

Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial. No.21 (2003),pp. 37-46
ISSN: 1137-3601. © AEPIA (http://www.aepia.org/revista).

ARTÍCULO

Representing and Capturing the Experts’ Knowledge in a Design Process

Silvio Gonnet 1, Horacio Leone 1 and Gabriela Henning 2

1GIPSI- UTN / INGAR,
Avellaneda 3657, 3000 - Santa Fe, Argentina

2INTEC,
Güemes 3450, 3000 - Santa Fe, Argentina

{sgonnet,hleone}@ceride.gov.ar, ghenning@intec.unl.edu.ar

Keywords : Design rationale, Change management, Modeling languages, Design support systems.

An object-oriented framework to support the modeling and management of the design process is
introduced. It naturally integrates the representation of both the design process itself, and the outcomes
that are achieved as the result of the various design activities. The integral view of tracing that was
adopted not only captures and manages the products being generated but also the activities that occurred,
their associated context and the adopted decisions. The Version Administration System introduced in this
paper provides an explicit mechanism to manage the different model versions being generated during the
course of a design project as design activities are executed.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CONICET Digital

https://core.ac.uk/display/159289345?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Representing and Captur ing
the Exper ts’ Knowledge in a Design Process

Silvio Gonnet a, Horacio Leone a, Gabr iela Henning b

a GIPSI- UTN / INGAR, Avellaneda 3657, 3000 - Santa Fe, Argentina

b INTEC, Güemes 3450, 3000 - Santa Fe, Argentina

{ sgonnet,hleone} @ceride.gov.ar, ghenning@intec.unl.edu.ar

Abstract

An object-oriented framework to support the modeling and management of the design process is
introduced. It naturally integrates the representation of both the design process itself, and the
outcomes that are achieved as the result of the various design activities. The integral view of tracing
that was adopted not only captures and manages the products being generated but also the activities
that occurred, their associated context and the adopted decisions. The Version Administration System
introduced in this paper provides an explicit mechanism to manage the different model versions being
generated during the course of a design project as design activities are executed.

Keywords: Design rationale, Change management, Modeling languages, Design support systems.

1. Introduction

Development of products in many engineering

disciplines is a challenging task. Even for quite
different types of products, development processes
have strong common characteristics and features,
such as the ones listed below:

• Design problems are inherently ill defined;

therefore, the structure of the design process is
not known in advance. It starts with a small set of
requirements that include goals and constraints
and evolves through subsequent stages of
increasing complexity in a non-linear manner. In
most cases there is a lack of a fully articulated
methodology, so, there is no clear distinction
between solution stages. Furthermore, there might
be a need for a backtracking process to change
previously adopted decisions.

• During a design process, various models of the

artifact being designed are generated. They differ
in granularity, complexity and associated
assumptions; therefore, there is an explicit need to
properly manage model versions.

• Once a design project is finished, the things that

remain are mainly "design products" such as the
models that were generated, detailed
specifications of the resulting artifact, drawings,
sketches, etc. However, there is no explicit
representation of how they were obtained. More
specifically, there is no trace of:

− Which activity/ies originated a given

product?

− Which requirements were imposed?

− Which actors performed a given activity?

− Which is the underlying rationale behind a

decision-type activity?

• Due to their size and complexity or specific needs
of expertise, design problems are rarely tackled
by individuals, design teams are the usual coin.
Thus, human experts along with computer-aided
tools are the ones that by interacting
cooperatively, sharing resources of various types
and design products, solve complex problems.

As a consequence of the features pointed out

above there is a real need for support tools that could
capture and efficiently manage the solution process.
By having such tools, the tracking and tracing of the
development process would be possible as well as
the analysis of its rationale. In this way, the experts'
knowledge could be captured, thus providing the
foundations for learning and training activities and
for future reuse. It should be adopted a holistic or
integral view of tracing, that not only captures and
manages the products being generated (e.g. model
traceabili ty) but also the activities that occur, their
associated context, the adopted decisions as well as
the different roles that the distinct design actors
assumed during the solution process.

On the other hand, product management systems

have been around for a long time, and they are
widely used in practice. This is not surprising
because they respond to a very basic demand: the
products of development processes have to be
recorded and organized (Westfechtel, 1998). These
management systems and software configuration
management systems focus on products, but neglect
the tracing of the design processes. In consequence,
they do not satisfy the need for keeping consistency
and navigabil ity among models (and model’s
components) identified along the design process.

Depending on the domain being tackled and on

the problem at hand, design methodologies can vary.
Boyle (1989) suggests a classification that identifies
three main categories: analytic, procedural and
experimental design. Underneath this
characterization there are concepts such design
objects, object attributes, operations on objects, as
well as the different roles that are assigned to
humans and equipment in these classes of design
methodologies. This work focuses on procedural
design, which is the most frequent one in
engineering disciplines. Design is considered as an
iterative process that operates under the generate-
test-analyze-suggest-modify paradigm. During this
development process the artifact being designed is
checked against objectives. In general, the design

process does not follow a predefined workflow, and
cannot be predicted beforehand. Moreover, certain
complex tasks are executed interactively by
humans/design teams by interplaying with computer
support systems.

This contribution tries to address the issues raised

above. It is organized as follows. In the next section,
the main concepts related with the representation
and capture of the design process are presented.
Moreover, two different granularity contexts
(activity and operation contexts) are first introduced.
In section 3, the activity context is described in more
detail and in section 4 the operation context is
discussed, presenting also a version administration
system. Finall y, section 5 presents conclusions.

2. Modeling Elements. Representing How
The Design Process Is Performed

Design knowledge still rests in the minds of

experienced designers, but it is desirable to make it
part of a computer support environment. Therefore,
it is necessary to have a model of the design process
that allows to capture how it has been performed.

Designers react contextually according to the

domain knowledge they acquire. Then, the process
modeling approach proposed here aims at strongly
relating the context where an activity is performed to
the activity itself, otherwise some information about
the activity would be lost. This approach aims at
capturing not only activities performed during the
design process but also why and when (the activity
context) these activities were done and whom (the
actor/s) executed them. On the other hand, activities
operate on the results or products of the design
process, called design objects, that include
requirements, the representation of the design
artifact itself, and arguments.

In consequence, the design process model has to

handle different levels of granularity of contexts.
There is an activity context, that requires exploring
decision making alternatives, and an operation
context which implements a given decision through
the execution of operations which transform the
product under development. This originates new
contexts, which are themselves subjects of decisions
(See Figure 1).

The object-oriented paradigm is used for
representing the process model. Furthermore, both
the object-oriented paradigm and the situational
calculus are employed for modeling the evolution of
the design objects. In Figure 1, six main concepts
used to model the design process are shown. They

Activity Context activity a activity b

activity c
activity d

activity e

Model
Version 0

Model
Version i

Model
Version j

Model
Version k

Model
Version p

Model
Version qactor z executed

v i

vn

va

Model Version q

{ add(va), delete(vd),
modify(vm. vn)}

vd vm

vi

Model Version k

Operation Context

activity e

A version of
one Design

Object

Activity Context activity a activity b

activity c
activity d

activity e

Model
Version 0

Model
Version 0

Model
Version i
Model

Version i
Model

Version j
Model

Version j

Model
Version k

Model
Version k

Model
Version p

Model
Version p

Model
Version q

Model
Version qactor z executedactor z executed

v i

vn

va

Model Version q

{ add(va), delete(vd),
modify(vm. vn)}

vd vm

vi

Model Version k

Operation Context

activity e

A version of
one Design

Object
v i

vn

va

Model Version q

v iv i

vnvn

vava

Model Version q

{ add(va), delete(vd),
modify(vm. vn)}

vd vm

vi

Model Version k

vd vm

vi
vdvd vmvm

vivi

Model Version k

Operation Context

activity e

A version of
one Design

Object

Figure 1. Capturing the design process

are: model version, requirement, design object,
activity, operation and actor.

• Model versions represent the activity context.

They supply a snapshot description of the state of
the design process, including the artifact being
designed.

• Requirements specify the functional and non-

functional characteristics that a product must
satisfy. They are represented as design objects.

• Design objects model the different products of the

design activities. They evolve as the design
process proceeds and their versions form part of
one or more model versions.

• Activities that carry out the design process.

• Operations that perform the actual transformation

of design objects. Each activity is materialized by
a set of operations.

• Actors, whom perform the activities and

operations.

3. Activity Context

As it pointed out in the introduction, once a

design project is finished, those things that remain
are mainly "design products" (e.g. generated models,
detailed specifications of resulting artifacts,
drawings, sketches, etc.). However, there is no
explicit representation of how they were obtained.
More specifically, there is no trace of which
activity/ies originated a given product, which
requirements were imposed, which actors performed
a given activity and which was the underlying
rationale behind a decision-type activity. Regarding

activity types, though it is not within the scope of
this paper, it is assumed that activities are identified
and classified according to the different types that
were presented in Eggersmann et al. (2003). In this
section, a process model that allows us to capture a
design process and answer the questions previously
posed is presented.

3.1. Which activity/ies originated a given
product?

The design process is carried out by a set of

activities, which may be described at various
abstraction levels. An activity may be decomposed
into a set of sub-activities, they may be organized
according to a schedule or they may be performed
without a previous order. The relationships between
an activity and its sub-activities are captured by an
aggregation link. In Figure 2, this is depicted using
the UML object-oriented paradigm notation (Booch
et al., 1999).

The aggregation relationship is transitive; then,

using first order logic the transitivity property is
expressed as follows:

(∀ a1, a2, a3)

subActivityOf(a1, a2) ∧ subActivityOf(a2, a3)
⇒

subActivityOf(a1, a3)

(1)

Where subActivityOf(ai, ak) is a predicate that

means that ai is a sub-activity of ak.

The following two axioms state that an activity

cannot be a sub-activity of itself, and it is never the
case that an activity is a sub-activity of another
activity which, in turn, is a sub-activity of the first
one. This shows that the relation subActivityOf is
non-reflexive and anti-symmetric:

Activity

Operation DesignObjectBasicActivityCompoundActivity

Requirement

1..*

subActivity

1..*

materialize

*

guidedBy
1..*

* 1..*

operateOn

Figure 2. Activity decomposition and relationship with design products by means of operations

(∀ a) ¬subActivityOf(a, a) (2)

 (∀ a1, a2) subActivityOf(a1, a2)
⇒

¬ subActivityOf(a2, a1)
(3)

Moreover, an activity cannot be a sub-activity of

two or more distinct activities that are not sub-
activities of each other:

(∀ a1, a2, a3)

subActivityOf(a1, a2) ∧ subActivityOf(a1, a3)
⇒

a2 = a3 ∨ subActivityOf(a2, a3) ∨
subActivityOf(a3, a2)

(4)

The recursive decomposition of sub-activities

leads to an overall activity structure. Taking into
account the subActivityOf relationship, activities are
classified into basic and compound activities. The
activity structure bottoms out in activities that are
not further decomposed and are, therefore, called
basic activities (See Figure 2).

(∀ a) basicActivity(a)

⇔
¬(∃ a´) subActivityOf(a´, a)

(5)

Basic activities are materialized in a sequence of

operations φ. This fact is represented by the
predicate materialize(φ, a).

(∀ a) basicActivity(a)
⇔

(∃ φ) materialize(φ, a)
(6)

An operation is the basic transformational action

primitive which represents actions on design objects.

Operations prescribe how the design domain is
changed. They are specified in more detail in the
section entitled operation context.

A compound activity cannot be a leaf node in the

activity hierarchy; thus any activity that is regarded
as a compound activity is not a basic one.

(∀ a) compoundActivity(a)

⇔
¬ basicActivity(a)

(7)

3.2. Which requirements were imposed?

The design process may be interpreted as a series

of activities guided by requirements, specifying the
functional and non-functional characteristics that a
product must satisfy. Furthermore, requirements
may prescribe constraints on the design process.
Generally, they are specified as goals or constrains.
Often requirements may not be stated explicitly or in
sufficient detail at the beginning of the design
process (Brown and Chandrasekaran, 1989). They
are refined and specified more precisely as greater
comprehension of the design problem is reached
(Boyle, 1989; Goel, 1994). Then, it is very important
to represent how requirements evolve during a
project execution. This is analyzed in section 4,
where a requirement is represented as a design
object. In the activity context it is possible to
recognize which requirements guided an activity
through the relationship guidedBy (Figure 2).
Conversely, this relationship allows us to know
which activities were performed with the aim of
satisfying a given requirement.

3.3. Which actors performed a given activity?

As it was previously mentioned, activities are
performed by actors with a goal in mind. The

process model presented in this paper extends the
actor model introduced by Eggersmann et al. (2001).
This extension is made with the aim of answering
the question “Which actors performed a given
activity?” . Indeed, each activity is related to an actor
who executes it (execution relationship in Figure 3).
An actor may be either an individual (a human or
computational program) or a team. Teams are
composed of actors, individuals and/or other teams.
Teams allow to represent compound skill s that are
needed for performing activities. They are not
organizational units, because the present work
focuses on process support/process tracing.

Each actor may have goals, called actor’s goals,

which express the actor’s intentions and desires.
These goals may usually be described in terms of the
desired product, but there is a part of them harder to
describe because it is not directly related to the
outcome of an activity. It may, for example, deal
with deadlines or even fuzzy quali fications such as
“as fast as possible”. Therefore, this part is often
represented as text. Then, an actor’s goal may be
modeled as an aggregation of goals about products
and fuzzy goals. So, an actor’s goal may be
decomposed into a set of subgoals.

The actor’s decision of executing a given activity

for reaching one or more goals with the final aim of
satisfying a set of requirements is represented by the
promote links among activity, actor’s goal and
requirement (Figure 3). These links reflect the
actor’s intention and can be used to evaluate whether
the work done did really satisfy the goal, at least
partially. Moreover, the model shown in Figure 3
allows to represent the fact that activities are
executed by those actors having the necessary skil ls
to carry them out. As seen, the actor, activity and
skill classes are connected to each other. The link
between activity and skil l represents the skil ls
required to execute the activity. The activity – actor
association models who performed a given activity.
Finally, the individual actor – skill link represents
the know how of a particular actor.

3.4. Which is the underlying rationale behind a
decision-type activity?

With the aim of representing the rationale

associated with the execution of a given activity, the
IBIS model (Rittel and Kunz, 1970) is refined in this
paper. The IBIS model focuses on articulating key
design issues. An issue is a question to be answered
and a position is an alternative which exists for
solving such issue. We refine this view by
introducing requirements, which specify issues, and
also by decomposing positions into artifacts,
attributes, and values (see Figure 4). An artifact
represents the product that it is being designed, and
attributes and values characterize the position. Then,
the different alternative products that arise in the
design process are represented by the position
concept. A position is qualified by one or more
arguments and addresses at least one requirement.
An argument either supports or objects a position. It
allows to test whether the position is capable of
fulfill ing the prescribed requirements by the answer
relationship.

Positions, artifacts, attributes, values and

arguments evolve during the execution of a design
project and their various states are fundamental for
representing the different contexts where an activity
is performed. Then, they are represented as design
objects (see Figure 5), and the operation context
section describes how their evolution is represented
during the design process.

Activities have the goal of designing a product

that is specified by a set of requirements. These
activities generate artifacts which are part of
positions and which may be missing relevant
information. A position encompasses a design
artifact (such as a chemical reaction pathway, a
flowsheet structure, a mathematical model, etc.), its
attributes and corresponding values. Activities
performed after synthesis activities (Eggersmann et
al., 2003) which have generated positions, allow the
enlargement of such positions by refining the

Ski l l

Actor

Individual Team

Actor´sGoal

Activi ty

Requirement
1..*

execution
guidedBy

1..* *

promote

*

promote

1

* 1..*

*

**

*

1..

member

Figure 3. Actor ’s Model

Activi ty

Product

Requi rement

Posi ti onArgument

Arti fact Att r ibute Value

*

qualify

*

*

generate operateOn

*

*

1..*guidedBy

1

describe

*

describe

*

1..*

answer

specify

*
*

Figure 4. Model that captures the relationships among the var ious Design Objects,

allowing to uncover the rationale behind a decision-type activity

artifacts and providing attributes and values in order
to have enough information to carry out decision
activities, which in turn use requirements and
arguments to select positions. Requirements are also
used during other types of activities to indicate the
most important aspects to focus on. As seen,
requirements are used in every activity, but with a
different purpose or aim. Thus, some activities
attempt to answer the question: "How can
requirements be fulfilled?" and other ones supply
data that would allow to check whether requirements
are met or not. Finally, decision activities weigh up
requirements, establish which are the most important
ones and test if these requirements are indeed met.
Furthermore, as indicated by Eggersmann et al.
(2003) requirements can be generated during the
design process by any of the activities that are
executed.

4. The Operation Context

Activities operate on the outcomes or products of

the design process, called design objects. A design
object (Figure 5) represents any entity that can
evolve during a design project. It is represented in
two levels, the repository and the versions’ level .
The repository level keeps a unique entity for each
design object that has been created and/or modified
due to model evolution during a design project. This
object is called versionable object (o).

Furthermore, relationships among the different

versionable objects are maintained in the repository.
These relationships correspond, according to the
notation being used, to the rules that allow

associating objects to form syntactically valid
models. This is captured by the association predicate
and the link named association in the object model
shown in Figure 6. Between any two versionable
objects oi and oj, association(oi, oj, rk) means that oi
is linked to oj by the relationship rk.

On the other hand, the versions’ level keeps the

different versions of each design object. These are
called object versions (v). The relationship between
a versionable object and one of its object versions is
represented by the predicate version. Thus,
version(v, o) means v is a version of o. Therefore, a
given design object keeps a unique instance in the
repository and all versions it assumes in different
model versions belong to the versions’ layer .

DesignObject

Requi rement

Posi tionArgument

Arti fact

Att ribute

Value

ObjectVersion

VersionableObject

version

version

object

1..*

Figure 5. Design Objectś Model

At a given stage during the execution of a design
project, the states assumed by the set of relevant
design objects, from now on called model version,
supply a snapshot description of the state of the
design process, including the artifact being designed.
Since the situational calculus (Reiter, 2001) is used
for modeling the version generation process, the
model evolution is posed as a history made up of
discrete situations. A new model version mn is
generated when one activity a (a basic activity) is
executed. Activity a is materialized by a sequence of
operations φ (expression 6) and the new model
version mn is the result of applying such sequence φ
to the components of a previous model version mp.
This is achieved by performing the following
evaluation: apply(φ, mp) = mn. The apply function is
defined as follows:

apply: Φ x M → M (8)

Where Φ is the set of all possible operation

sequences φ, and M is the set of possible model
versions m. A sequence of operations φ is defined as
follows:




•
=

operationan is where,
sequenceempty

���

οφοφ (9)

Then, the inductive definition of the apply

function is given by:

apply(λ, m) = m
apply(o • λ, m) = m’, m ≠ m’

apply(o • φ, m) = apply(φ, apply(o•λ, m))
(10)

The primitive operations first proposed to

represent the transformation of model versions are
add, delete, and modify. By using the add(v)
operation an object version that did not exist in a
previous model version can be incorporated into a
successor one. Conversely, the delete(v) operation
eliminates an object version that exists in the
previous model version. Also, if a design object has
a version vp, the modify(vp, vs) operation creates a
new version vs of the existing design object, where vs
is a successor version of vp. Thus, an object version
v belongs to the model version that arises after
applying to model version m the sequence of
operations φ, if and only if:

(i) v is added when the new model version is created

(add(v) ∈ φ or modify(vp, v) ∈ φ);

or

(ii) v belonged to the previous model version m and

it is not deleted when φ is applied (delete(v) ∉ φ
or modify(v, vs) ∉ φ).

From these definitions and by using the format of

successor state axioms proposed by Reiter (2001), it
is presented a formal specification of the cases in
which an object version belongs to a model version.
In the next expression, the predicate belong(v, m) is
true when the object version v belongs to the model
version m.

(∀φ, v, vp, vs, m) belong(v, apply(φ,m))

⇔
(add(v) ∈ φ ∨ modify(vp, v) ∈ φ ∨

belong(v, m)) ∧
(delete(v) ∉ φ ∧ modify(v, vs) ∉ φ)

(11)

From this expression, the object versions that

belong to a model version can be determined. Then,
it is possible to reconstruct a model version mi+1 by
applying all the sequences of operations from the
initial model version m0.

mi+1 = apply(φi, mi)
mi = apply(φi-1, mi-1)
...
m1 = apply(φo, mo)

mi+1 = apply(φi, apply(φi-1, apply(...

apply(φo, mo)...)))

mi+1 = apply(φo • ... • φi-1 • φi, mo)

(12)

Where φi • φj is the concatenation of sequences φi

and φj.

Then, the relationship existing between the two

levels (repository and versions’ level) and a model
version may be expressed by the following
definition: each versionable object has one or more
object versions associated to it at a given time
instant, but at most, one object version associated to
a given versionable object can belong to a particular
model version.

Once the object versions conforming a model

version are defined, the relationships existing among
them have to be specified. It should be noted that in
this proposal, object versions belonging to a model
version are not explicitly associated to other object
versions of the same model version. On the other
hand, as it was previously mentioned, the objects of
the repository store the information of all the objects
they have been related to during the various model
versions (association(oi, oj, rk): oi is linked to oj by
the relationship rk.). Consequently, the link existing
between two object versions must be inferred from

Repository´s level

Versionś level

ObjectVersion ModifyHistoryModelVersion

VersionHistoryModelHistory AddHistory DeleteHistory

History

VersionableObject
Association

successor

modelHistory
objectVersions

predecessor

versionHistory
1

*

addHistory
predecessor

1..*

successor deleteHistory

predecessor predecessor

successor

successor

*

version

object

1..*

1 association

destination

origin

version

Figure 6. Version Administration Metamodel

the relationship established between the objects that
have been versioned by them. Thus, an association rk
among two object versions v1 and v2 exists in the
model version mi (associationInf(v1, v2, mi, rk)), if
and only if there exists the association rk among the
versionable objects of which v1 and v2 are version of
(association(o1, o2, rk), version(v1, o1) and
version(v2, o2)). This fact is presented by expression
13.

(∀ v1, v2, rl, mi) associationInf(v1, v2, mi, rl)

⇔
(∃ o1, o2) belong(v1, mi) ∧ belong(v2, mi) ∧

version(v1, o1) ∧ version(v2, o2) ∧
association(o1, o2, rl)

(13)

Having introduced the representation of the set of

versions of a model, we will explain the way in
which navigability capacity is provided. The
proposed scheme uses the situational calculus to
represent whether a version v belongs to a certain
model version or not and to allow for the
reconstruction of a particular model version. In
addition, this scheme is strengthened by the object-
oriented paradigm, which models the relationships
existing among object versions of different model
versions, allowing navigation along the history of
the object versions constituting a given model
version.

The relationships among object versions are
represented by means of explicit l inks at the
Versions’ level , named add history, delete history
and version history associations (Figure 6). Each
transformation operation that is applied to a model
version incorporates the necessary information to
trace the model evolution. This information is
represented by relationships between the object
versions the operation is applied to and the new ones
arising as a result of its execution.

4.1. Which operation/s originated a given
version?

There are other frequent operations that must be

represented if the history of the changes performed
in the model version is to be maintained. For
example, a frequent operation in modeling is the one
that allows decomposing an entity into one or more
entities. In this context, such operation is called
refine and it allows the object versions (ψ: set of
object versions) that implement the refining to
appear in the new model version. The reverse
operation is simplify. By means of this operation, a
structure of object versions (ψ) becomes an object
version (v). To start with, these two operations could
be defined in terms of add and delete. However, it is
necessary to make a distinction with the aim of
keeping the history of the changes carried out in the
model version.

The refine(v,ψ) operation is expressed in terms of
a series of add and delete operations according to the
following expression.

φ = φ1 • refine(v, ψ) • φ2

⇒
(∀ vr ∈ ψ, add(vr) ∈ φ3 ∧ delete(v) ∈ φ3) ∧

(φ = φ1 •φ3 • φ2)

(14)

The possibility of expressing compound

operations in terms of basic operations, as proposed
in expression (14), allows keeping the successor
state axiom presented in (11) valid, without having
to bring it up to date when adding each new
operation.

Expression (14) fails to express the relationship

that exists between the object version v and the
object versions vr belonging to ψ. This relationship
is modeled through the object-oriented paradigm. An
object version is associated with one or more
predecessor object versions and one or more
successor object versions. This association is called
version history (Figure 7) and it is the association to
be specialized to define the different operations. In
the case of the refine operation, version history
specializes in refine history, where its predecessor is
an object version and its successors are one or more
object versions.

Analogously to the refine operation, the

simplify(ψ,v) operation is defined, which is
expressed in the following expression.

φ = φ1 • simplify(ψ, v)• φ2

⇒
(∀ vs ∈ ψ, delete(vs) ∈ φ3 ∧ add(v) ∈ φ3) ∧

(φ = φ1 •φ3 • φ2)

(15)

As it can be seen, the successor state axiom

presented in expression (11) still remains valid.
Expression (15) has the same weakness pointed out
for expression (14) since it does not express the
relationship that exists between the object versions
vs belonging to ψ and the object version v. In this
case, version history specializes in simplify history,
where its predecessors are one or more object
versions and its successor is an object version (see
Figure 7). Gonnet and Leone (2001) have presented
an operation model that implements the basic
operations using the Command design pattern
(Gamma et al., 1995) and allows the extension of the
set of operations in a flexible form, without having
to change the existing classes. The operation model
implements the semantics of the basic operations
(add, delete, modify) employed in the successor state
axiom that was defined in expression 11, and defines

an abstract operation that must be specified when a
new operation is added. The specification is made in
terms of the basic operations that were defined.
Therefore, the operations refine and simplify
specialize the operation model.

In a similar way to the refine and simplify

operations, other operations identified in the design
process can be defined. For instance, the possible
operations for decision-type activities (where a
position is selected, rejected, or kept in mind as a
possible alternative), include select, evaluate, justify,
and request. A select operation refers to the choice
of one or more design products from a number of
possible alternatives. Before, some information
generated during previous activities is compared
with the requirements to fulfill. Thus, an evaluation
operation provides arguments to justify a decision.
Similarly, justify offers a rationale for the selection
of a certain alternative. The operation request
solicits additional information (generates a new
requirement), allowing a decision to be interactive.

These operations must be represented if the

history of the changes and its rationale are to be
maintained. For example, evaluate(va, vp) generates
a new argument va qualifying a certain position vp.
The evaluate(va, vp) operation is expressed in terms
of the add operation according to the following
expression.

φ = φ1 • evaluate(va, vp)• φ2

⇒
add(va) ∈ φ3 ∧ (φ = φ1 •φ3 • φ2)

(16)

Evaluate history specializes version history; its

predecessor is an object version (vp) and its
successors are two object versions (va, vp).

VersionHistory

ObjectVersion

ModifyHistory

RefineHistory SimplifyHistory

EvaluateHistory

predecessor versionHistory

successor

Figure 7. Specializing Version History with the

various operations

5. Conclusions

This work proposes a framework for representing

and capturing the design process. This is a
fundamental phase for developing computational
tools to support the design process and to guide
designers in the different activities of a design
project. The framework is defined in terms of
metamodels that allow the representation of the
executed design process and the evolution of the
different design objects that participated in it.
Design objects may be design products as well as the
requirements that specified them, or argumentations
and goals posed by actors when they performed a
given activity.

Metamodels can be specialized according to the

particular domain being tackled. It can be done in
terms of the different operations that are applied to
the distinct design objects, and in terms of the
different design objects that participate in the design
process. For example, a user’s goal may be
specialized, as in Eggersmann et al. (2001), with the
aim of representing complex goals and their
decomposition. Another possible specialization of a
design object is the one of requirements, to represent
their structure, as it is proposed in Lin et al. (1996).

Situational calculus in conjunction with the

object-oriented paradigm let us represent experts’
knowledge and their particular rationale in relation
to a given operation they applied. On the other hand,
the extension of the IBIS model allowed us to
model, at a higher level, the rationale behind a
decision taken during the design process. Thus, the
proposed tools allow the tracing of the design
process and its resulting products, as well as the
analysis of the reasoning line employed during such
process, setting the grounds for learning and future
reuse.

References

1. Booch, G., Rumbaugh, J., Jacobson, I.: The

Unified Modeling Language User Guide,
Addison Wesley (1999).

2. Boyle, J-M.: Interactive engineering system

design: a study for artificial intell igence
applications. Artificial Intell igence in
Engineering, 4, (1989) 58-69.

3. Brown, D. and Chandrasekaran, B.: Design

Problem Solving. Knowledge Structures and
Control Strategies. Pitman (1989).

4. Eggersmann, M., Henning, G., Krobb, C.,
Leone, H. and Marquardt W.: Modeling of
actors within a chemical engineering work
process model, Proceedings International CIRP
Design Seminar, Stockholm, Sweden, 6-8 June
(2001) 203-208.

5. Eggersmann, M., Gonnet, S., Henning, G.,

Krobb, C., Leone, H. and Marquardt W.:
Modeling and understanding different types of
process design activities, Latin American
Applied Research, 33, (2003) 167-175.

6. Gamma, E., Helm, R., Johnson, R., Vlissides,

K.: Design Patterns. Elements of Reusable
Object-Oriented Software, Addison Wesley
(1995).

7. Goel, V.: A comparison of design and

nondesign problem space. Artificial Intelligence
in Engineering, 9, (1994) 53-72.

8. Gonnet, S. and Leone, H.: A Framework for

Model Version Management in a Design
Process, Proceedings 13th International
Conference on Software Engineering and
Knowledge Engineering SEKE´ 01, Knowledge
Systems Institute (2001) 260-267.

9. Lin J., Fox M., Bilgic T.: A Requirement

Ontology for Engineering Design, Concurrent
Engineering: Research and Applications, 4,
(1996), 279-291.

10. Reiter R.: Knowledge in Action: Logical

Foundations for Specifying and Implementing
Dynamical Systems, MIT Press, (2001).

11. Rittel, H.W.J., Kunz, W.: Issues as elements of

information systems, Institute of Urban and
Regional Development. Working Paper 131,
Univ. of California, Berkeley (1970).

12. Westfechtel, B.: Models and Tools for

Managing Development Processes, Lecture
Notes in Computer Science Vol. 1646,
Springer-Verlag (1998).

Acknowledgements

This work was sponsored by Consejo Nacional de

Investigaciones Científicas y Técnicas (CONICET),
Universidad Tecnológica Nacional and Universidad
Nacional del Litoral. Authors gratefully
acknowledge help received from these institutions.

