitudes this criterion should be applied to each

partial wave separately. A second criterion is related to the assumption that in the strong

and EM amplitudes, when 1-body operators can contribute they should not be suppressed

with respect to 2-body operators. This assumption is based on the fact that the quark model

description of these amplitudes, where it is assumed by construction the dominance 1-body

operators, is quite successful. Finally, the third criterion takes into account the importance

of the hyperfine interaction in the description of the masses. In fact, this interaction plays

a crucial role in explaining the lightness of the singlet Λ(1405) and Λ(1520), whose masses

are pushed down by the hyperfine interaction as shown in [14], and as realized in the early

paper by Isgur [26]. The lightness of those Λ baryons is also observed in recent lattice

QCD calculation of the baryon spectrum [28], where due to the larger quark masses and

the possible suppression of the finite width effects due to the implementation of the lattice

calculation, the hyperfine interaction is clearly driving the downward shift of the masses.

The result of the application of these criteria to the results shown in Figs. 2 and 3 is

summarized in Table II. From that table one can conclude that the preferred assignment

of states is that of Set 1. This assignment is the one that had been adopted in the early

works with the quark model [20, 26, 27] and in the various analysis in the 1/Nc expansion,

[3–6, 12, 21]. The detailed analysis presented here further establishes that scheme.

The numerical results for the operator coefficients corresponding to the favored Set 1 are

given in Table IV. Two possibilities have been considered: Fit 1 includes all the independent

operators appearing in the basis of each observable, while in Fit 2 those operators whose co-

efficients are compatible with zero have been excluded. More specifically, Fit 2 was obtained

by taking the result of Fit 1 and removing those operators whose coefficients are compatible

with zero in a subsequent way. In the case that at certain step there were more than one

operator in this situation, those with higher relative error were removed.

It is interesting to compare the operator coefficients obtained in the present global anal-

ysis with those reported in Refs. [4–6] where fits were made independently for each baryon

property. In making this comparison one should keep in mind that some new empirical val-
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ues became available since those analysis were performed. In the case of strong decays it is

observed that except for a few exceptions the coefficients obtained in global and non-global

analysis are quite similar when error bars are taken into account. One of the exceptions

concerns the coefficients C
[0,1]
i with i = 2, 3, 4 which showed a degeneracy in the non-global

fit. Such degeneracy is removed in the present global analysis. The other is related to the

coefficients C
[2,1]
7,8 associated to 3-body operators which were not taken into account in Ref.

[5]. While the present analysis indicates that C
[2,1]
7 is indeed compatible with zero, C

[2,1]
8

turns out to be comparable to the coefficient of the corresponding 1-body operator. On

the other hand, note that C
[2,1]
2 which was non-vanishing in the previous analysis turns to

be compatible with zero here. Finally, C
[0,0]
2 which was not included in non-global analysis

is also compatible with zero here. Making a comparison between the present and previous

works on EM decays [6], one notices that the values of the coefficient do not change appre-

ciably. In most cases the average values are very similar, and they overlap within errors.

It is interesting to revisit the Moorhouse rule [29], which states that the EM transitions

of proton excited states with quark spin S∗ = 3
2

are suppressed. An explanation of the

rule in the quark model stems from coupling the photon to the constituent quarks with the

isoscalar/isovector strength determined by the quark charges. State mixing and the presence

of 2-body operators give violations to the rule. The Table VI gives the quark-spin content

of the proton states as determined from the mixing angles obtained in the fits to Set 1 and a

check if the rule is closely satisfied. This check represents a good test of the identification of

states corresponding to the Set 1. For Sets 3 and 4 the only way to make the suppressions

work is through extra strength in the 2-body operators as shown in Fig. 3, which is expected

to be unnatural. The case of p(1675) is a particularly unambiguous test as it is unaffected

by mixings [29].

In the strong decays the following selection rules result at LO, i.e., when the mixing

angles are the ones obtained in the expansion of the masses up to O (N0
c ) and at LO in

the decay amplitudes (1-body operators): for the S-wave decays N 1
2
9 ηN , N ′1

2

9 πN ,

N 3
2
9 π∆, and for the D-wave decay N ′1

2

9 π∆. These can be checked using the Tables

III, IV and V of Ref. [5]. Since the mixing angle θ1 changes by more than π/2 from LO to

NLO, one expects that for the J = 1/2 nucleons the selection rules will be poorly satisfied.

In fact the decays N 1
2
→ ηN , N ′1

2

→ πN are not suppressed at all, while the D-wave decay

N ′1
2

→ π∆ is quite suppressed with respect to the S-wave one, N ′1
2

→ πN , but this is simply

13



because of being a higher partial wave. The large change in the angle θ1 from LO to NLO

is due to the fact that the mass operators of O (N0
c ) are quite weak and the NLO hyperfine

mass operator is very strong, leading to a large rearrangement in the composition of the

J = 1/2 nucleon states. Finally the suppression of the S-wave decay N 3
2
→ π∆ should be

well fulfilled because the angle θ3 does not change too much from LO to NLO. This seems

to be indeed the case as the D-wave decay N 3
2
→ π∆ has similar rate to that S-wave decay.

IV. CONCLUSIONS

The determination of the spin-flavor structure of the negative parity baryons is of funda-

mental importance in the study of excited baryons, as it serves to unravel the QCD dynamics

responsible for their properties. Of particular importance is the structure of the J = 1/2

and 3/2 nucleons, which coming in pairs can mix. The mixing is a sensitive measure of that

dynamics. The connection between the theoretical states and the observed ones is a priori

a four-fold undetermined problem. The physics is definitely different in each case, as it has

been shown in this work through the global analysis of observables. The study comes to

the conclusion that there is a favored assignment, based on the three criteria outlined in

section III. Set 1 is acceptable on all counts, while Set 2 comes second, failing only in one

criterion, namely that 2-body operators dominate over 1-body ones in the strong decays. Set

1 is moreover the favored one in the simplest versions of the quark model with suppressed

spin-orbit interaction, which indicates that the seemingly simplest dynamics is the most re-

alistic one. Concerning the mixing angles, this work finds (θ1, θ3) = (0.49±0.29, 3.01±0.17)

and (0.40 ± 0.13, 2.96 ± 0.05) for Fits 1 and 2 respectively. For comparison in a previous

non-global analysis of the strong decays using the 1/Nc [5], the value θ1 = 0.39 ± 0.11 was

obtained and θ3 exhibited a two-fold degeneracy θ3 = (2.38, 2.82) ± 0.11. In this sense the

present global analysis is important to remove such degeneracy in the values for θ3. It is

useful to compare the results obtained in the present analysis with old results obtained with

analyses based on the quark model and of the SU(6)W approach. The present values are

in good agreement with the earlier quark model determination (θ1, θ3) = (0.55, 3.03), ob-

tained from the analysis of strong decays alone [27]. The present results for θ3 agree with

old results in the SU(6)W approach [30], while for θ1 those references disagreed with each

other, for the most part because the input partial widths for the N 1
2

baryons had changed in

14



the meantime, with the latest agreeing with the present result. Finally, it is worthwhile to

stress that further improvement in the empirical inputs for partial decay widths and helicity

amplitudes is necessary in order to reduce the mixing angles uncertainties and to establish

with an even stronger emphasis Set 1 as the correct assignment of spin-flavor states.
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APPENDIX I: BASES OF OPERATORS

For the reader’s convenience the operator bases are shown: Table VII gives the mass

operators, Table VIII operators for the strong decays and Table IX operators for the helicity

amplitudes. They were respectively obtained in Refs. [4–6], where the corresponding matrix

elements relevant for the present work can be also found.

APPENDIX II: PARAMETER INDEPENDENT RELATIONS FOR HELICITY

AMPLITUDES

The parameter independent relations satisfied at LO by the photo-couplings are shown

below. At LO the relations are given separately for the neutral and unit charge baryons.

Other LO relations involving simultaneously neutral and charged baryons are not given here,

but can be easily obtained. In the following the notation si ≡ sin θi, ci ≡ cos θi is used.
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Charged baryon relations:(√
2
3
c1 c3 + 2

√
6
5
c1 s3 + 2√

15
s1 s3

)
Ap1

2

[N 1
2
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Ap1
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] + Ap3

2

[N 3
2
]

+
(

2√
15
c1 s3 −

√
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√
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s1 c3
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2

] +
(

2
9

(√
10 + 2

√
15
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s3 − 1√

3
c3

)
AN1

2

[∆ 1
2
]

−
(

1√
6
c3 + 10+19

√
6

18
√

5
s3

)
AN1

2

[∆ 3
2
]−
(

1√
2
c3 + 57+5

√
6

9
√

10
s3

)
AN3

2

[∆ 3
2
] = 0

(
2
√

6
5
c1 c3 + 2√

15
s1 c3 −

√
2
3
c1 s3

)
Ap1

2

[N 1
2
] +
(

2√
15
c1 c3 − 2

√
6
5
s1 c3 +

√
2
3
c1 s3

)
Ap1

2

[N ′1
2

]

+ 1√
3
Ap1

2

[N ′3
2

] + Ap3
2

[N 3
2
] +
(

2
9

(√
10 + 2

√
15
)
c3 + 1√

3
s3

)
AN1

2

[∆ 1
2
]

+
(

1√
6
s3 − 10+19

√
6
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√

5
c3

)
AN1

2

[∆ 3
2
] +
(

1√
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s3 − 57

√
10+10

√
15

90
c3

)
AN3

2

[∆ 3
2
] = 0

1
3
√

5

(
8 c1 + 1√

2
s1

)
Ap1

2

[N 1
2
] +

√
2

3

(
2
√

5 c3 + s3

)
Ap1

2

[∆ 1
2
] + 1√

2
Ap1

2

[N 5
2
] + Ap3

2

[N 5
2
]

+ 1
3
√

5

(
1√
2
c1 − 8 s1

)
Ap
′

1
2

[N 1
2
] +

√
2

3

(
c3 − 2

√
5 s3

)
Ap
′

1
2

[∆ 1
2
]

+2
√

15−3
√

10
54

AN1
2

[∆ 1
2
] + 663−5

√
6

108
√

5
AN1

2

[∆ 3
2
]− 5

√
10+139

√
15
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AN3

2

[∆ 3
2
] = 0

(20)
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Neutral baryon relations:(√
2
3
c1 c3 + 2

√
6
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c1 s3 + 2√

15
s1 s3

)
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3
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√
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√
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(
1√
3
c3 − 2

√
5

9

(√
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FIG. 1: Distribution of possible values of the angles θ1 and θ3: The O
(
N0
c

)
angles are depicted by

the orange diamond; angles consistent with Eq. (15) using the empirical masses and the assignment

of states defined in section [II] as Set 1 are depicted by the gray distribution of points (for other

assignments shift the angles by π/2 accordingly), and the angles from the global fits obtained in

this work are depicted in black, red, blue, and green respectively for assignments Set 1 through 4.

20



FIG. 2: Coefficients with errors from the global fits for the different assignments of states: black,

red, blue and green respectively for Sets 1 through 4.
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FIG. 3: Coefficients with errors from the global fits for the different assignments of states: black,

red, blue and green respectively for Sets 1 through 4.
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State Mass Width Branching ratio [%] AN1
2

AN3
2

S-wave D-wave Ap1
2

An1
2

Ap3
2

An3
2

[MeV] [MeV] [10−3× GeV−
1
2 ]

N(1535) 1538(18) 150(25) πN : 45(10) π∆ : 2(2) 90(25) -46(27)

ηN : 42(10)

N(1520) 1523(8) 113(13) π∆ : 15(5) πN : 60(5) -24(9) -59(9) 166(5) -139(11)

π∆ : 13(3)

ηN : unknown

N(1650) 1660(20) 150(30) πN : 70(20) π∆ : 13(13) 53(16) -15(21)

ηN : 10(5)

N(1700) 1700(50) 175(75) π∆ : 50(40) πN : 12(5) -18(13) 0(50) -2(24) -3(44)

π∆ : 10(10)

ηN : unknown

N(1675) 1678(8) 148(18) πN : 40(5) 19(8) -43(12) 15(9) -58(13)

π∆ : 50(15)

ηN : unknown

∆(1620) 1645(30) 143(8) πN : 25(5) π∆ : 45(15) 27(11)

η∆: no phase
space

∆(1700) 1720(50) 300(100) π∆ : 38(13) πN : 15(5) 104(15) 85(22)

η∆: no phase π∆ : 10(5)
space

η∆: no phase
space

TABLE I: Non-strange negative parity baryons with their partial decay widths and helicity photoproduction

amplitudes as given by the PDG [1].
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Set 1 2 3 4

Naturalness

M X

D X

EM X

X

X

X

7

7

X

X

7

7

1-B dominance
D X

EM X

7

X

7

7

7

7

HF term M X X X 7

TABLE II: Summary of application of the criteria discussed in the text to results shown in Figs.

2 and 3. M , D and EM refer to masses, decays and EM helicity amplitudes respectively.
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Mass [MeV] Strong decays EM helicity amplitudes

Fit 1 Fit 2 Fit 1 Fit 2 Fit 1 Fit 2

C1 497(5) 497(3) C
[0,1]
1 23(2) 22(2) E1

(0)
1 -0.4(0.2) -0.4(0.2)

C2 20(17) 28(11) C
[0,1]
2 35(27) 25(12) E1

(0)
2 0.2(0.6) -

C3 -50(22) -48(10) C
[0,1]
3 27(6) 26(5) E1

(0)
3 1(1) 0.7(0.7)

C4 57(58) 32(27) C
[0,1]
4 -52(26) -41(16) E1

(0)
4 0.4(0.7) -

C5 -99(61) -98(32) C
[2,1]
1 3.6(0.2) 3.6(0.2) E1

(1)
1 3.0(0.2) 3.1(0.2)

C6 567(72) 577(41) C
[2,1]
2 -2(2) - E1

(1)
2 0.3(0.3) 0.3(0.2)

C7 -4(13) - C
[2,1]
3 -2(1) -2(1) E1

(1)
3 -0.1(0.6) -

C8 3(11) - C
[2,1]
4 2(4) - E1

(1)
4 0(2) -

C
[2,1]
5 -8(8) - E1

(1)
5 -0.1(0.9) -

Mixing angles C
[2.1]
6 -1.6(0.2) -1.5(0.2) E1

(1)
6 4(1) 3.8(0.7)

Fit 1 Fit 2 C
[2,1]
7 -5(5) - M2

(0)
1 1.5(0.3) 1.5(0.3)

θ1 0.49(0.29) 0.40(0.13) C
[2,1]
8 -6(2) -7(2) M2

(0)
2 -1(1) -1.6(0.8)

θ3 3.01(0.17) 2.96(0.05) C
[0,0]
1 16(6) 18(2) M2

(0)
3 0(2) -

C
[0,0]
2 -11(27) - M2

(1)
1 3.8(0.5) 3.8(0.4)

Fit 1 Fit 2 M2
(1)
2 -1.6(1.2) -2.2(0.6)

χ2
dof 0.39 0.34 M2

(1)
3 -1(1) -

dof 5 22 M2
(1)
4 -1(2) -

E3
(0)
1 0.3(0.9) -

E3
(1)
1 0.3(0.6) -

TABLE III: Results for the fits to Set 1. The parameters fitted are those associated with the basis

operators for masses, strong decays and helicity amplitudes. The parameters for the latter two are

dimensionless. The results for two fits are given. In Fit 1 all operators are included while in Fit 2

operators with coefficients compatible with zero are disregarded.
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Masses [MeV]

State Empirical Fit 1 Fit 2

N(1535) 1538(18) 1539 1539

N(1520) 1523(8) 1523 1523

N(1650) 1660(20) 1659 1658

N(1700) 1700(50) 1697 1718

N(1675) 1678(8) 1678 1678

∆(1620) 1645(30) 1651 1646

∆(1700) 1720(50) 1703 1701

Strong partial decay widths [MeV]

Channel Empirical Fit 1 Fit 2

N(1535)→ πN 68(19) 61.5 61.4

N(1520)→ π∆ 17(6) 15.0 14.6

π N(1650)→ πN 105(37) 95.4 88.3

S-wave N(1700)→ π∆ 88(79) 133 149

∆(1620)→ πN 35(7) 35.6 36.3

∆(1700)→ π∆ 113(53) 137 128

N(1535)→ π∆ 3(3) 2.0 2.02

N(1520)→ πN 68(9) 66.0 72.6

N(1520)→ π∆ 14(3) 12.4 9.36

N(1650)→ π∆ 19(19) 22.8 19.5

π N(1700)→ πN 21(13) 20.5 26.0

D-wave N(1700)→ π∆ 18(19) 20.4 24.2

N(1675)→ πN 59(10) 59.7 57.7

N(1675)→ π∆ 73(24) 82.0 58.2

∆(1620)→ π∆ 64(22) 75.3 74.1

∆(1700)→ πN 45(15) 44.7 47.0

∆(1700)→ π∆ 30(18) 33.5 30.2

η N(1535)→ ηN 63(18) 63.0 65.3

S-wave N(1650)→ ηN 15(8) 15.0 12.6

TABLE IV: Results for masses and partial decay widths from the fits to Set 1.
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EM helicity amplitudes [10−3× GeV−
1
2 ]

Empirical Fit 1 Fit 2 η(B∗)

Ap1
2

[N(1535)] 90(30) 90.0 92.8 1

An1
2

[N(1535)] -46(27) -46.0 -47.7 1

Ap1
2

[N(1520)] -24(9) -24.0 -26.1 -1

An1
2

[N(1520)] -59(9) -59.0 -57.5 -1

Ap3
2

[N(1520)] 150(15) 150 151 -1

An3
2

[N(1520)] -139(11) -139 -142 -1

Ap1
2

[N(1650)] 53(16) 53.0 43.0 -1

An1
2

[N(1650)] -15(21) -15.0 -17.5 -1

Ap1
2

[N(1700)] -18(13) -18.0 -17.2 1

An1
2

[N(1700)] 0(50) 0.0 30.9 1

Ap3
2

[N(1700)] -2(24) -2.0 2.5 1

An3
2

[N(1700)] -3(44) -3.1 14.2 1

Ap1
2

[N(1675)] 19(8) 19.0 13.0 -1

An1
2

[N(1675)] -43(12) -43.0 -40.0 -1

Ap3
2

[N(1675)] 15(9) 15.0 18.3 -1

An3
2

[N(1675)] -58(13) -58.0 -56.6 -1

AN1
2

[∆(1620)] 27(11) 27.0 27.2 1

AN1
2

[∆(1700)] 104(15) 104 96.7 1

AN3
2

[∆(1700)] 85(22) 85.0 95.5 1

TABLE V: Results for EM helicity amplitudes from the fits to Set 1. The last column gives the

sign of the corresponding strong amplitude needed in Eq. (18).
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Excited proton (S∗ = 1
2 , S

∗ = 3
2) content Moorhouse rule

p(1535) (0.90, 0.43) not suppressed

p(1650) (−0.43, 0.90) X

p(1520) (0.99, − 0.13) not suppressed

p(1700) (0.13, 0.99) X

p(1675) (0.0, 1.0) X

TABLE VI: Test of the Moorhouse rule in the proton helicity amplitudes.

n-Body Operator Order in 1/Nc

0 M1 = NcI −1

1 M2 = 6
5

√
6 (ls)[0,0]

2 M3 = 144
5

√
6 1
Nc

(
l(2) (gGc)

[2,0]
)[0,0]

0

2 M4 = 2
√

2
3

(
− (ls)[0,0] + 12

Nc+3

(
l (tGc)

[1,0]
)[0,0]

)
2 M5 = 9

5
1
Nc

(lSc)
[0,0]

2 M6 = − 9
2
√

2
1
Nc

(ScSc)
[0,0]

2 M7 = 3
√

3 1
Nc

(sSc)
[0,0]

2 M8 = 6
√

6 1
Nc

(
l(2) (sSc)

[2,0]
)[0,0]

1

TABLE VII: Mass basis operators. Here the notation l(2) = (ll)[2,0] is used.
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Meson/Partial wave n-Body Operator Order in 1/Nc

1 O
[0,1]
1 = (ξ g)[0,1] 0

π O
[0,1]
2 = 1

Nc

(
ξ (s Tc)

[1,1]
)[0,1]

1

S-wave 2 O
[0,1]
3 = 1

Nc

(
ξ (t Sc)

[1,1]
)[0,1]

1

O
[0,1]
4 = 1

Nc

(
ξ (g Sc)

[1,1]
)[0,1]

1

1 O
[2,1]
1 = (ξ g)[2,1] 0

O
[2,1]
2 = 1

Nc

(
ξ (s Tc)

[1,1]
)[2,1]

1

π O
[2,1]
3 = 1

Nc

(
ξ (t Sc)

[1,1]
)[2,1]

1

D-wave 2 O
[2,1]
4 = 1

Nc

(
ξ (g Sc)

[1,1]
)[2,1]

1

O
[2,1]
5 = 1

Nc

(
ξ (g Sc)

[2,1]
)[2,1]

1

O
[2,1]
6 = 1

Nc

(
ξ (s Gc)

[2,1]
)[2,1]

0

3 O
[2,1]
7 = 1

N2
c

(
ξ
(
s ({Sc, Gc})[2,1]

)[2,1]
)[2,1]

1

O
[2,1]
8 = 1

N2
c

(
ξ
(
s ({Sc, Gc})[2,1]

)[3,1]
)[2,1]

1

η 1 O
[0,0]
1 = (ξ s)[0,0] 0

S-wave 2 O
[0,0]
2 = 1

Nc

(
ξ (s Sc)

[1,0]
)[0,0]

1

η 1 O
[2,0]
1 = (ξ s)[2,0] 0

D-wave 2 O
[2,0]
2 = 1

Nc

(
ξ (s Sc)

[1,0]
)[2,0]

1

O
[2,0]
3 = 1

Nc

(
ξ (s Sc)

[2,0]
)[2,0]

1

TABLE VIII: Strong decay basis operators. The upper labels [L,I] denote angular momentum and

isospin and how these are coupled. The vector ξ provides the transition from the O(3) (orbital)

` = 1 (excited baryon) to ` = 0 (ground state baryon). It is defined by its reduced matrix element:

〈` = 0 | ξ | ` = 1〉 =
√

3 [6].
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Operator Order in 1/Nc n-Body

E1
(0)
1 = (ξ s)[1,0] 0 1

E1
(0)
2 = 1

Nc

(
ξ (s Sc)

[0,0]
)[1,0]

1 2

E1
(0)
3 = 1

Nc

(
ξ (s Sc)

[1,0]
)[1,0]

1 2

E1
(0)
4 = 1

Nc

(
ξ (s Sc)

[2,0]
)[1,0]

1 2

E1
(1)
1 = (ξ t)[1,1] 0 1

E1
(1)
2 = (ξ g)[1,1] 0 1

E1
(1)
3 = 1

Nc

(
ξ (s Gc)

[2,1]
)[1,1]

0 2

E1
(1)
4 = 1

Nc

(
ξ (s Tc)

[1,1]
)[1,1]

1 2

E1
(1)
5 = 1

Nc

(
ξ (s Gc)

[0,1]
)[1,1]

+ 1
4
√

3
E1

(1)
1 1 2

E1
(1)
6 = 1

Nc

(
ξ (s Gc)

[1,1]
)[1,1]

+ 1
2
√

2
E1

(1)
2 1 2

M2
(0)
1 = (ξ s)[2,0] 0 1

M2
(0)
2 = 1

Nc

(
ξ (s Sc)

[1,0]
)[2,0]

1 2

M2
(0)
3 = 1

Nc

(
ξ (s Sc)

[2,0]
)[2,0]

1 2

M2
(1)
1 = (ξ g)[2,1] 0 1

M2
(1)
2 = 1

Nc

(
ξ (s Gc)

[2,1]
)[2,1]

0 2

M2
(1)
3 = 1

Nc

(
ξ (s Tc)

[1,1]
)[2,1]

1 2

M2
(1)
4 = 1

Nc

(
ξ (s Gc)

[1,1]
)[2,1]

+ 1
2
√

2
M2

(1)
1 1 2

E3
(0)
1 = 1

Nc

(
ξ (s Sc)

[2,0]
)[3,0]

1 2

E3
(1)
1 = 1

Nc

(
ξ (s Gc)

[2,1]
)[3,1]

0 2

TABLE IX: EM basis operators. The upper notation X(0) and X(1) indicates the isospin of

the operator. The NLO operators E1
(1)
5 , E1

(1)
6 , and M2

(1)
4 involve linear combinations with LO

operators in order to eliminate their projections onto the LO operators.
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