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Quantum and classical complexity in coupled maps
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We study a generic and paradigmatic two-degrees-of-freedom system consisting of two coupled perturbed
cat maps with different types of dynamics. The Wigner separability entropy (WSE)—equivalent to the operator
space entanglement entropy—and the classical separability entropy (CSE) are used as measures of complexity.
For the case where both degrees of freedom are hyperbolic, the maps are classically ergodic and the WSE and
the CSE behave similarly, growing to higher values than in the doubly elliptic case. However, when one map is
elliptic and the other hyperbolic, the WSE reaches the same asymptotic value than that of the doubly hyperbolic
case but at a much slower rate. The CSE only follows the WSE for a few map steps, revealing that classical
dynamical features are not enough to explain complexity growth.
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I. INTRODUCTION

Chaotic behavior is a classical property that implies the
exponential divergence of close initial conditions. The ability
to explore the whole available phase space, i.e., ergodicity,
is indeed the main ingredient for statistical thermodynamics.
On the other hand, quantum mechanics is governed by the
Schrödinger equation, whose linearity forbids exponential
divergences of close initial conditions. Also, entanglement
is a quantum characteristic that has no classical counterpart.
Consequently, as recently pointed out in Ref. [1], there is a
battle between quantum and thermodynamic laws.

We mention a few contributions to this discussion. From
the quantum to classical correspondence point of view, a
pioneering work [2] has related the classically ergodic behavior
with quantum entanglement production. Very recently a small
quantum system of three superconducting qubits has been
considered [3], showing a coincidence between regions of
high (quantum) entanglement entropy and (classical) chaotic
dynamics. On the other hand, entropy production in regular
regions has been reported [4]. Also, in a Toda model of two
interacting particles the chaotic and integrable cases could
hardly be distinguished regarding entanglement generation
[5]. Also, thermalization of quantum systems according to
their type of dynamics is a subject of fundamental interest
nowadays [6].

In order to perform an explicit comparison between
quantum and classical mechanics it is of great help to have
a quantity that can be calculated in both realms. Wigner
functions represent quantum mechanics in phase space that
provides a very suitable analog of Liouville distributions.
Recently, in the spirit of algorithmic complexity, the Wigner
separability entropy (WSE) [7] and the classical separability
entropy (CSE) [8] have been introduced as measures of com-
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plexity of quantum and (discretized) classical distributions,
respectively. In this work, we propose the notion of complexity
to analyze correspondence by using these measures to study
a two-degrees-of-freedom system. We consider two coupled
perturbed cat maps, where one of them can be seen as the
system and the other as the environment. The dynamics of
these maps can be both hyperbolic (chaotic) (HH), both elliptic
(regular) (EE), or mixed where one degree of freedom is
hyperbolic and the other is elliptic (HE-EH).

We have found that for the HH case, the Wigner and
Liouville distributions develop similar structures of increasing
complexity, which are reflected in the WSE and the CSE
hand-by-hand growth to a saturation value [9]. At the classical
level, after an evolution of the order of the Ehrenfest time,
the entropy decreases due to discretization. For the EE case,
the quantum and classical measures do not always follow
each other. The WSE and the CSE both reach lower values
compared with the previous case. These results are similar
to what it was found in Ref. [3] for chaotic and regular
regions of phase space. Finally, for the mixed HE case the
quantum complexity saturates at the same values of the HH
case, although the growth rate is much slower. The classical
complexity only grows during the first few map steps and then
decreases, unable to reach the quantum asymptotics. In this
way, we can observe that one hyperbolic degree of freedom is
enough to generate high values of complexity (entanglement).
The classical behavior differs and quantum mechanisms of
complexity growth play a main role.

This paper is organized as follows: In Sec. II we explain the
concepts of WSE and CSE and how they are used in our study.
In Sec. III we present our model with a brief discussion on its
properties. In Sec. IV we explain our results in detail and, in
Sec. V we state our conclusions.

II. WIGNER AND CLASSICAL SEPARABILITY
ENTROPIES

A state of a quantum system is described by means of
the density operator ρ̂ acting on the Hilbert space H such
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that Tr(ρ̂) = 1. This density operator is a vector belonging
to the space B(H) of Hilbert-Schmidt operators, where an
inner product is defined as Â.B̂ = Tr(Â†B̂) such that the norm
‖ρ̂‖ =

√
Tr(ρ̂2) � 1. Decomposing the Hilbert space H as

a tensor product H = H1 ⊗ H2, the density operator has a
Schmidt decomposition,

ρ̂ =
∑

σnân ⊗ b̂n, (1)

with n ∈ N, and where {ân} and {b̂n}, such that Tr(â†
mân) =

δmn, Tr(b̂†mb̂n) = δmn, are orthonormal bases for B(H1) and
B(H2), respectively. The Schmidt coefficients σ1 � σ2 �
. . . � 0 satisfy

∑
n σ 2

n = Tr(ρ̂2) = ‖ρ̂‖2. The operator space
entanglement entropy [10] is then defined as

h[ρ̂] = −
∑

n

σ̃ 2
n ln σ̃ 2

n , with σ̃n ≡ σn

‖ρ̂‖ . (2)

Among the several representations of quantum mechanics,
the Weyl-Wigner representation performs a decomposition of
the operators that act on the Hilbert space H on the basis
spanned by R̂x , the set of unitary reflection operators on points
x ≡ (q, p) [11,12] in a 2d-dimensional compact phase space
� = �′ ⊕ �′′. These reflection operators are orthogonal in the
sense that

Tr[R̂xa
R̂xb ] = (2πh̄)d δ(xb − xa). (3)

Hence, any operator Â acting on the Hilbert space H can
be univocally decomposed in terms of reflection operators as
follows:

Â =
(

1

2πh̄

)d ∫
dx AW (x) R̂x . (4)

With this decomposition, the operator Â is mapped on a
function AW (x), living in a 2d-dimensional compact phase
space �, the so called Weyl-Wigner symbol of the operator.
Using Eq. (3) it is easy to show that AW (x) can be obtained by
means of the trace operation

AW (x) = Tr[R̂x Â].

The Wigner function is defined in terms of the Weyl-Wigner
symbol of the density operator,

W (x) = (2πh̄)−d/2ρ(x) = (2πh̄)−d/2Tr[R̂x ρ̂].

Normalization of the density operator implies that∫
dxW (x) = Tr(ρ̂) = 1, while

∫
dxW 2(x) = ‖ρ̂‖.

Also, from the Schmidt decomposition of the density operator
given in Eq. (1), we obtain the Schmidt (singular value)
decomposition of the Wigner function:

W (x) =
∑

n

σnan(x1)bn(x2), (5)

where {an} and {bn} are now orthonormal bases for L2(�1)
and L2(�2) (which are associated to the Hilbert space
decomposition), such that

an(x1) = Tr[R̂x1 ân], and bn(x2) = Tr[R̂x2 b̂n].

The Wigner separability entropy is defined as [7]

h[W ] = −
∑

n

σ̃ 2
n ln σ̃ 2

n , (6)

where

σ̃n ≡ σn√∫
dxW 2(x)

. (7)

The coefficients {σ̃n} in Eq. (6) are then the same than those
in Eq. (2) and are the Schmidt coefficients of the singular
value decomposition of W̃ ≡ W/

√∫
dxW 2(x), such that W̃ is

normalized in L2(�):
∫

dxW̃ 2(x) = 1.
The WSE h[W ] quantifies the logarithm of the number

of terms that effectively contribute to the decomposition of
Eq. (5) and therefore provides a measure of separability of
the Wigner function with respect to the chosen phase-space
decomposition. Comparing Eq. (2) with Eq. (6), it is easy to
see that the WSE is equal to operator space entanglement
entropy [7], i.e., h[W ] = h[ρ̂].

The main advantage of defining the separability entropy
in phase space by means of the Wigner function is that such
a quantity can be directly translated to classical mechanics.
The classical analog of the Wigner separability entropy is the
CSE (or s-entropy) h[ρc] defined in Ref. [8], where a classical
phase-space distribution ρc(x) (discretized at the h̄ scale) is
used instead of the Wigner function W (x). The CSE estimates
the minimal amount of computational resources required to
simulate the classical Liouvillian evolution and grows linearly
in time for dynamics that cannot be efficiently simulated. Both
the WSE and the CSE measure complexity of the distributions
on the same footing. For our purposes this bridges the gap
between quantum and classical mechanics.

It is worth mentioning that when the density operator ρ̂

describes a pure state, ρ̂ = |ψ〉〈ψ |, there exists a simple
relation between the WSE and the entanglement content of
the state |ψ〉 ∈ H = H1 ⊗ H2 [7]. In fact,

h[W ] = −2S(ρ̂1) = −2S(ρ̂2),

where ρ̂1 = Tr2(ρ̂) and ρ̂2 = Tr1(ρ̂) are the reduced density
operators for subsystems 1 and 2, and S is the von Neumann
entropy. Since for a pure state |ψ〉 the von Neumann entropy
of the reduced density matrix quantifies the entanglement E

of |ψ〉 [13,14],

E(|ψ〉) = S(ρ̂1) = S(ρ̂2), (8)

the WSE is twice the entanglement entropyE(|ψ〉):
h[W ] = 2 E(|ψ〉). (9)

III. MODEL SYSTEM

Despite their simplicity, dynamical maps capture all the
essential features of different types of complicated dynamical
systems. This property and their relatively straightforward
quantization turns them into a suitable tool to explore quantum
to classical correspondence. The quantization of the cat map
[15] (a paradigmatic linear automorphism on the torus and one
of the most simple models of chaotic dynamics) has helped to
elucidate many questions in the quantum chaos area [15–18].
We here investigate the behavior of two coupled perturbed cat
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maps, a two-degrees-of-freedom system. These two maps can
have different types of dynamics.

Each degree of freedom is defined on the 2-torus as [15](
qt+1

pt+1

)
= M

(
qt

pt + ε(qt )

)
(10)

with q and p taken modulo 1, and

ε(qt ) = − K

2π
sin(2πqt ).

For the ergodic case we use the hyperbolic map

Mh =
(

2 1
3 2

)
, (11)

while for regular behavior we choose the elliptic map

Me =
(

0 1
−1 0

)
. (12)

Quantum mechanics on the torus implies a finite Hilbert space
of dimension N = 1

2πh̄
, where positions and momenta are

defined to have discrete values in a lattice of separation 1
N

[15].
In coordinate representation the corresponding propagator is
given by a N × N unitary matrix

Ujk = Aexp

[
iπ

NM12
(M11j

2 − 2jk + M22k
2) + F

]
, (13)

where

A = [1/(iNM12)]1/2,

F = [iKN/(2π )] cos(2πj/N ).

The states 〈q|qj 〉 are periodic combs of Dirac δ distributions
at positions q = j/Nmod(1), with j integer in [0,N − 1].

The two-degrees-of-freedom system is defined in a four-
dimensional phase space having coordinates (q1,q2,p1,p2)
[7] as (

q1
t+1

p1
t+1

)
= M1

[
q1

t

p1
t + ε

(
q1

t

) + κ
(
q1

t ,q
2
t

)]
and (

q2
t+1

p2
t+1

)
= M2

[
q2

t

p2
t + ε

(
q2

t

) + κ
(
q1

t ,q
2
t

)],

where the coupling between both maps is given by

κ
(
q1

t ,q
2
t

) = −Kc

2π
sin

(
2πq1

t + 2πq2
t

)
.

The quantized version of the two-degrees-of-freedom system
is obtained as the tensor product of the quantized one-degree-
of-freedom maps, given by a N2 × N2 unitary matrix

U 2D
j1j2,k1k2

= Uj1k1Uj2k2Cj1j2 ,

with the coupling matrix (diagonal in the coordinate represen-
tation)

Cj1j2 = exp

{(
iNKc

2π

)
cos

[
2π

N
(j1 + j2)

]}
,
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FIG. 1. CSE [(red) gray line with crosses] and WSE (black line
with triangles) as a function of time t (in map steps) in the HH case
for N = 26. Initial distributions are centered at (q,p) = (0.5,0.5).

where j1,j2,k1,k2 ∈ {0, . . . ,N − 1}. We use K = 0.25 and
Kc = 0.5 throughout our work, which guarantees the Anosov
condition [16].

IV. RESULTS

To investigate the quantum to classical correspondence
regarding complexity growth, we study the evolution in time of
h[W ] and of its classical counterpart h[ρc]. As initial states we
have used a Gaussian phase-space distribution with dispersion
equal to

√
h̄ and its quantum analog, a coherent state on the

torus, for both degrees of freedom. Profiting from the fact that
the latter is a pure state we just compute the von Neumann
entropy which is half the WSE. In the following, when we
refer to WSE and CSE, we mean WSE/2 and CSE/2. We take
N = 26 for each map.

First, we consider the HH case with the initial distributions
centered at (q,p) = (0.5,0.5), which is a period 1 fixed
point of both the hyperbolic and the elliptic maps. CSE
and WSE as a function of time (map steps) are displayed
in Fig. 1. The Liouville and Wigner distributions develop
similar structures of increasing complexity as the evolution
takes place. At time t = 3, and after growing at a rate given
by the average Lyapunov exponent, they show the maximum
complexity where features of the stable manifold are still
visible in the quantum case [see Figs. 2(a) and 2(b)]. From
t = 3 on the classical distribution becomes less complex due
to discretization while the quantum one keeps its complexity
through intertwined coherence patterns, as can be seen in
Fig. 2(c) and 2(d). In case the classical distribution was not
discretized, the CSE would continue to grow. The WSE grows
until saturation at a value of the order of ln(0.6N ), as predicted
in Ref. [9]. At time t = 10 the classical distribution is almost
completely smoothed while the quantum one keeps the same
morphology as the one at t = 4 [see Figs. 2(e) and 2(f)]. We
notice that we have removed the effects of the torus periodicity
on the Wigner distributions in all figures [19].

The EE case is highly dependent on where the initial
conditions are taken. We first show the evolution of the CSE
and WSE as a function of time for distributions centered at
the previous values, i.e. at the fixed point of period 1. As
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FIG. 2. Liouville and Wigner distributions at times t = 3 [(a) and

(b)], t = 4 [(c) and (d)], and t = 10 [(e) and (f)] for the HH case with
initial conditions centered at (q,p) = (0.5,0.5).

can be seen in Fig. 3, complexity does not grow significantly
and the quantum and classical behavior is remarkably similar
at all times (from t = 3 on the agreement worsens). Small
oscillations reflect the rotation of the distributions which do
not explore much of the phase space. But if we select initial
distributions centered at (q,p) = (π/4,π/4), for instance (we
just take a representative case from the maximum complexity
ones), complexity grows as shown in Fig. 4. The saturation
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FIG. 3. CSE [(red) gray line with crosses] and WSE (black line
with triangles) as a function of time t (in map steps) in the EE case
for N = 26. Initial distributions are centered at (q,p) = (0.5,0.5).
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FIG. 4. CSE [(red) gray line with crosses] and WSE (black line
with triangles) as a function of time t (in map steps) in the EE case
for N = 26. Initial distributions are centered at (q,p) = (π/4,π/4).

values of the WSE are always lower than the one for the
HH case but greater than those of their corresponding CSE,
suggesting that quantum effects begin to play an important
role. In fact, from t = 10 onward, the two curves take

1
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FIG. 5. Liouville and Wigner distributions at times t = 8 [(a) and

(b)], t = 11 [(c) and (d)], and t = 50 [(e) and (f)] for the EE case
with initial conditions centered at (q,p) = (π/4,π/4).
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FIG. 6. CSE [(red) gray line with crosses] and WSE [black line
with triangles] as a function of time t (in map steps) in the HE case
for N = 26. Initial distributions are centered at (q,p) = (0.5,0.5).

completely different behaviors. Moreover, the WSE reaches its
maximum value after approximately 160 map steps, at a much
slower rate than the HH case reflecting a different mechanism
for complexity growth. In the inset we show the same quantities
but in log-log scale. Here not only the power-law behavior
becomes clear but also the abrupt change of slope at t = 10. If
we look at Fig. 5, then we can see how the quantum distribution
develops interference fringes from t = 8 [Fig. 5(b)] to t = 11
[Fig. 5(d)]. The classical distribution just develops a secondary
bulb of high density but of course coherences do not appear
[see Figs. 5(a) and 5(c)]. Finally, for t = 50 we can already
see the typical morphology of the quantum distribution that
has developed a lot of fringes in contrast with the classical
one [see Figs. 5(e) and 5(f)]. It is interesting to note that until
now everything seems to agree with the results of Ref. [3]
regarding the entangling power of chaotic and regular regions
of the classical phase space but keeping in mind this marked
dependence on the initial conditions in the regular case.

Finally, we analyze the HE case for which we take the
initial distributions centered at (q,p) = (0.5,0.5). The WSE
saturates at values similar to the HH case, although it takes a
much longer time to reach them (see Fig. 6). The CSE only
grows until t = 5 and then decreases due to discretization. It
is remarkable that just one hyperbolic degree of freedom is
enough to reach maximum complexity, although at a classical
level the dynamic is not completely ergodic. In this sense
the behavior is strongly different than that of a mixed phase
space with regular and chaotic regions. By looking at Fig. 7
it becomes clear that the Liouville distribution at times t = 3
and t = 5 [see Figs. 7(a) and 7(c)] develop more and more
complex structures associated to the stable manifold, but that
at t = 50 [see Fig. 7(e)] it has already washed out almost all
the details. The corresponding quantum distributions (for the
same times) at the right panels show a different mechanism of
complexity growth mainly based on coherences after t = 3. It
is worth noting that in order to perform all these comparisons
the classical phase space has been truncated at the scale of
h̄; otherwise, the CSE would continue to grow as mentioned
before. With this truncation our results show that the CSE starts
to decay at times where the Wigner function begins to develop

1
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(b)(a)

(c) (d)

(e) (f)

1

p1

q
FIG. 7. Liouville and Wigner distributions at times t = 3 [(a) and

(b)], t = 5 [(c) and (d)], and t = 50 [(e) and (f)] for the HE case with
initial conditions centered at (q,p) = (0.5,0.5).

coherences, which have no classical meaning. For example,
from Fig. 4 we observe that the CSE and the WSE start to
separate at t = 10, when coherent effects start to appear in the
Wigner distributions shown in Fig. 5.

V. CONCLUSIONS

We have studied a generic system consisting of two cou-
pled perturbed cat maps, considering the doubly hyperbolic,
elliptic, and the mixed cases. By using the WSE and the
CSE as two sides of the same complexity notion we find
that for the HH case, the quantum and classical complexity
growth share the same behavior (despite discretization effects
of the classical distribution). The WSE and the CSE reach
the maximum theoretical limit predicted in Ref. [9], which
is at the order of ln(0.6N ). In the EE case this quantum to
classical correspondence depends on the initial conditions,
but the HH case complexity maximum is not reached. This
confirms recent findings published in Ref. [3] regarding the
production of entanglement in chaotic and regular regions of
the phase space. But it is important to clarify that entanglement
entropy generation and classical chaotic or regular behavior are
directly related through the complexity notion in these cases.
Thus the connection is not surprising.

Moreover, this is not always the case, as, for instance,
in the nongeneric baker map, which is chaotic but not
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complex [7]. In the HE case of our generic system, the
WSE reaches the maximum theoretical value around ln(0.6N ),
similarly to the HH case, although the time of the transient is
much longer. The CSE does not reach this value and has a
markedly different behavior. This reveals that in the mixed
scenario the quantum mechanisms of complexity growth
(namely coherences) play a central role. On the other hand,
just one hyperbolic degree of freedom is enough to reach
maximum complexity, despite the fact that the dynamics is
not completely ergodic at the classical level. It is interesting
to mention the connection of this finding with the concept
of “weak quantum ergodicity” [20]. This notion states that
for “slow ergodic” systems (i.e., those in which the classical
rate of spreading is sufficiently slow) the patterns of quantum
transport can be well understood by superimposing diffractive
spreading on top of the classically allowed motion.

Our results provide a wider picture of complexity growth,
including mixed dynamics scenarios. These findings suggest
new experiments with controllable quantum systems, where
the behavior of each component could be selected to be
regular or chaotic. In the future, we will study the role played
by complex eigenvalues of the symplectic matrix leading to
loxodromic behavior [21]. On the other hand, the perturbed
cat maps used in this work are paradigmatic general models
of dynamical systems. They have been extensively used in the
literature as such. However, in order to prove the universality
of our results, we plan to perform similar studies for other
systems in the future.
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