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Abstract 
 
An object-oriented framework to support the modeling and management of the design process is 
introduced. It naturally integrates the representation of both the design process itself, and the 
outcomes that are achieved as the result of the various design activities. The integral view of tracing 
that was adopted not only captures and manages the products being generated but also the activities 
that occurred, their associated context and the adopted decisions. The Version Administration System 
introduced in this paper provides an explicit mechanism to manage the different model versions being 
generated during the course of a design project as design activities are executed. 
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1. Introduction 
 
Development of products in many engineering 

disciplines is a challenging task. Even for quite 
different types of products, development processes 
have strong common characteristics and features, 
such as the ones listed below: 

 
• Design problems are inherently ill defined; 

therefore, the structure of the design process is 
not known in advance. It starts with a small set of 
requirements that include goals and constraints 
and evolves through subsequent stages of 
increasing complexity in a non-linear manner. In 
most cases there is a lack of a fully articulated 
methodology, so, there is no clear distinction 
between solution stages. Furthermore, there might 
be a need for a backtracking process to change 
previously adopted decisions.  

 
• During a design process, various models of the 

artifact being designed are generated. They differ 
in granularity, complexity and associated 
assumptions; therefore, there is an explicit need to 
properly manage model versions. 

 
• Once a design project is finished, the things that 

remain are mainly "design products" such as the 
models that were generated, detailed 
specifications of the resulting artifact, drawings, 
sketches, etc. However, there is no explicit 
representation of how they were obtained. More 
specifically, there is no trace of: 

 
− Which activity/ies originated a given 

product? 
 
− Which requirements were imposed? 



− Which actors performed a given activity? 
 
− Which is the underlying rationale behind a 

decision-type activity? 
 

• Due to their size and complexity or specific needs 
of expertise, design problems are rarely tackled 
by individuals, design teams are the usual coin. 
Thus, human experts along with computer-aided 
tools are the ones that by interacting 
cooperatively, sharing resources of various types 
and design products, solve complex problems. 
 
As a consequence of the features pointed out 

above there is a real need for support tools that could 
capture and efficiently manage the solution process. 
By having such tools, the tracking and tracing of the 
development process would be possible as well as 
the analysis of its rationale. In this way, the experts' 
knowledge could be captured, thus providing the 
foundations for learning and training activities and 
for future reuse. It should be adopted a holistic or 
integral view of tracing, that not only captures and 
manages the products being generated (e.g. model 
traceabili ty) but also the activities that occur, their 
associated context, the adopted decisions as well as 
the different roles that the distinct design actors 
assumed during the solution process. 

 
On the other hand, product management systems 

have been around for a long time, and they are 
widely used in practice. This is not surprising 
because they respond to a very basic demand: the 
products of development processes have to be 
recorded and organized (Westfechtel, 1998). These 
management systems and software configuration 
management systems focus on products, but neglect 
the tracing of the design processes. In consequence, 
they do not satisfy the need for keeping consistency 
and navigabil ity among models (and model’s 
components) identified along the design process. 

 
Depending on the domain being tackled and on 

the problem at hand, design methodologies can vary. 
Boyle (1989) suggests a classification that identifies 
three main categories: analytic, procedural and 
experimental design. Underneath this 
characterization there are concepts such design 
objects, object attributes, operations on objects, as 
well as the different roles that are assigned to 
humans and equipment in these classes of design 
methodologies. This work focuses on procedural 
design, which is the most frequent one in 
engineering disciplines. Design is considered as an 
iterative process that operates under the generate-
test-analyze-suggest-modify paradigm. During this 
development process the artifact being designed is 
checked against objectives. In general, the design 

process does not follow a predefined workflow, and 
cannot be predicted beforehand. Moreover, certain 
complex tasks are executed interactively by 
humans/design teams by interplaying with computer 
support systems.   

 
This contribution tries to address the issues raised 

above. It is organized as follows. In the next section, 
the main concepts related with the representation 
and capture of the design process are presented. 
Moreover, two different granularity contexts 
(activity and operation contexts) are first introduced. 
In section 3, the activity context is described in more 
detail and in section 4 the operation context is 
discussed, presenting also a version administration 
system. Finall y, section 5 presents conclusions.  

 
 

2. Modeling Elements. Representing How 
The Design Process Is Performed 

 
Design knowledge still rests in the minds of 

experienced designers, but it is desirable to make it 
part of a computer support environment. Therefore, 
it is necessary to have a model of the design process 
that allows to capture how it has been performed.  

 
Designers react contextually according to the 

domain knowledge they acquire. Then, the process 
modeling approach proposed here aims at strongly 
relating the context where an activity is performed to 
the activity itself, otherwise some information about 
the activity would be lost. This approach aims at 
capturing not only activities performed during the 
design process but also why and when (the activity 
context) these activities were done and whom (the 
actor/s) executed them. On the other hand, activities 
operate on the results or products of the design 
process, called design objects, that include 
requirements, the representation of the design 
artifact itself, and arguments.  

 
In consequence, the design process model has to 

handle different levels of granularity of contexts. 
There is an activity context, that requires exploring 
decision making alternatives, and an operation 
context which implements a given decision through 
the execution of operations which transform the 
product under development. This originates new 
contexts, which are themselves subjects of decisions 
(See Figure 1). 

 
The object-oriented paradigm is used for 
representing the process model. Furthermore, both 
the object-oriented paradigm and the situational 
calculus are employed for modeling the evolution of 
the design objects. In Figure 1, six main concepts 
used to model the design process are shown. They 
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Figure 1. Capturing the design process 

are: model version, requirement, design object, 
activity, operation and actor. 
 
• Model versions represent the activity context. 

They supply a snapshot description of the state of 
the design process, including the artifact being 
designed. 

 
• Requirements specify the functional and non-

functional characteristics that a product must 
satisfy. They are represented as design objects. 

 
• Design objects model the different products of the 

design activities. They evolve as the design 
process proceeds and their versions form part of 
one or more model versions. 

 
• Activities that carry out the design process. 
 
• Operations that perform the actual transformation 

of design objects. Each activity is materialized by 
a set of operations. 

 
• Actors, whom perform the activities and 

operations. 
 
 
3. Activity Context 

 
As it pointed out in the introduction, once a 

design project is finished, those things that remain 
are mainly "design products" (e.g. generated models, 
detailed specifications of resulting artifacts, 
drawings, sketches, etc.). However, there is no 
explicit representation of how they were obtained. 
More specifically, there is no trace of which 
activity/ies originated a given product, which 
requirements were imposed, which actors performed 
a given activity and which was the underlying 
rationale behind a decision-type activity. Regarding 

activity types, though it is not within the scope of 
this paper, it is assumed that activities are identified 
and classified according to the different types that 
were presented in Eggersmann et al. (2003). In this 
section, a process model that allows us to capture a 
design process and answer the questions previously 
posed is presented. 

 
3.1. Which activity/ies originated a given 
product? 

 
The design process is carried out by a set of 

activities, which may be described at various 
abstraction levels. An activity may be decomposed 
into a set of sub-activities, they may be organized 
according to a schedule or they may be performed 
without a previous order. The relationships between 
an activity and its sub-activities are captured by an 
aggregation link. In Figure 2, this is depicted using 
the UML object-oriented paradigm notation (Booch 
et al., 1999).  

 
The aggregation relationship is transitive; then, 

using first order logic the transitivity property is 
expressed as follows: 

 
(∀ a1, a2, a3)  

subActivityOf(a1, a2) ∧ subActivityOf(a2, a3) 
⇒  

subActivityOf(a1, a3) 

(1) 

 
Where subActivityOf(ai, ak) is a predicate that 

means that ai is a sub-activity of ak. 
 
The following two axioms state that an activity 

cannot be a sub-activity of itself, and it is never the 
case that an activity is a sub-activity of another 
activity which, in turn, is a sub-activity of the first 
one. This shows that the relation subActivityOf is 
non-reflexive and anti-symmetric: 
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Figure 2. Activity decomposition and relationship with design products by means of operations 

(∀ a) ¬subActivityOf(a, a) (2) 
 

 (∀ a1, a2) subActivityOf(a1, a2)  
⇒  

¬ subActivityOf(a2, a1) 
(3) 

 
Moreover, an activity cannot be a sub-activity of 

two or more distinct activities that are not sub-
activities of each other: 

 
(∀ a1, a2, a3)  

subActivityOf(a1, a2) ∧ subActivityOf(a1, a3)  
⇒  

a2 = a3 ∨ subActivityOf(a2, a3) ∨ 
subActivityOf(a3, a2) 

(4) 

 
The recursive decomposition of sub-activities 

leads to an overall activity structure. Taking into 
account the subActivityOf relationship, activities are 
classified into basic and compound activities. The 
activity structure bottoms out in activities that are 
not further decomposed and are, therefore, called 
basic activities (See Figure 2).  

 
(∀ a) basicActivity(a)  

⇔  
¬(∃ a´) subActivityOf(a´, a) 

(5) 

 
Basic activities are materialized in a sequence of 

operations φ. This fact is represented by the 
predicate materialize(φ, a).  

 
 

(∀ a) basicActivity(a)  
⇔  

(∃ φ) materialize(φ, a) 
(6) 

 
An operation is the basic transformational action 

primitive which represents actions on design objects. 

Operations prescribe how the design domain is 
changed. They are specified in more detail in the 
section entitled operation context. 

 
A compound activity cannot be a leaf node in the 

activity hierarchy; thus any activity that is regarded 
as a compound activity is not a basic one. 

 
(∀ a) compoundActivity(a)  

⇔  
¬ basicActivity(a) 

(7) 

 
3.2. Which requirements were imposed? 

 
The design process may be interpreted as a series 

of activities guided by requirements, specifying the 
functional and non-functional characteristics that a 
product must satisfy. Furthermore, requirements 
may prescribe constraints on the design process. 
Generally, they are specified as goals or constrains. 
Often requirements may not be stated explicitly or in 
sufficient detail at the beginning of the design 
process (Brown and Chandrasekaran, 1989). They 
are refined and specified more precisely as greater 
comprehension of the design problem is reached 
(Boyle, 1989; Goel, 1994). Then, it is very important 
to represent how requirements evolve during a 
project execution. This is analyzed in section 4, 
where a requirement is represented as a design 
object. In the activity context it is possible to 
recognize which requirements guided an activity 
through the relationship guidedBy (Figure 2). 
Conversely, this relationship allows us to know 
which activities were performed with the aim of 
satisfying a given requirement. 

 
3.3. Which actors performed a given activity? 
 
As it was previously mentioned, activities are 
performed by actors with a goal in mind. The 



process model presented in this paper extends the 
actor model introduced by Eggersmann et al. (2001). 
This extension is made with the aim of answering 
the question “Which actors performed a given 
activity?” . Indeed, each activity is related to an actor 
who executes it (execution relationship in Figure 3). 
An actor may be either an individual (a human or 
computational program) or a team. Teams are 
composed of actors, individuals and/or other teams. 
Teams allow to represent compound skill s that are 
needed for performing activities. They are not 
organizational units, because the present work 
focuses on process support/process tracing. 

 
Each actor may have goals, called actor’s goals, 

which express the actor’s intentions and desires. 
These goals may usually be described in terms of the 
desired product, but there is a part of them harder to 
describe because it is not directly related to the 
outcome of an activity. It may, for example, deal 
with deadlines or even fuzzy quali fications such as 
“as fast as possible”. Therefore, this part is often 
represented as text. Then, an actor’s goal may be 
modeled as an aggregation of goals about products 
and fuzzy goals. So, an actor’s goal may be 
decomposed into a set of subgoals. 

 
The actor’s decision of executing a given activity 

for reaching one or more goals with the final aim of 
satisfying a set of requirements is represented by the 
promote links among activity, actor’s goal and 
requirement (Figure 3). These links reflect the 
actor’s intention and can be used to evaluate whether 
the work done did really satisfy the goal, at least 
partially. Moreover, the model shown in Figure 3 
allows to represent the fact that activities are 
executed by those actors having the necessary skil ls 
to carry them out. As seen, the actor, activity and 
skill  classes are connected to each other. The link 
between activity and skil l represents the skil ls 
required to execute the activity. The activity – actor 
association models who performed a given activity. 
Finally, the individual actor – skill  link represents 
the know how of a particular actor. 

 

3.4. Which is the underlying rationale behind a 
decision-type activity? 

 
With the aim of representing the rationale 

associated with the execution of a given activity, the 
IBIS model (Rittel and Kunz, 1970) is refined in this 
paper. The IBIS model focuses on articulating key 
design issues. An issue is a question to be answered 
and a position is an alternative which exists for 
solving such issue. We refine this view by 
introducing requirements, which specify issues, and 
also by decomposing positions into artifacts, 
attributes, and values (see Figure 4). An artifact 
represents the product that it is being designed, and 
attributes and values characterize the position. Then, 
the different alternative products that arise in the 
design process are represented by the position 
concept. A position is qualified by one or more 
arguments and addresses at least one requirement. 
An argument either supports or objects a position. It 
allows to test whether the position is capable of 
fulfill ing the prescribed requirements by the answer 
relationship. 

 
Positions, artifacts, attributes, values and 

arguments evolve during the execution of a design 
project and their various states are fundamental for 
representing the different contexts where an activity 
is performed. Then, they are represented as design 
objects (see Figure 5), and the operation context 
section describes how their evolution is represented 
during the design process. 

 
Activities have the goal of designing a product 

that is specified by a set of requirements. These 
activities generate artifacts which are part of 
positions and which may be missing relevant 
information. A position encompasses a design 
artifact (such as a chemical reaction pathway, a 
flowsheet structure, a mathematical model, etc.), its 
attributes and corresponding values. Activities 
performed after synthesis activities (Eggersmann et 
al., 2003) which have generated positions, allow the 
enlargement of such positions by refining the 
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Figure 3. Actor ’s Model  
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Figure 4. Model that captures the relationships among the var ious Design Objects,  

allowing to uncover the rationale behind a decision-type activity  

artifacts and providing attributes and values in order 
to have enough information to carry out decision 
activities, which in turn use requirements and 
arguments to select positions. Requirements are also 
used during other types of activities to indicate the 
most important aspects to focus on. As seen, 
requirements are used in every activity, but with a 
different purpose or aim. Thus, some activities 
attempt to answer the question: "How can 
requirements be fulfilled?" and other ones supply 
data that would allow to check whether requirements 
are met or not. Finally, decision activities weigh up 
requirements, establish which are the most important 
ones and test if these requirements are indeed met. 
Furthermore, as indicated by Eggersmann et al. 
(2003) requirements can be generated during the 
design process by any of the activities that are 
executed. 

 
 

4. The Operation Context 
 
Activities operate on the outcomes or products of 

the design process, called design objects. A design 
object (Figure 5) represents any entity that can 
evolve during a design project. It is represented in 
two levels, the repository and the versions’ level . 
The repository level keeps a unique entity for each 
design object that has been created and/or modified 
due to model evolution during a design project. This 
object is called versionable object (o). 

 
Furthermore, relationships among the different 

versionable objects are maintained in the repository. 
These relationships correspond, according to the 
notation being used, to the rules that allow 

associating objects to form syntactically valid 
models. This is captured by the association predicate 
and the link named association in the object model 
shown in Figure 6. Between any two versionable 
objects oi and oj, association(oi, oj, rk) means that oi 
is linked to oj by the relationship rk. 

 
On the other hand, the versions’ level  keeps the 

different versions of each design object. These are 
called object versions (v). The relationship between 
a versionable object and one of its object versions is 
represented by the predicate version. Thus, 
version(v, o) means v is a version of o. Therefore, a 
given design object keeps a unique instance in the 
repository and all versions it assumes in different 
model versions belong to the versions’ layer . 
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Figure 5. Design Objectś  Model 



At a given stage during the execution of a design 
project, the states assumed by the set of relevant 
design objects, from now on called model version, 
supply a snapshot description of the state of the 
design process, including the artifact being designed. 
Since the situational calculus (Reiter, 2001) is used 
for modeling the version generation process, the 
model evolution is posed as a history made up of 
discrete situations. A new model version mn is 
generated when one activity a (a basic activity) is 
executed. Activity a is materialized by a sequence of 
operations φ (expression 6) and the new model 
version mn is the result of applying such sequence φ 
to the components of a previous model version mp. 
This is achieved by performing the following 
evaluation: apply(φ, mp) = mn. The apply function is 
defined as follows: 

 
apply: Φ x M → M (8) 

 
Where Φ is the set of all possible operation 

sequences φ, and M is the set of possible model 
versions m. A sequence of operations φ is defined as 
follows: 
 




•
=

operationan  is   where,
sequenceempty  

���

οφοφ  (9) 

 
Then, the inductive definition of the apply 

function is given by: 
 

apply(λ, m) = m 
apply(o • λ, m) = m’, m ≠ m’ 

apply(o • φ, m) = apply(φ, apply(o•λ, m)) 
(10) 

 
The primitive operations first proposed to 

represent the transformation of model versions are 
add, delete, and modify. By using the add(v) 
operation an object version that did not exist in a 
previous model version can be incorporated into a 
successor one. Conversely, the delete(v) operation 
eliminates an object version that exists in the 
previous model version. Also, if a design object has 
a version vp, the modify(vp, vs) operation creates a 
new version vs of the existing design object, where vs 
is a successor version of vp. Thus, an object version 
v belongs to the model version that arises after 
applying to model version m the sequence of 
operations φ, if and only if:  

 
(i) v is added when the new model version is created 

(add(v) ∈ φ or modify(vp, v) ∈ φ);  
 

or 
 
(ii) v belonged to the previous model version m and 

it is not deleted when φ is applied ( delete(v) ∉ φ 
or modify(v, vs) ∉ φ). 

 
From these definitions and by using the format of 

successor state axioms proposed by Reiter (2001), it 
is presented a formal specification of the cases in 
which an object version belongs to a model version. 
In the next expression, the predicate belong(v, m) is 
true when the object version v belongs to the model 
version m. 

 
(∀φ, v, vp, vs, m) belong(v, apply(φ,m))  

⇔ 
(add(v) ∈ φ ∨ modify(vp, v) ∈ φ ∨  

belong(v, m)) ∧  
(delete(v) ∉ φ ∧ modify(v, vs) ∉ φ) 

(11) 

 
From this expression, the object versions that 

belong to a model version can be determined. Then, 
it is possible to reconstruct a model version mi+1 by 
applying all the sequences of operations from the 
initial model version m0. 

 
mi+1 = apply(φi, mi) 
mi = apply(φi-1, mi-1) 
... 
m1 = apply(φo, mo) 
 
mi+1 = apply(φi, apply(φi-1, apply(...  

apply(φo, mo)...))) 
 

mi+1 = apply(φo • ... • φi-1 • φi, mo) 

(12) 

 
Where φi • φj is the concatenation of sequences φi 

and φj. 
 
Then, the relationship existing between the two 

levels (repository and versions’ level ) and a model 
version may be expressed by the following 
definition: each versionable object has one or more 
object versions associated to it at a given time 
instant, but at most, one object version associated to 
a given versionable object can belong to a particular 
model version. 

 
Once the object versions conforming a model 

version are defined, the relationships existing among 
them have to be specified. It should be noted that in 
this proposal, object versions belonging to a model 
version are not explicitly associated to other object 
versions of the same model version. On the other 
hand, as it was previously mentioned, the objects of 
the repository store the information of all the objects 
they have been related to during the various model 
versions (association(oi, oj, rk): oi is linked to oj by 
the relationship rk.). Consequently, the link existing 
between two object versions must be inferred from 
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Figure 6. Version Administration Metamodel 

the relationship established between the objects that 
have been versioned by them. Thus, an association rk 
among two object versions v1 and v2 exists in the 
model version mi (associationInf(v1, v2, mi, rk)), if 
and only if there exists the association rk among the 
versionable objects of which v1 and v2 are version of 
(association(o1, o2, rk), version(v1, o1) and 
version(v2, o2)). This fact is presented by expression 
13. 

 
(∀ v1, v2, rl, mi) associationInf(v1, v2, mi, rl) 

⇔  
(∃ o1, o2) belong(v1, mi) ∧ belong(v2, mi) ∧ 

version(v1, o1) ∧ version(v2, o2) ∧ 
association(o1, o2, rl) 

(13) 

 
Having introduced the representation of the set of 

versions of a model, we will explain the way in 
which navigability capacity is provided. The 
proposed scheme uses the situational calculus to 
represent whether a version v belongs to a certain 
model version or not and to allow for the 
reconstruction of a particular model version. In 
addition, this scheme is strengthened by the object-
oriented paradigm, which models the relationships 
existing among object versions of different model 
versions, allowing navigation along the history of 
the object versions constituting a given model 
version. 

 

The relationships among object versions are 
represented by means of explicit l inks at the 
Versions’ level , named add history, delete history 
and version history associations (Figure 6). Each 
transformation operation that is applied to a model 
version incorporates the necessary information to 
trace the model evolution. This information is 
represented by relationships between the object 
versions the operation is applied to and the new ones 
arising as a result of its execution. 

 
4.1. Which operation/s originated a given 
version? 

 
There are other frequent operations that must be 

represented if the history of the changes performed 
in the model version is to be maintained. For 
example, a frequent operation in modeling is the one 
that allows decomposing an entity into one or more 
entities. In this context, such operation is called 
refine and it allows the object versions (ψ: set of 
object versions) that implement the refining to 
appear in the new model version. The reverse 
operation is simplify. By means of this operation, a 
structure of object versions (ψ) becomes an object 
version (v). To start with, these two operations could 
be defined in terms of add and delete. However, it is 
necessary to make a distinction with the aim of 
keeping the history of the changes carried out in the 
model version. 



The refine(v,ψ) operation is expressed in terms of 
a series of add and delete operations according to the 
following expression.  

 
φ = φ1 • refine(v, ψ) • φ2  

⇒ 
(∀ vr ∈ ψ,  add(vr) ∈ φ3 ∧ delete(v) ∈ φ3) ∧ 

(φ = φ1 •φ3 • φ2) 

(14) 

 
The possibility of expressing compound 

operations in terms of basic operations, as proposed 
in expression (14), allows keeping the successor 
state axiom presented in (11) valid, without having 
to bring it up to date when adding each new 
operation. 

 
Expression (14) fails to express the relationship 

that exists between the object version v and the 
object versions vr belonging to ψ. This relationship 
is modeled through the object-oriented paradigm. An 
object version is associated with one or more 
predecessor object versions and one or more 
successor object versions. This association is called 
version history (Figure 7) and it is the association to 
be specialized to define the different operations. In 
the case of the refine operation, version history 
specializes in refine history, where its predecessor is 
an object version and its successors are one or more 
object versions. 

 
Analogously to the refine operation, the 

simplify(ψ,v) operation is defined, which is 
expressed in the following expression. 

 
φ = φ1 • simplify(ψ, v)• φ2  

⇒ 
(∀ vs ∈ ψ,  delete(vs) ∈ φ3 ∧ add(v) ∈ φ3) ∧ 

(φ = φ1 •φ3 • φ2) 

(15) 

 
As it can be seen, the successor state axiom 

presented in expression (11) still remains valid. 
Expression (15) has the same weakness pointed out 
for expression (14) since it does not express the 
relationship that exists between the object versions 
vs belonging to ψ and the object version v. In this 
case, version history specializes in simplify history, 
where its predecessors are one or more object 
versions and its successor is an object version (see 
Figure 7). Gonnet and Leone (2001) have presented 
an operation model that implements the basic 
operations using the Command design pattern 
(Gamma et al., 1995) and allows the extension of the 
set of operations in a flexible form, without having 
to change the existing classes. The operation model 
implements the semantics of the basic operations 
(add, delete, modify) employed in the successor state 
axiom that was defined in expression 11, and defines 

an abstract operation that must be specified when a 
new operation is added. The specification is made in 
terms of the basic operations that were defined. 
Therefore, the operations refine and simplify 
specialize the operation model. 

 
In a similar way to the refine and simplify 

operations, other operations identified in the design 
process can be defined. For instance, the possible 
operations for decision-type activities (where a 
position is selected, rejected, or kept in mind as a 
possible alternative), include select, evaluate, justify, 
and request.  A select operation refers to the choice 
of one or more design products from a number of 
possible alternatives. Before, some information 
generated during previous activities is compared 
with the requirements to fulfill. Thus, an evaluation 
operation provides arguments to justify a decision. 
Similarly, justify offers a rationale for the selection 
of a certain alternative. The operation request 
solicits additional information (generates a new 
requirement), allowing a decision to be interactive.  

 
These operations must be represented if the 

history of the changes and its rationale are to be 
maintained. For example, evaluate(va, vp) generates 
a new argument va qualifying a certain position vp. 
The evaluate(va, vp) operation is expressed in terms 
of the add operation according to the following 
expression. 

 
φ = φ1 • evaluate(va, vp)• φ2  

⇒ 
add(va) ∈ φ3  ∧ (φ = φ1 •φ3 • φ2) 

(16) 

 
Evaluate history specializes version history; its 

predecessor is an object version (vp) and its 
successors are two object versions (va, vp).  

VersionHistory

ObjectVersion

ModifyHistory

RefineHistory SimplifyHistory

EvaluateHistory

predecessor versionHistory

successor

 
Figure 7. Specializing Version History with the 

various operations   



5. Conclusions 
 
This work proposes a framework for representing 

and capturing the design process. This is a 
fundamental phase for developing computational 
tools to support the design process and to guide 
designers in the different activities of a design 
project. The framework is defined in terms of 
metamodels that allow the representation of the 
executed design process and the evolution of the 
different design objects that participated in it. 
Design objects may be design products as well as the 
requirements that specified them, or argumentations 
and goals posed by actors when they performed a 
given activity. 

 
Metamodels can be specialized according to the 

particular domain being tackled. It can be done in 
terms of the different operations that are applied to 
the distinct design objects, and in terms of the 
different design objects that participate in the design 
process. For example, a user’s  goal may be 
specialized, as in Eggersmann et al. (2001), with the 
aim of representing complex goals and their 
decomposition. Another possible specialization of a 
design object is the one of requirements, to represent 
their structure, as it is proposed in Lin et al. (1996).  

 
Situational calculus in conjunction with the 

object-oriented paradigm let us represent experts’  
knowledge and their particular rationale in relation 
to a given operation they applied. On the other hand, 
the extension of the IBIS model allowed us to 
model, at a higher level, the rationale behind a 
decision taken during the design process. Thus, the 
proposed tools allow the tracing of the design 
process and its resulting products, as well as the 
analysis of the reasoning line employed during such 
process, setting the grounds for learning and future 
reuse. 
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