-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by CONICET Digital

ARTICULO

Representing and Capturing the Experts’ Knowledge in a Design Process

Silvio Gonnet *, Horacio Leone * and Gabriela Henning ?

'GIPSI UTN / INGAR,
Avellaneda 3657, 3000 - Santa Fe, Argentina
INTEC,
Guemes 3450, 3000 - Santa Fe, Argentina
{sgonnet,hleone}@ceride.gov.ar, ghenning@intec.unl.edu.ar

Keywords: Design rationade, Change management, Modeling languages, Design support systems.

An object-oriented framework to support the modeling and management of the design process is
introduced. It naturally integrates the representation of both the design process itself, and the outcomes
that are achieved as the result of the various design activities. The integral view of tracing that was
adopted not only captures and manages the products being generated but also the activities that occurred,
their associated context and the adopted decisions. The Version Administration System introduced in this
paper provides an explicit mechanism to manage the different model versions being generated during the
course of a design project as design activities are executed.

Inteligencia Artificial, Revista | beroamericana de I nteligencia Artificial. No.21 (2003),pp. 37-46
ISSN: 1137-3601. © AEPIA (http:/Mmvww.aepia.org/revista).

https://core.ac.uk/display/159289345?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Representing and Capturing
the Experts Knowledgein a Design Process

Silvio Gonnet @ Horacio L eone , Gabriela Henning °

4GIPSI- UTN / INGAR, Avellaneda 3657, 3000- Santa Fe, Argentina

® INTEC, Gilemes 3450, 300 - Santa Fe, Argentina

{ sgonnret,hleone} @ceride.gov.ar, ghenning@intec.unl.edu ar

Abstract

An objed-oriented framework to suppat the modeling and management of the design processis
introduced. It naturaly integrates the representation of both the design process itself, and the
outcomes that are achieved as the result of the various design activities. The integral view of tradng
that was adopted not only captures and manages the products being generated but also the adivities
that occurred, their associated context and the adopted decisions. The Version Administration System
introduced in this paper provides an explicit mechanism to manage the different model versions being
generated during the murse of adesign projed as design adivities are exeauted.

Keywords: Design rationale, Change management, Modeli ng languages, Design suppat systems.

1. Introduction

Development of products in many engineaing
disciplines is a chalenging task. Even for quite
different types of products, development processes
have strong common charaderistics and features,
such as the ones listed below:

e Design problems are inherently ill defined;
therefore, the structure of the design process is
not known in advance It starts with a small set of
requirements that include goals and constraints
and evolves through subsequent stages of
increasing complexity in a non-linea manner. In
most cases there is a lack of a fully articulated
methoddogy, so, there is no clea distinction
between solution stages. Furthermore, there might
be anedl for a badtracking process to change
previously adopted dedsions.

» During a design process various models of the

artifad being designed are generated. They differ
in ganularity, complexity and assciated
assumptions; therefore, there is an explicit need to
properly manage model versions.

Once adesign projed is finished, the things that
remain are mainly "design products' such as the
models that were generated, detailed
spedficaions of the resulting artifadt, drawings,
sketches, etc. However, there is no explicit
representation of how they were obtained. More
spedficdly, thereis no traceof:

— Which adivity/ies originated a given
product?

— Which reguirements were imposed?

- Which adors performed a given adivity?

— Which is the underlying rationale behind a
dedsion-type adivity?

¢ Dueto their size and complexity or spedfic neels
of expertise, design problems are rarely tackled
by individuals, design teams are the usua coin.
Thus, human experts along with computer-aided
tools are the ones that by interading
cooperatively, sharing resources of various types
and design products, solve complex problems.

As a onsequence of the feaures pointed out
above thereisared need for suppart toolsthat could
capture and efficiently manage the solution process
By having such todls, the trading and tradng of the
development process would be possble & well as
the analysis of its rationale. In this way, the experts
knowledge wuld be catured, thus providing the
foundations for leaning and training adivities and
for future reuse. It should be alopted a holistic or
integral view of tradng, that not only cgptures and
manages the products being generated (e.g. model
tracedility) but also the adivities that occur, their
asciated context, the adopted dedsions as well as
the different roles that the distinct design adors
assumed during the solution process

On the other hand, product management systems
have been around for a long time, and they are
widely used in pradice This is not surprising
because they respond to a very basic demand: the
products of development proceses have to be
recorded and organized (Westfechtel, 1998. These
management systems and software onfiguration
management systems focus on products, but negled
the tradng of the design processes. In consequence,
they do not satisfy the need for keeping consistency
and navigability among models (and model’s
components) identified along the design process

Depending on the domain being tackled and on
the problem at hand, design methoddogies can vary.
Boyle (1989 suggests a dasdfication that identifies
three main caegories: analytic, procedural and
experimental design. Underneah this
charaderization there ae mncepts such design
objeds, objed attributes, operations on oheds, as
well as the different roles that are asdgned to
humans and equipment in these dasses of design
methoddogies. This work focuses on procedural
design, which is the most frequent one in
engineaing dsciplines. Design is considered as an
iterative process that operates under the generate-
test-analyze-suggest-modify paradigm. During this
development process the artifad being designed is
chedked against objedives. In general, the design

processdoes not follow a predefined workflow, and
cannot be predicted beforehand. Moreover, certain
complex tasks are executed interadively by
humang/design teams by interplaying with computer
suppart systems.

This contribution tries to addressthe issues raised
above. It is organized as follows. In the next sedion,
the main concepts related with the representation
and capture of the design process are presented.
Moreover, two dfferent granularity contexts
(adivity and operation contexts) are first introduced.
In sedion 3, the adivity context is described in more
detail and in section 4 the operation context is
discussed, presenting also a version administration
system. Finally, section 5 presents conclusions.

2. Modeling Elements. Representing How
The Design Process | s Performed

Design knowledge till rests in the minds of
experienced designers, but it is desirable to make it
part of a computer suppart environment. Therefore,
it is necessary to have amodel of the design process
that all ows to capture how it has been performed.

Designers read contextually acording to the
domain knowledge they aaquire. Then, the process
modeling approach proposed here ams at strongly
relating the context where an adivity is performed to
the adivity itself, otherwise some information about
the adivity would be lost. This approach aims at
cgpturing not only adivities performed during the
design processbut also why and when (the adivity
context) these adivities were done aad whom (the
ador/s) exeauted them. On the other hand, adivities
operate on the results or products of the design
process cdled design objects, that include
requirements, the representation of the design
artifaa itself, and arguments.

In consegquence, the design process model has to
handle different levels of granularity of contexts.
There is an activity context, that requires exploring
dedsion making alternatives, and an operation
context which implements a given dedsion through
the eecution of operations which transform the
product under development. This originates new
contexts, which are themselves aibjeds of dedsions
(SeeFigure 1).

The objed-oriented paradigm is used for
representing the process model. Furthermore, baoth
the objed-oriented paradigm and the situational
cdculus are employed for modeling the evolution of
the design objeds. In Figure 1, six main concepts
used to model the design process are shown. They

Activity Context
M odel

A version of @

oneDegign

ch Qo
{ add(v,), gdal%e, @
modify(v,,. v,)}

eration Context

adtivity a M odd ™\ activity b M odel
Versioni Version |

Version g Aadivity ¢

@

Obj ~—’/K/Iodel Version k

M odd ctivity d M odd

Version k Version p
activity €
(% M odd
iador Z & Version

Mode Version gq

Figure 1. Capturing the design process

are. model version, requirement, design object,
activity, operation and actor.

¢ Model versions represent the activity context.
They supply a snapshot description of the state of
the design process, including the artifact being
designed.

¢ Requirements specify the functional and non-
functional characteristics that a product must
satisfy. They are represented as design objects.

« Design objects model the different products of the
design activities. They evolve as the design
process proceeds and their versions form part of
one or more model versions.

< Activitiesthat carry out the design process.

* Operations that perform the actual transformation
of design abjects. Each activity is materialized by
a set of operations.

e Actors, whom perform the activities and
operations.

3. Activity Context

As it pointed out in the introduction, once a
design project is finished, those things that remain
are mainly "design products' (e.g. generated models,
detailed specifications of resulting artifacts,
drawings, sketches, etc.). However, there is no
explicit representation of how they were obtained.
More specifically, there is no trace of which
activity/ies originated a given product, which
requirements were imposed, which actors performed
a given activity and which was the underlying
rationale behind a decision-type activity. Regarding

activity types, though it is not within the scope of
this paper, it is assumed that activities are identified
and classified according to the different types that
were presented in Eggersmann et a. (2003). In this
section, a process model that allows us to capture a
design process and answer the questions previoudy
posed is presented.

3.1. Which activity/ies originated a given
product?

The design process is carried out by a set of
activities, which may be described at various
abstraction levels. An activity may be decomposed
into a set of sub-activities, they may be organized
according to a schedule or they may be performed
without a previous order. The relationships between
an activity and its sub-activities are captured by an
aggregation link. In Figure 2, this is depicted using
the UML object-oriented paradigm notation (Booch
eta., 1999).

The aggregation relationship is transitive; then,
using first order logic the trangitivity property is
expressed as follows:

(O ay, &, a3)
subActivityOf(a,, a,) O subActivityOf(ay, as)
O
subActivityOf(ay, az)

@

Where subActivityOf(a;, a) is a predicate that
means that g; is a sub-activity of a.

The following two axioms state that an activity
cannot be a sub-activity of itself, and it is never the
case that an activity is a sub-activity of another
activity which, in turn, is a sub-activity of the first
one. This shows that the relation subActivityOf is
non-reflexive and anti-symmetric:

Requirement

1.*
guidedBy

*

subActivity
1"*

Activity

4

CompoundActivity Basi cActivity

materialize operateOn

Operation " DesignObject

1* L

Figure 2. Activity decomposition and relationship with design products by means of operations

(O @) = subActivityOf(a, a) ()]

(O &y, ap) subActivityOf(ay, ay)
O ©)
- subActivityOf(ay, a;)

Moreover, an activity cannot be a sub-activity of
two or more distinct activities that are not sub-
activities of each other:

(O ay, &, ag)
subActivityOf(ay, a,) 0 subActivityOf(a;, as)
0 4
a, = az [subActivityOf(a,, as) O
subActivityOf(as, ap)

The recursive decomposition of sub-activities
leads to an overall activity structure. Taking into
account the subActivityOf relationship, activities are
classified into basic and compourd activities. The
activity structure bottoms out in activities that are
not further decomposed and are, therefore, called
basic activities (See Figure 2).

(O a) basicActivity(a)
- ©)
= (0a") subActivityOf(a’, a)

Basic activities are materialized in a sequence of
operations @ This fact is represented by the
predicate materialize(¢ a).

(O a) basicActivity(a)
= (6)
(0@ materialize(@, a)

An operation is the basic transformational action
primitive which represents actions on design oljeds.

Operations prescribe how the design domain is
changed. They are specified in more detail in the
section entitled operation context.

A compound activity cannot be a leaf node in the
activity hierarchy; thus any activity that is regarded
as a compound activity is not a basic one.

(O @) compoundActivity(a)
- (7
= basicActivity(a)

3.2. Which requirements wer e imposed?

The design process may be interpreted as a series
of activities guided by requirements, specifying the
functional and non-functional characteristics that a
product must satisfy. Furthermore, requirements
may prescribe constraints on the design process.
Generally, they are specified as goals or constrains.
Often requirements may not be stated explicitly or in
sufficient detail at the beginning of the design
process (Brown and Chandrasekaran, 1989). They
are refined and specified more precisely as greater
comprehension of the design problem is reached
(Boyle, 1989; Goel, 1994). Then, it is very important
to represent how requirements evolve during a
project execution. This is analyzed in section 4,
where a requirement is represented as a design
objed. In the activity context it is possible to
recognize which requirements guided an activity
through the relationship guidedBy (Figure 2).
Conversely, this relationship allows us to know
which activities were performed with the aim of
satisfying a given requirement.

3.3. Which actors performed a given activity?

As it was previousy mentioned, activities are
performed by actors with a goa in mind. The

process model presented in this paper extends the
ador model introduced by Eggersmann et a. (20017).
This extension is made with the @am of answering
the question “Which actors performed a given
adivity?’. Indeed, ead activity is related to an actor
who executes it (exeaition relationship in Figure 3).
An actor may be éther an individud (a human or
computational program) or a team. Teams are
compased of actors, individuals and/or other teams.
Teams allow to represent compound skill s that are
needed for performing adivities. They are not
organizaional units, becaise the present work
focuses on processsuppart/processtradng.

Each actor may have gods, called actor’s gods,
which express the actor’s intentions and desires.
These goals may usually be described in terms of the
desired product, but there is a part of them harder to
describe becaise it is not diredly related to the
outcome of an adivity. It may, for example, ded
with deallines or even fuzzy qualificaions such as
“as fast as posshle”. Therefore, this part is often
represented as text. Then, an actor’s god may be
modeled as an aggregation d goals about products
and fuzzy goads. So, an actor's god may be
decomposed into a set of subgoals.

The ador’s dedsion of exeauting a given adivity
for reading one or more goals with the final aim of
satisfying a set of requirements is represented by the
promote links among activity, actor’s god and
requirement (Figure 3). These links reflea the
ador’sintention and can be used to eval uate whether
the work done did redly satisfy the goal, at least
partially. Moreover, the model shown in Figure 3
alows to represent the fact that activities are
exeauted by those actors having the necessary skills
to cary them out. As ®e, the actor, activity and
skill classes are mnneded to ead other. The link
between activity and skill represents the skills
required to exeaute the adivity. The activity — actor
association models who performed a given adivity.
Finally, the individud actor — skill link represents
the know how of a particular ador.

3.4. Which is the underlying rationale behind a
dedsion-type activity?

With the @m of representing the rationale
asciated with the exeaution of a given adivity, the
IBIS model (Rittel and Kunz, 1970) isrefined in this
paper. The IBIS model focuses on articulating key
design iswes. An isdleis a question to be arswered
and a position is an alternative which exists for
solving such issue. We refine this view by
introducing requirements, which spedfy isales, and
aso by demmposing positions into artifacts,
attributes, and values (see Figure 4). An artifact
represents the product that it is being designed, and
attributes and values charaderize the position. Then,
the different alternative products that arise in the
design process are represented by the position
concept. A pasition is qualified by one or more
arguments and addresses at least one requirement.
An argument either supparts or objeds a paosition. It
alows to test whether the position is cgpable of
fulfilling the prescribed requirements by the answer
relationship.

Positions, artifacts, attributes, values and
arguments evolve during the exeaution of a design
projed and their various gates are fundamenta for
representing the different contexts where an activity
is performed. Then, they are represented as design
objeds (see Figure 5), and the operation context
sedion describes how their evolution is represented
during the design process

Activities have the goal of designing a product
that is gedfied by a set of requirements. These
adivities generate artifacts which are part of
positions and which may be missing relevant
information. A position encompasses a design
artifact (such as a chemicd readion pathway, a
flowshed structure, a mathematicd model, etc.), its
attributes and corresponding values. Activities
performed after synthesis adivities (Eggersmann et
al., 2003) which have generated pasitions, allow the
enlargement of such positions by refining the

*

. promote }
Requirement Actor’sGoal
1.* %
ided

guidedBy b ori6te o

* *
Activity Skill

* * l .~k *

1x Actor

Individual Team

Figure 3. Actor’sModel

* uided 1.*
Activity 9 By Requirement
speci
Product 1*
generate ateOn
desaribe
* * *
qualify | o N
Argument " e Position answer
| I
describe

Artifact

Attribute

Value

Figure 4. M odel that capturesthe reationships among the various Design Objeds,
allowing to uncover the rationale behind a dedsion-type activity

artifacts and providing attributes and valuesin order
to have enough information to carry out decision
activities, which in turn use requirements and
arguments to select positions. Requirements are also
used during other types of activities to indicate the
most important aspects to focus on. As seen,
requirements are used in every activity, but with a
different purpose or aim. Thus, some activities
attempt to answer the question: "How can
requirements be fulfilled?' and other ones supply
data that would allow to check whether requirements
are met or not. Finally, decision activities weigh up
requirements, establish which are the most important
ones and test if these requirements are indeed met.
Furthermore, as indicated by Eggersmann et al.
(2003) requirements can be generated during the
design process by any of the activities that are
executed.

4. The Operation Context

Activities operate on the outcomes or products of
the design process, called design objects. A design
object (Figure 5) represents any entity that can
evolve during a design project. It is represented in
two levels, the repository and the versions' level .
The repository level keeps a unique entity for each
design object that has been created and/or modified
due to model evolution during a design project. This
object is called versionable object (0).

Furthermore, relationships among the different
versionable objects are maintained in the repository.
These relationships correspond, according to the
notation being used, to the rules that allow

associating objects to form syntactically valid
models. Thisis captured by the association predicate
and the link named association in the object model
shown in Figure 6. Between any two versionable
objects o; and o, association(o;, o;, r) means that o;
is linked to o; by the relationship ry.

On the other hand, the versions level keeps the
different versions of each design object. These are
called object versions (v). The relationship between
a versionable object and one of its object versionsis
represented by the predicate version. Thus,
version(v, 0) means v is a version of o. Therefore, a
given design object keeps a unique instance in the
repository and all versions it assumes in different
model versions belong to the versions’ layer .

ObjectVersion

1.* | version
version
object
VersionableObject DesignObject
[[[
Argument Position Attribute
Artifact Requirement Value

Figure 5. Design Objeds Model

At a given stage during the execution of a design
project, the states assumed by the set of relevant
design objects, from now on called model version,
supply a snapshot description of the state of the
design process, including the artifact being designed.
Since the situational calculus (Reiter, 2001) is used
for modeling the version generation process, the
model evolution is posed as a history made up of
discrete situations. A new model verson m, is
generated when one activity a (a basic activity) is
executed. Activity a is materialized by a sequence of
operations ¢ (expression 6) and the new model
version my, is the result of applying such sequence ¢
to the components of a previous model version m,
This is achieved by performing the following
evaluation: apply(¢ m,) = m,. The apply function is
defined as follows:

apply: ®xM - M ©)

Where @ is the set of all possible operation
sequences ¢ and M is the set of possible model
versions m. A sequence of operations @is defined as
follows:

_ [, empty sequence)
¢ * @, whereo isan operation

Then, the inductive definition of the apply
function is given by:

apply(A, m) =m
apply0e A, m)=m', mzm (20

apply(o « ¢ m) = apply(¢ apply(oeA, m))

The primitive operations first proposed to
represent the transformation of model versions are
add, delete, and modify. By using the add(v)
operation an object version that did not exist in a
previous model version can be incorporated into a
successor one. Conversely, the delete(v) operation
eliminates an object version that exists in the
previous model version. Also, if a design object has
a version v, the modify(v,, vs) operation creates a
new version v of the existing design object, where v
is a successor version of v,. Thus, an object version
v belongs to the model version that arises after
applying to model version m the sequence of
operations ¢, if and only if:

(i) visadded when the new model version is created
(add(v) O @or modify(vp, v) O ¢);

or

(i) v belonged to the previous model version m and

it is not deleted when @is applied (delete(v) O ¢
or modify(v, vs) 0 ¢@).

From these definitions and by using the format of
successor state axioms proposed by Reiter (2001), it
is presented a formal specification of the cases in
which an object version belongs to a model version.
In the next expression, the predicate belong(v, m) is
true when the object version v belongs to the model
version m.

(D(p' V1 Vp1 VSa m) bel Ong(V1 apply((pa m))

(add(v) O @O mZdify(vp, v) O @O (11)
belong(v, m)) O
(delete(v) O @O modify(v, vs) O @)

From this expression, the object versions that
belong to a model version can be determined. Then,
it is possible to reconstruct a model version m.; by
applying al the sequences of operations from the
initial model version m.

m.1 = apply(@, m)
m = apply(¢.1, M.1)

}ﬁl = apply(@, M)
(12
M. = apply(@, apply(q.., apply(...
apply(g, my)...)))

M. =apply(@ e ...* @.1° @, M)

Where @ * ¢ is the concatenation of sequences ¢
and ¢.

Then, the relationship existing between the two
levels (repository and versions' level) and a model
verson may be expressed by the following
definition: each versionable object has one or more
object versions associated to it a a given time
instant, but at most, one object version associated to
a given versionable object can belong to a particular
model version.

Once the object versions conforming a model
version are defined, the relationships existing among
them have to be specified. It should be noted that in
this proposal, object versions belonging to a model
version are not explicitly associated to other object
versions of the same model version. On the other
hand, as it was previously mentioned, the objects of
the repository store the information of all the objects
they have been related to during the various model
versions (association(o;, 0;, r): o; is linked to o; by
the relationship ry.). Consequently, the link existing
between two object versions must be inferred from

Versions” leve

History

[\
AddHistory

Model History

\ \\

DeleteHistory VersionHistory

7/

addHistory
1 predecessor d ed ’
modelHisfory p redecessor

% -
. e
/ versionHistory
)z succes#or predﬁ{cssor

Model Version 1.* objectv/ersmns ObjectVersion ModifyHistory
successor * successor
/
‘successor deleteHistory predecsso* 1.4 version
VErsion
Repository s level ‘
1 object origin @ssodjation
)) [~ —| Association
VersionableObject
destination

Figure 6. Version Administration M etamodel

the relationship established between the objeds that
have been versioned by them. Thus, an asociation ry
among two object versions v; and v, exists in the
model version m (associationlnf(vy, v,, m, ry)), if
and only if there exists the association r, among the
versionable objeds of which v; and v, are version of
(association(o;, 0, ry), version(vy, 07) and
version(vs, 0,)). This fad is presented by expression
13

(O vyq, Vo, 1}, my) associationinf(vy, Vo, m, 1))
(0oy, 0p) belong(va, my) O belong(vz, m) O
version(vy, 0;) O version(vs,, 0,) O
association(0y, 0,, 1)

(13)

Having introduced the representation d the set of
versions of a model, we will explain the way in
which navigability cgpadty is provided. The
proposed scheme uses the situational cdculus to
represent whether a version v belongs to a certain
model version or not and to alow for the
reonstruction of a particular model version. In
addition, this sheme is grengthened by the objed-
oriented paradigm, which models the relationships
existing among object versions of different model
versions, alowing ravigation along the history of
the object versions constituting a given model
version.

The relationships among object versions are
represented by means of explicit links at the
Versions' level, named add history, delete history
and version history associations (Figure 6). Each
transformation operation that is applied to a model
version incorporates the necessary information to
trace the model evolution. This information is
represented by relationships between the object
versions the operation is applied to and the new ones
arising as aresult of its execution.

4.1. Which operation/s originated a given
version?

There ae other frequent operations that must be
represented if the history of the dchanges performed
in the model version is to be maintained. For
example, afrequent operation in modeling is the one
that allows decomposing an entity into one or more
entities. In this context, such operation is called
refine and it allows the object versions (Y. set of
object versions) that implement the refining to
appea in the new model version. The reverse
operation is simplify. By means of this operation, a
structure of object versions () bemmes an object
version (V). To start with, these two operations could
be defined in terms of add and delete. However, it is
necessary to make a distinction with the am of
keeping the history of the dhanges carried out in the
model version.

The refine(v,) operation is expressed in terms of
a series of add and delete operations according to the
following expression.

¢= ¢« refinelv, §) * @
O
(Ov, Oy, add(v) O @ Odelete(v) O @) O
(P=0®- @)

(14)

The possibility of expressing compound
operations in terms of basic operations, as proposed
in expression (14), alows keeping the successor
state axiom presented in (11) valid, without having
to bring it up to date when adding each new
operation.

Expression (14) fails to express the relationship
that exists between the object version v and the
object versions v, belonging to (. This relationship
is modeled through the object-oriented paradigm. An
object version is associated with one or more
predecessor object versions and one or more
successor object versions. This association is called
version history (Figure 7) and it is the association to
be specialized to define the different operations. In
the case of the refine operation, version history
specializes in refine history, where its predecessor is
an object version and its successors are one or more
object versions.

Analogously to the refine operation, the
simplify(y,v) operation is defined, which is
expressed in the following expression.

0= @ - Smplify(y,)+ @
. (15)
(Ovs O o, delete(v) 0 @ Dadd(v) O @) O
(p=@ @ @)

As it can be seen, the successor state axiom
presented in expression (11) still remains valid.
Expression (15) has the same weakness pointed out
for expression (14) since it does not express the
relationship that exists between the object versions
Vs belonging to ¢ and the object version v. In this
case, version history specializes in simplify history,
where its predecessors are one or more object
versions and its successor is an object version (see
Figure 7). Gonnet and Leone (2001) have presented
an operation model that implements the basic
operations using the Command design pattern
(Gammaet a., 1995) and allows the extension of the
set of operations in a flexible form, without having
to change the existing classes. The operation model
implements the semantics of the basic operations
(add, delete, modify) employed in the successor state
axiom that was defined in expression 11, and defines

an abstract operation that must be specified when a
new operation is added. The specification is made in
terms of the basic operations that were defined.
Therefore, the operations refine and simplify
specialize the operation model.

In a similar way to the refine and simplify
operations, other operations identified in the design
process can be defined. For instance, the possible
operations for decision-type activities (where a
position is selected, rejected, or kept in mind as a
possible aternative), include select, evaluate, justify,
and request. A select operation refers to the choice
of one or more design products from a humber of
possible alternatives. Before, some information
generated during previous activities is compared
with the requirements to fulfill. Thus, an evaluation
operation provides arguments to justify a decision.
Similarly, justify offers a rationale for the selection
of a certain adternative. The operation request
solicits additional information (generates a new
requirement), allowing a decision to be interactive.

These operations must be represented if the
history of the changes and its rationale are to be
maintained. For example, evaluate(v,, V,) generates
a new argument v, qualifying a certain position vj,.
The evaluate(v,, V) operation is expressed in terms
of the add operation according to the following
expression.

@= @ * evaluate(v,, Vp)* @
O (16)

add(va) 0@ D(@=@ro @ * @)

Evaluate history specializes version history; its
predecessor is an object verson (vp) and its
SUCCESSOr's are two object versions (Va, Vp).

predecessor versionHistory

successpr N
N

ObjectVersion

VersionHistory

N

\ \
RefineHistory

SimplifyHistory

EvaluateHistory ModifyHistory

Figure 7. Specializing Version History with the
various oper ations

5. Conclusions

This work proposes a framework for representing
and capturing the design process This is a
fundamental phase for developing computational
tods to suppat the design process and to guide
designers in the different activities of a design
projed. The framework is defined in terms of
metamodels that alow the representation o the
exeauted design process and the evolution of the
different design objeds that participated in it.
Design objeds may be design products as well asthe
requirements that spedfied them, or argumentations
and goals posed by actors when they performed a
given adivity.

Metamodels can be spedalized acording to the
particular domain being tackled. It can be done in
terms of the different operations that are gplied to
the distinct design objects, and in terms of the
different design objects that participate in the design
process For example, a user's goal may be
spedalized, as in Eggersmann et a. (2001), with the
am of representing complex goals and their
decompasition. Another possble spedalization of a
design object is the one of requirements, to represent
their structure, asit isproposed inLin et a. (1996.

Situational cdculus in conjunction with the
objed-oriented paradigm let us represent experts
knowledge and their particular rationale in relation
to a given operation they applied. On the other hand,
the extension of the IBIS mode alowed us to
model, at a higher level, the rationale behind a
dedsion taken during the design process Thus, the
proposed tools allow the tradng of the design
process and its resulting products, as well as the
analysis of the reasoning line employed during such
process setting the grounds for learning and future
reuse.

References

1. Booch, G., Rumbaugh, J., Jambson, I.: The
Unified Modeling Language User Guide,
Addison Wesley (1999).

2. Boyle, JM.: Interadive engineging system
design: a study for artificia intelligence
applications. Artificia Intelligence in
Engineeing, 4, (1989) 58-69.

3. Brown, D. and Chandrasekaran, B.. Design
Problem Solving. Knowledge Structures and
Control Strategies. Pitman (1989.

4. Eggersmann, M., Henning, G., Krobb, C.,
Leone, H. and Marquardt W.. Modeding of
adors within a chemicd engineaing work
process model, Procealings International CIRP
Design Seminar, Stockholm, Sweden, 6-8 June
(2001) 203-208

5. Eggersmann, M., Gonret, S., Henning, G.,
Krobb, C., Leone, H. and Marquardt W.:
Modeling and understanding different types of
process design adivities, Latin American
Applied Reseach, 33, (2003) 167-175.

6. Gamma, E., Helm, R., Johnson, R., Vlissdes,
K.: Design Patterns. Elements of Reusable
Objed-Oriented Software, Addison Wesey
(1995).

7. Goel, V.. A compaison d design and
nondesign problem space Artificia Intelligence
in Engineeing, 9, (1994) 53-72.

8. Gonnet, S. and Leone, H.: A Framework for
Model Verson Management in a Design
Process Procealings 13" International
Conference on Software Engineging and
Knowledge Engineaing SEKE™ 01 Knowledge
Systems I nstitute (2001) 260-267.

9. Lin J, Fox M., Bilgic T.. A Requirement
Ontology for Engineeing Design, Concurrent
Engineeing. Reseach and Applicaions, 4,
(1996), 279-291.

10. Reiter R.: Knowledge in Action: Logica
Foundations for Spedfying and Implementing
Dynamical Systems, MIT Press, (2001).

11 Rittel, HW.J,, Kunz, W.: Isaues as elements of
information systems, Ingtitute of Urban and
Regional Development. Working Paper 131,
Univ. of California, Berkeley (1970).

12. Westfechtel, B.. Models and Tods for
Managing Development Processes, Ledure
Notes in Computer Science Vol. 1646

Springer-Verlag (1998.

Acknowledgements

This work was gponsored by Consejo Nadonal de
Investigaciones Cientificas y Témicas (CONICET),
Universidad Temolégica Nadonal and Universidad
Nadonal del Litora. Authors gratefully
adknowledge help receved from these ingtitutions.

