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Research

A BDNF sensitive mechanism is involved in the fear
memory resulting from the interaction between stress
and the retrieval of an established trace

Marcelo Giachero, Silvia G. Bustos, Gaston Calfa, and Victor A. Molina1

IFEC-CONICET, Departamento de Farmacologı́a, Facultad de Ciencias Quı́micas, Universidad Nacional de Córdoba, Haya de la Torre y

Medina Allende, Ciudad Universitaria, (5000) Córdoba, Argentina

The present study investigates the fear memory resulting from the interaction of a stressful experience and the retrieval of

an established fear memory trace. Such a combination enhanced both fear expression and fear retention in adult Wistar rats.

Likewise, midazolam intra-basolateral amygdala (BLA) infusion prior to stress attenuated the enhancement of fear memory

thus suggesting the involvement of a stress-induced reduction of the GABAergic transmission in BLA in the stress-induced

enhancing effect. It has been suggested that, unlike the immediate-early gene Zif268 which is related to the reconsolidation

process, the expression of hippocampal brain-derived neurotrophic factor (BDNF) is highly correlated with consolidation.

We therefore evaluate the relative contribution of these two neurobiological processes to the fear memory resulting from

the above-mentioned interaction. Intra-dorsal hippocampus (DH) infusions of either the antisense Zif268 or the inhibitor of

the protein degradation (Clasto-Lactacystin b-Lactone), suggested to be involved in the retrieval-dependent destabilization

process, did not affect the resulting contextual memory. In contrast, the knockdown of hippocampal BDNF mitigated the

stress-induced facilitating influence on fear retention. In addition, the retrieval experience elevated BDNF level in DH at 60

min after recall exclusively in stressed animals. These findings suggest the involvement of a hippocampal BDNF sensitive

mechanism in the stress-promoting influence on the fear memory following retrieval.

It is well known that after initial encoding, new threatening
information undergoes a progressive stabilization process termed
consolidation which requires de novo mRNA transcription and
protein synthesis (Davis and Squire 1984; Goelet et al. 1986;
McGaugh 2000; Dudai 2004). Upon retrieval, such a memory
trace can reenter a transient labile state which requires the onset
of a stabilization process dependent upon new protein synthesis
referred to as reconsolidation (Nader et al. 2000; Sara 2000;
Debiec et al. 2002). Although both processes require de novo
mRNA and protein synthesis (Kida et al. 2002; Miller and Sweatt
2006; Tronson and Taylor 2007), it is well recognized that recon-
solidation is not a faithful recapitulation of consolidation. In
fact, nonoverlapping and distinctive mechanisms between con-
solidation and reconsolidation have been described in selected
brain regions (Lee et al. 2004; Alberini 2005; Tronson and Taylor
2007; Lee 2008).

As previously noted (Dudai 2002; Hardt et al. 2010), retrieval
is not a passive readout of prior experiences, rather retrieval can
turn memory in a transient plasticity enabling dynamic modifica-
tions of the established memory trace (Sara 2000; Nader 2003;
Duvarci and Nader 2004; Dudai 2006; Lee 2009); however, it
should be noted that retrieval does not always lead to a reconsoli-
dation process (Gisquet-Verrier and Riccio 2012). Under certain
circumstances, for instance, new information can be updated
into the original trace and its strength can be significantly modi-
fied (Lee 2008, 2010; Rodriguez-Ortiz et al. 2008; Hupbach et al.
2009). Hence, the combination of the retrieval experience and
stress is functionally suitable to rewrite emotional memories read-

justing the trace to contemporary environmental conditions
(Schiller et al. 2010). In this line of reasoning, a pre-retrieval envi-
ronmental threat unrelated to the cognitive task might be in-
corporated into the fear memory trace by means of an updat-
ing mechanism which is later stabilized by reconsolidation.
Alternatively, due to the fact that the retrieval of a fear memory
is an aversive experience by itself (Dudai 2002), memory retrieval
and its behavioral expression can be affected by an unrelated
stressful experience without necessarily being updated. In fact, ex-
tensive findings have shown that prior stress exposure promotes
negative emotional reactions to future encounters with an unre-
lated mild aversive stimulation (Martijena et al. 2002; Calfa
et al. 2006; Bignante et al. 2008), such as the retrieval experience
of a previously modest learning procedure.

A vast literature supports the view that emotionally arousing

events affect fear memory formation (Roozendaal 2002; Payne
et al. 2007; Roozendaal et al. 2009). In line with this view, a sub-

stantial number of reports have revealed that diverse stressful ex-
periences prior to learning promote the emergence of robust
emotional memories (Cordero et al. 2003; Rodriguez Manzanares

et al. 2005). However, few studies so far have addressed the study
of the long-term influence of an unrelated threatening experience

on the resulting memory following the retrieval of an established
trace.

Consequently, one of the aims of the present study was to in-
vestigate the fear behavior resulting from the interaction between
a stressful experience and the retrieval of a fear memory trace.
Importantly, since a selective mechanism of memory consolida-
tion and reconsolidation in the dorsal hippocampus (DH) has
been previously reported in contextual fear memories (Lee et
al. 2004), the second aim of this study was to analyze the rela-
tive contribution of the neurobiological mechanisms underly-
ing these two processes in the fear memory resulting from such
interaction.
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Results

Experiment 1

Stress exposure prior to retrieval of a consolidated trace strengthens the

expression and retention of the resulting contextual fear memory

In order to determine whether stress exposure influences fear
memory at the time of retrieval, a group of animals was randomly
selected, placed in a conditioning chamber (context A [CA]), and
subjected to a single footshock protocol (weak training procedure;
CA unsignaled footshock [CA–US]), or no footshock adminis-
tration (CA–noUS). After 24 h the rats from both groups were
once again randomly selected and exposed to the stressful ex-
perience or not exposed to this event (see Material and
Methods). Subsequently, freezing behavior during reexposures
to the associated context (CA) was assessed during test 1 and
test 2 (Fig. 1A).

A Student’s t-test for the time spent freezing during the pre-
shock period showed a nonsignificant effect between the two
groups (P ¼ 0.961). The mean+SEMs of the percentage of freez-
ing from both groups were CA–US, 10.37+1.22 and CA–noUS,
10.29+1.31.

During the post-shock period, a Student’s t-test analysis re-
vealed a significant effect between CA–US vs. CA–noUS (P ,

0.001) where the animals that received the shock showed a signif-
icant increased freezing response during the post-shock period
(percentage of freezing [mean + SEM] CA–US, 29.31+1.73) in

comparison to the group that was not footshocked (CA–noUS,
5.64+1.85).

A repeated measures ANOVA for the freezing behavior re-
sponse during test 1 and test 2 showed a significant effect of train-
ing (F(1,42) ¼ 181.01, P , 0.05), stress (F(1,42) ¼ 76.208, P , 0.05),
training × stress (F(1,42) ¼ 92.572, P , 0.05), test trial as repeated
measures (F(1,42) ¼ 6.943, P , 0.05), and test trial × training
(F(1,42) ¼ 4.997, P ¼ 0.034). However, there was no statistically sig-
nificant interaction between test trial × stress (F(1,42) ¼ 0.128, P ¼
0.723) and training × stress × test trial (F(1,42) ¼ 0.073, P ¼ 0.788).
As shown in Figure 1B, the values denoted in test 1 and test 2 are
similar. From the relevant statistical information, this training
procedure resulted in low levels of fear at testing in nonstressed
rats. Interestingly, stressed rats tested in the associated context
exhibited higher levels of freezing as compared to those of the re-
maining experimental groups at both test 1 and test 2 (P , 0.05).
Hence, exposure to an unrelated stressful experience enhances
both fear expression and fear retention, indicating that the com-
bination of fear conditioning, stress, and the recall session leads
to memory strengthening which persists at least 5 d after retrieval
(test 1).

To test whether the promoting effect of stress on fear memo-
ry is specific to the associated context, a group of animals was sub-
jected to the fear conditioning trial as above (CA) and after 24 h
they were subjected to restraint. After a further 24 h, the animals
were exposed to a novel nonassociated context (CB) and the freez-
ing behavior was assessed. Five days later, animals were relocated

in the CA and their subsequent freezing
behavior was evaluated (Fig. 1C).

A repeated measures ANOVA anal-
ysis revealed a nonsignificant effect of
stress (F(1,13) ¼ 0.024, P ¼ 0.878) and
test trial as repeated measures (F(1,13) ¼

3.917, P ¼ 0.069), and of stress × test
trial (F(1,13) ¼ 0.003, P ¼ 0.958) (Fig.
1D). Thus, minimal fear response was
evident when animals were located in
the novel nonassociated context and
later on in the conditioning context,
which indicates that the stress-induced
enhancing effect previously described
is contingent upon the retrieval of the
associated context, and it is not pro-
duced by a simple fear generalization.
In addition, stressed rats showed low
levels of freezing during test 2, showing
that for the promoting influence to take
place, the retrieval experience (test 1)
should be performed at least 1 d after
stress exposure.

It could be argued that the greater
fear expression and retention in
stressed animals observed in the first
experiment could be induced by a sen-
sitized response to the restraint session
resulting from the nonassociated previ-
ous footshock experience. To control
this possibility, all rats were subjected
to the immediate footshock deficit pro-
tocol (see Material and Methods). One
day after the footshock experience,
the animals were either submitted to
the stress experience or retained in
their home cages without manipula-
tion. After 1 d (test 1) and 5 d (test 2)
rats were reexposed to CA (Fig. 1E).

Figure 1. The interaction between stress and the retrieval of a consolidated trace enhances the result-
ing fear memory. (A) Schematic representation of the experimental design. (B) Bar graph showing the
freezing response denoted in animals at 1 and 6 d after the exposure to a stressful experience. Stressed
and control nonstressed animals were formerly conditioned or exposed to the context without receiving
the shock stimulus. Data are expressed as mean+SEM percentage of freezing spent during the test
(n ¼ 6–8 rats per group). (∗) P , 0.05 compared to the rest of the experimental groups (repeated mea-
sures ANOVA, Bonferroni post-hoc test). (C) Schematic representation of the experimental design. (D)
Bar graph showing the freezing response denoted in animals exposed to the nonassociated chamber
(context CB) (test 1) and CA (test 2) after training in stressed and control nonstressed animals. Data
are expressed as mean+SEM percentage of freezing spent during the test (n ¼ 6–8 rats per group).
P . 0.05 in all interactions (repeated measures ANOVA). (E) Schematic representation of the experi-
mental design. (F) Bar graph showing the freezing response 1 d and 11 d after stress in animals that
were previously subjected to an immediate footshock deficit protocol. Data are expressed as mean+
SEM percentage of freezing spent during the test (n ¼ 6–8 rats per group). P . 0.05 in all interactions
(repeated measures ANOVA).
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A repeated measures ANOVA analysis revealed a significant
effect of the test trial as repeated measures (F(1,14) ¼ 11.514, P ¼
0.0043). However, a nonsignificant effect was observed in both
the stress exposure (F(1,14) ¼ 1.618, P ¼ 0.224) and the interaction
between stress × test trial (F(1,14) ¼ 0.015, P ¼ 0.903) (Fig. 1F).
Although a significant effect of test trial was observed, the freezing
response between stressed and nonstressed rats in any trial (P .

0.05) was not different. In fact, stressed and nonstressed rats dis-
played similar levels of freezing in both tests, thus supporting
the view that the higher freezing level observed in stressed ani-
mals was not due to a sensitized response resulting from a previous
nonassociative footshock experience. Therefore, it becomes evi-
dent that an associated trace should be formed in order for the in-
teraction between stress and retrieval to take place.

Experiment 2

Intra-basolateral amygdala (BLA) infusion of midazolam (MDZ) prior to

stress attenuates the promoting influence of restraint and retrieval on

contextual fear memory

It has been suggested that the activation of GABAergic sites by
local MDZ infusion into the BLA prior to the environmental chal-
lenge prevents the behavioral reactions of stress exposure, includ-
ing the facilitating influence on the formation of fear memory
(Rodriguez Manzanares et al. 2005; Maldonado et al. 2011).
Thus, the current experiment investigates the effect of MDZ
intra-BLA prior to the restraint session on the resulting fear mem-
ory after retrieval. To this end, bilateral cannulas targeting the
BLAwere implanted; after 1 wk all animals received the weak train-
ing procedure (CA–US) as in the previous experiments. One day af-
ter conditioning, animals were randomly saline (SAL) or MDZ
intra-BLA administered. After 10 min a group of rats randomly
selected was exposed to the stressful event (S) or remained with-
out manipulation (NS). One and 6 d after restraint, all rats were

reexposed to the associated context and their freezing assessed
(Fig. 2A,B).

The percentage of freezing spent during pre-shock and post-
shock are as follows: pre-shock CA–US (mean+SEM), 5.19+

0.91; post shock CA–US, 25.55+1.95.
A repeated measures ANOVA for the time spent freezing dur-

ing both test 1 and test 2 revealed a significant effect of drug treat-
ment (F(1,27) ¼ 55.657, P , 0.05), stress (F(1,27) ¼ 72.72, P , 0.05),
drug treatment × stress interaction (F(1,27) ¼ 63.972, P , 0.05),
and test trial as repeated measures (F(1,27) ¼ 4.685, P , 0.039).
However, a nonsignificant interaction was observed between test
trial × drug treatment (F(1,27) ¼ 1.577, P ¼ 0.22), test trial × stress
(F(1,27) ¼ 1.086, P ¼ 0.306), and drug treatment × stress × test trial
(F(1,27) ¼ 0.378, P ¼ 0.543) (Fig. 2C). Thus, the statistically relevant
information reveals a higher freezing behavior of stressed animals
with intra-BLA SAL at both test 1 and test 2. Interestingly, such a
behavioral response was prevented by the local MDZ infusion.
An equivalent fear response was observed between unstressed ani-
mals administered MDZ intra-BLA and unstressed animals with
SAL intra-BLA infusion. The findings of the current experiment in-
dicate that MDZ intra-BLA prior to restraint prevents the promot-
ing influence of stress and retrieval on the resulting fear memory.

Experiment 3

Intra-DH infusion of Zif268 anti-sense (Zif268 ASO) does not affect the

contextual fear memory following retrieval and stress

There is evidence of a double dissociable cellular mechanism for
consolidation and reconsolidation in the hippocampus for the
contextual fear memory (Lee et al. 2004). Thus, the expression
of the hippocampal Zif268 following contextual memory reacti-
vation has been closely associated with a reconsolidation-like
mechanism (Lee et al. 2004). Therefore, if stress-induced memory
strengthening involves reconsolidation, knocking down Zif268 in

the DH should impair the promoting
influence of stress after interacting
with the fear memory retrieval. To ex-
plore this possibility, DH-cannulated
animals were subjected to the same
weak training procedure (CA–US) as
in Experiment 1, and subsequently a
group of animals was randomly as-
signed to the stress condition (S) or re-
mained without manipulation (NS)
and the following day both groups S
and NS were randomly Zif268 ASO or
missense (MSO) infused 90 min prior
to retrieval (test 1). Fear behavior was
determined during both test 1 and test
2 (Fig. 3A).

The percentages of freezing spent
during pre-shock and post-shock are
as follows: pre-shock CA–US (mean+

SEM), 3.8+1.31; post-shock CA–US:
28.4+1.78.

A repeated measures ANOVA for
the time spent freezing during both
test 1 and test 2 revealed a significant
effect of stress (F(1,26) ¼ 146.92, P ,

0.05) and test trial as repeated mea-
sures (F(1,26) ¼ 6.414, P ¼ 0.017). How-
ever, a nonsignificant effect was ob-
served in drug treatment (F(1,26) ¼

1.338, P ¼ 0.258), stress × drug treat-
ment (F(1,26) ¼ 0.764, P ¼ 0.39), test

Figure 2. MDZ intra-BLA infusion prior to stress affects the expression and retention of the resulting
fear memory. (A) Schematic representation of the experimental design. (B) Schematic drawings of
coronal sections showing the location of the cannula placement in BLA (adapted from Paxinos and
Watson 1986 with permission from Elsevier # 1986); (black filled circles) MDZ/S, (unfilled circles)
MDZ/NS, (black filled squares) SAL/S, (unfilled squares) SAL/NS. (C) Freezing behavior response ob-
served in the conditioned context at test 1 and test 2 in rats that either received intra-BLA administration
of MDZ or SAL 10 min prior to restraint. Data are expressed as mean+SEM percentage of freezing
spent during the tests (n ¼ 8 rats for all groups). (∗) P , 0.05 compared to the rest of the experimental
groups (repeated measures ANOVA, Bonferroni post-hoc test).
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trial × stress (F(1,26) ¼ 0.967, P ¼ 0.334), test trial × drug treat-
ment (F(1,26) ¼ 1.937, P ¼ 0.176), and stress × drug treatment ×
test trial (F(1,26) ¼ 3.297, P ¼ 0.081). As shown in Figure 3C,
stressed animals either infused with Zif268 ASO or MSO in the
DH showed a higher fear response in both trials as compared to
unstressed animals (P , 0.05). Hence, the knockdown of Zif268
did not affect stress-induced memory strengthening.

It is important to note that Zif268 knockdown does not affect
the behavioral performance of nonstressed animals. This lack of
effect could be obscured by the low level of fear exhibited by non-

stressed animals during retrieval. We
therefore examined the effect of the
Zif268 ASO on control rats that had
been previously subjected to a stronger
fear training (three footshocks instead
of the single shock-context experience)
(Fig. 3D).

The percentages of freezing spent
during pre-shock and post-shock are
as follows: pre-shock CA–US (mean+

SEM), 23.15+3.28; post-shock CA–
US, 88+3.73.

A repeated measures ANOVA, con-
sidering the test trial as repeated mea-
sures, showed a significant effect of
drug treatment (F(1,14) ¼ 23.562, P ¼
0.00026), test trial (F(1,14) ¼ 34.645,
P , 0.05), and drug treatment × test tri-
al (F(1,14) ¼ 17.824, P ¼ 0.00085). All
rats, either infused with the Zif268
ASO or MSO, exhibited considerable
freezing scores during test 1. Such an el-
evated fear response was attenuated
during test 2 in animals with intra-
DH Zif268 ASO (P , 0.05) (Fig. 3F).
Consistent with previous findings,
knocking down hippocampal Zif268
impaired memory retention probably
through reconsolidation blockade in
control unstressed rats (Lee et al. 2004).

Experiment 4

Intra-DH clasto-lactacystine-b-lactone

(b-lac) administration does not affect the

contextual fear memory following retrieval

and stress

Strengthening contextual-fear memory
by an additional learning trial requires
the occurrence of a retrieval-induced
destabilization process (Lee 2008).
Such a process is dependent on hippo-
campal synaptic protein degradation
(Lee et al. 2008). Therefore, if retrieval-
induced fragility is a prerequisite for
stress-induced memory strengthening
following retrieval, impairing protein
degradation by intra-DH b-lac infusion
should prevent the elevation of fear in
stressed animals. To investigate this
possibility, DH cannulated rats were
subjected to the same weak training
procedure (CA–US) as in Experiment
1, and subsequently a group of animals
was randomly assigned to the stress

condition or remained without manipulation, and 1 d later re-
exposed to the training chamber. Immediately afterward, the an-
imals were randomlyb-lac or SAL intra-DH administered. Freezing
behavior was evaluated during test 1 and test 2 (Fig. 4A).

The percentage of freezing spent during pre-shock and post-
shock are as follows: pre-shock CA–US (mean+ SEM), 2.43+

0.81; post-shock CA–US, 25.25+2.42.
A repeated measures ANOVA for the time spent freezing dur-

ing both test 1 and test 2 revealed a significant effect of stress
(F(1,24) ¼ 78.926, P , 0.05) and test trial as repeated measures

Figure 3. Influence of Zif268 antisense in DH on the resulting contextual fear memory following
stress and retrieval. (A) Schematic representation of the experimental design. (B) Graphic drawings of
coronal sections showing the location of the cannula placement in DH (adapted from Paxinos and
Watson 1986 with persmission from Elsevier # 1986); (black filled circles) NS/Zif268 ASO, (unfilled
circles) S/Zif268 ASO, (black filled squares) NS/Zif268 MSO, (unfilled squares) S/Zif268 MSO. (C)
Freezing behavior observed at test 1 and test 2 in animals with intra-DH Zif268 ASO or MSO adminis-
tration prior to test 1. Data are expressed as mean+SEM percentage of freezing spent during both tests
(n ¼ 8 rats for all groups). (∗) P , 0.05 compared to the rest of the experimental groups (repeated
measure ANOVA, Bonferroni post-hoc test). (D) Schematic representation of the experimental
design. (E) Graphic drawings of coronal sections showing the location of the cannula placement in
DH (adapted from Paxinos and Watson 1986 with permission from Elsevier # 1986); (black filled
circles) Zif268 MSO, (unfilled circles) Zif268 ASO. (F) The freezing exhibited in both tests by control
unstressed rats with intra-DH Zif268 ASO or MSO administration. Animals were previously subjected
to a classic fear training procedure, three footshocks instead of a single shock-context experience
(n ¼ 8 rats for all groups). (∗) P , 0.05 compared to the rest of the experimental groups (repeated
measure ANOVA, Bonferroni post-hoc test).
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(F(1,24) ¼ 4.729, P ¼ 0.04). However, a nonsignificant effect was
observed by drug treatment (F(1,24) ¼ 0.003, P ¼ 0.959), drug
treatment × stress (F(1,24) ¼ 1.564, P ¼ 0.223), test trial × stress
(F(1,24) ¼ 0.134, P ¼ 0.717), test trial × drug treatment (F(1,24) ¼

0.069, P ¼ 0.794), and drug treatment × stress × test trial
(F(1,24) ¼ 0.041, P ¼ 0.841). This analy-
sis shows that stressed rats with intra-
DH vehicle or b-lac infusions exhibit
higher freezing during both test 1 and
test 2 as compared to nonstressed rats
either infused with vehicle or b-lac
(Fig. 4C). Hence, the inhibition of the
retrieval-induced destabilization pro-
cess does not prevent the promoting in-
fluence of stress on fear memory.

Experiment 5

The intra-DH infusion of BDNF ASO impairs

the enhancement of the fear memory resulting

after retrieval and stress

Within the framework of a hippocam-
pal double dissociable mechanism for
consolidation and reconsolidation of
contextual fear memory (Lee et al.
2004), it has been reported that the
BDNF expression in DH highly corre-
lates with consolidation but not with
a reconsolidation process (Lee et al.
2004) In order to test a BDNF role in
the stress-induced promoting influence
on fear memory after retrieval, DH can-
nulated rats were subjected to the same
weak training procedure (CA–US) as
in Experiment 1, and subsequently a

group of animals was randomly as-
signed to the stress condition or re-
mained without manipulation. After 1
d, rats randomly selected received
intra-DH BDNF ASO or MSO 90 min pri-
or to the exposure to the CA (test 1) and
their fear evaluated. Five days later, all
rats were relocated in the CA to assess
freezing during test 2 (Fig. 5A).

The percentage of freezing spent
during pre-shock and post-shock are
as follows: pre-shock CA–US (mean+

SEM), 3.06+0.98; post-shock CA–US,
25.28+2.13.

A repeated measures ANOVA for
the time spent freezing during both
test 1 and test 2 indicated a significant
effect of stress (F(1,28) ¼ 100.83, P ,

0.05), drug treatment (F(1,28) ¼ 8.577,
P ¼ 0.007), stress × drug treatment
(F(1,28) ¼ 13.306, P ¼ 0.001), test trial
as repeated measures (F(1,28) ¼ 41.445,
P , 0.05), test trial × stress (F(1,28) ¼

9.817, P ¼ 0.004), test trial × drug
treatment (F(1,28) ¼ 31.697, P , 0.05),
and stress × drug treatment × test trial
(F(1,28) ¼ 21.859, P , 0.05). Further-
more, Bonferroni post-hoc analysis in-
dicated that stressed animals infused
intra-DH with BDNF MSO or ASO ex-

hibited a higher freezing score at test 1 compared to those un-
stressed rats either administered with BDNF ASO or MSO (P ,

0.05). Interestingly, stressed animals with BDNF MSO intra-DH in-
fusion exhibited a higher freezing at test 2 compared to those with
the BDNF ASO intra-DH infusion and to unstressed rats either ad-

Figure 5. Intra-DH BDNF antisense infusion affects stress-induced promoting influence on fear
memory after retrieval. (A) Schematic representation of the experimental design. (B) Schematic drawings
of coronal sections showing the location of the cannula placement in DH (adapted from Paxinos and
Watson 1986 with permission from Elsevier # 1986); (black filled circles) NS/BDNF ASO, (unfilled
circles) S/BDNF ASO, (black filled squares) NS/BDNF MSO, (unfilled squares) S/BDNF MSO. (C)
Freezing behavior observed at both tests in animals that received intra-DH BDNF ASO or the MSO admin-
istrationprevious to the test1. Dataareexpressed as mean+SEM percentage of freezing spent during the
test (n ¼ 8 rats for all groups). (∗) P , 0.05 compared to the rest of the experimental groups (repeated
measures ANOVA, Bonferroni post-hoc test).

Figure 4. Effect of intra-DH b-lac infusion on the resulting contextual fear memory following stress
and retrieval. (A) Schematic representation of the experimental design. (B) Schematic drawings of
coronal sections showing the location of the cannula placement in DH (adapted from Paxinos and
Watson 1986 with permission from Elsevier # 1986); (black filled circles) NS/b-lac, (unfilled circles)
S/b-lac, (black filled squares) NS/PBS, (unfilled squares) S/PBS. (C) Freezing behavior observed at
both tests in animals that received intra-DH b-lac administration immediately after test 1. Data are ex-
pressed as mean+SEM percentage of freezing spent during the test (n ¼ 8 rats for all groups). (∗)
P , 0.05 compared to the rest of the experimental groups (repeated measures ANOVA, Bonferroni
post-hoc test).
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ministered with BDNF ASO or MSO (P , 0.05) (Fig. 5C). Hence,
these findings support the role of hippocampal BDNF in the facil-
itating influence on contextual fear memory following the inter-
action of stress and fear memory retrieval.

Experiment 6

Retrieval of contextual fear memory in stressed animals increases BDNF level

in the DH

Given that knocking down BDNF in DH prevented the enhanced
fear response in stressed animals, we enquired whether retrieval
following stress elicits selective changes on BDNF levels in DH.
Toward this goal, we have analyzed the time course of BDNF pro-
tein levels in DH following retrieval. Rats were subjected to the
weak-trained procedure as Experiment 1, and then subjected to
the stress experience or remained without manipulation. After
24 h, all animals were reexposed to the associated environment
and sacrificed at 0, 30 min, 60 min, and 120 min (Fig. 6A).

The percentage of freezing spent during pre-shock and post-
shock are as follows: pre-shock CA–US (mean+ SEM), 5.12+

0.82; post-shock CA–US, 27.85+2.41.
A one-way ANOVA analysis for BDNF levels at the different

time points reflected a significant effect of stress and time
(F(7,32) ¼ 12.656, P , 0.05). A Bonferroni post-hoc test revealed a
higher BDNF level in DH of stressed animals only at 60 min after
recall (P , 0.05) (Fig. 6B). This finding is consistent with the view
that the promoting influence of stress on contextual fear memory
is related to an increase of hippocampal BDNF expression.

To further confirm that the behavioral effects induced by the
BDNF ASO correlate with BDNF levels, all animals were weak-
trained and subsequently stressed. The following day, 90 min pri-
or to test 1, BDNF ASO or MSO were DH infused. All animals were
sacrificed 60 min later and BDNF levels assessed (Fig. 6C).

The percentage of freezing spent during pre-shock and post-
shock are as follows: pre-shock CA–US (mean+ SEM), 5.35+

0.96; post-shock CA–US, 25.84+1.82.

Lower BDNF levels were observed in the BDNF ASO animals as
compared to BDNF MSO animals (P , 0.05, Student’s t-test) (Fig.
6E). Therefore, these findings support the role of the hippocampal
BDNF in such a stress-induced strengthening influence.

Discussion

The present study has shown that the interaction of a stressful
experience and the retrieval of an established memory trace
strengthen the resulting contextual fear memory. Such a promot-
ing influence is not only evident during retrieval (test 1) but also
noticeable after 5 d (test 2). In addition, since no effect was detect-
able when stressed animals were exposed to a different environ-
ment, an unspecific generalization of fear can be discarded,
confirming that exposure to the associated context is a require-
ment for the promoting influence to take place. Importantly, stress
only magnified the fear response in those rats subjected to the as-
sociated learning, indicating that the stress-induced promoting
influence is crucially dependent on the previous context–US as-
sociation. Moreover, a sensitized response to restraint due to the
nonassociated past-footshock experience is unlikely since no
stress-induced effect was evident when animals had previously un-
dergone immediate footshock deficit, a procedure which is unable
to produce contextual fear learning (Landeira-Fernandez et al.
2006).

Previous reports have shown that both stress exposure and
stress-related hormone administration close to testing impair
memory retrieval. Such an effect is temporary and unobservable
at longer intervals since it is correlated with elevated plasma cor-
ticosterone levels at the time of testing (de Quervain et al. 1998,
2003; Roozendaal 2002; Cai et al. 2006; Atsak et al. 2012).
However, in the current protocol, the fact that retrieval was per-
formed 1 d after restraint excludes the involvement of secretion
of stress-related hormones in the facilitating effect following stress
and retrieval. This view does not exclude an initial role of stress-
related hormones shortly after stress exposure in our experimental
paradigm.

Figure 6. BDNF Levels in DH after stress and retrieval. (A) Schematic representation of the experimental design. (B) Bar graph indicating BDNF levels
(mean+SEM) at different time points after memory retrieval in stressed and nonstressed animals ([∗] P , 0.05 compared to the rest of the experimental
groups, one-way ANOVA, Bonferroni post-hoc test). (C) Schematic representation of the experimental design. (D) Schematic drawings of coronal sections
showing the location of the cannula placement in DH (adapted from Paxinos and Watson 1986 with permission from Elsevier # 1986); (black filled
squares) BDNF MSO, (unfilled squares) BDNF ASO. (E) Bar graph indicating BDNF levels (mean+SEM) at 60 min after retrieval in stressed animals previ-
ously administered intra-HD with BDNF ASO or MSO (n ¼ 5 rats per group; [∗] P , 0.05 Student’s t-test).
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As previously noted, nonoverlapping mechanisms in the
DH have been suggested between consolidation and reconsolida-
tion in contextual fear memory (Lee et al. 2004; Alberini 2005;
Tronson and Taylor 2007). Whereas, reconsolidation requires hip-
pocampal Zif268 expression, the consolidation process is suggest-
ed to be dependent on hippocampal BDNF (Lee et al. 2004). What
is more, Lee (2008), using a different procedure to that performed
in the current study, showed that an additional shock presenta-
tion during memory reactivation was updated in the original
memory by a reconsolidation mechanism dependent on hippo-
campal Zif268 expression, but not on BDNF production.

It has been proposed that fear memory reconsolidation con-
sists of two closely associated phases, a reactivation-dependent
destabilization process requiring protein degradation (Lee 2008)
and a protein synthesis dependent restabilization phase (Nader
et al. 2000; Alberini 2011). Our results indicate that the intra-
DH Zif268 ASO does not modify the resulting fear memory trace
after stress and retrieval. Moreover, protein degradation by the
ubiquitin/proteosome underlies destabilization after fear memo-
ry reactivation (Lee 2008). Consistently, hippocampal infusion
of a proteasome inhibitor before reactivation prevents the onset
of memory reconsolidation (Lee 2008) and the updating of new
information in a consolidated fear memory (Lee 2008). The cur-
rent findings reveal that the blockade of protein degradation by
means of b-lac intra-DH infusions did not affect the resulting con-
textual memory following the combination of stress and the re-
trieval experience, suggesting that destabilization after retrieval
is not a prerequisite for the promoting influence of stress on the
resulting trace. Therefore, if the retrieval-induced Zif268 expres-
sion and destabilization-induced protein degradation are both
essential processes for the occurrence of reconsolidation, as
previously suggested (Lee et al. 2004, 2008; Rudy 2008), the in-
volvement of a reconsolidation mechanism in the stress-induced
memory strengthening observed in this study seems less likely.

Using contextual fear protocols, some authors indicate that
fear learning regulates the expression of Zif268 mRNA in the later-
al amygdala (Malkani and Rosen 2000), whereas others suggest a
role of this molecule in the retrieval experience but not in the ac-
quisition (Hall et al. 2000, 2001). Recently, Maddox et al. (2011),
using an auditory Pavlovian fear protocol, indicated that Zif268
response in LA is required for both new association and reactiva-
tion of consolidated fear memories (Maddox et al. 2011). The
reason for these discrepancies in the amygdala nuclei remains
unclear; however, it has been suggested that such controversies
depend on the context properties since the amygdala modulates
the contextual representation when the context is novel (Davis
et al. 2003; Ploski et al. 2010). In contrast to such inconsistencies,
convincing experimental data consistently support a role of hip-
pocampal Zif268 in the contextual fear reconsolidation phase
but not in the formation of a new association between shock
and context (Lee et al. 2004; Lee 2008). In fact, as previously indi-
cated, long-term consolidation can take place even with global
deficits in brain Zif268 (see Lee et al. 2004). Hence, it seems suit-
able to speculate that Zif268 from the amygdala or from the hip-
pocampus may have a differential role in the emergence of a new
association or in the reactivation of an already established trace.
Similarly, proteosome-dependent protein degradation in the
amygdala has been reported to be critical for fear memory consol-
idation and reconsolidation in both context and auditory fear
procedures (Jarome et al. 2011). However, the infusion of b-lac
into the hippocampus does not seem to affect contextual memory
consolidation (Lee et al. 2008). Intra-DH infusion of protein deg-
radation inhibitors blocked memory acquisition using inhibitory
avoidance (Lopez-Salon et al. 2001); however, the mechanisms
involved in the retention of memory avoidance differ from those
implicated in fear conditioning (Wilensky et al. 2000). Moreover,

it is noteworthy that no change in the original memory strength is
evident after protein degradation blockade when there is no new
information to update or when no interfering agent is adminis-
tered into the DH or into the amygdala complex associated to re-
call (Lee 2008; Lee et al. 2008; Jarome et al. 2011).

A likely explanation for the absence of the retrieval-induced
updating and reconsolidation mechanism in the DH of stressed
rats in the present study could suggest that the emotional state
generated by the stressful experience can affect the destabilization
and the reconsolidation mechanisms at the time of retrieval.
Interestingly, the knockdown of hippocampal Zif268 prior to re-
trieval in unstressed animals previously subjected to a robust
training blocked memory reconsolidation. The fact that similar
levels of freezing were exhibited during the retrieval experience
between stressed rats and unstressed control animals exposed to
a robust conditioning suggests that the different effect observed
on fear retention following intra-DH Zif268 ASO cannot be attrib-
uted to differences in the degree of fear. Hence, these findings sug-
gest that fear memory from stressed rats is less likely to become
destabilized and vulnerable to disruption upon reactivation.
Accordingly, retrieval-induced fragility of a contextual fear mem-
ory trace was constrained in animals subjected to a stressful situa-
tion similar to that used in the current study (Bustos et al. 2010).

In contrast to the lack of effect of intra-DH Zif268 ASO in
stressed rats, BDNF hippocampal knockdown mitigated the
stress-induced facilitating influence on fear retention. This evi-
dence, coupled with the elevation of hippocampal BDNF level fol-
lowing retrieval in stressed animals, provides a strong support for
the involvement of a hippocampal BDNF-dependent mechanism
in the contextual fear memory resulting from the interaction of
stress and retrieval. This evidence confirms prior findings that en-
dogenous BDNF is required for fear-motivated learning in rats
(Rattiner et al. 2004a,b).

Importantly, similar fear values during recall were recorded
in stressed animals treated with either the BDNF ASO or the
MSO, suggesting that the influence of this antisense is not related
to the disruption of freezing performance or to an interference of
the retrieval process. Enhanced expression of hippocampal BDNF
was suggested to be associated with the consolidation of contex-
tual fear memory (Lee et al. 2004); our data could suggest the
involvement of an acquisition process of new aversive informa-
tion in the resulting memory following stress and retrieval.
However, it is generally accepted that consolidation is a process
that occurs after memory training and not after memory retrieval.
Therefore, the fact that hippocampal BDNF is highly expressed in
our paradigm does not necessarily mean that the resulting mem-
ory following stress is indicative of consolidation. Further research
is required to suggest that the combination of stress and the
recall experience initiates a consolidation process. It is relevant
to note, however, that extensive research supports a role of hippo-
campal BDNF in the emergence of long-term memory in various
hippocampal-dependent paradigms (Lee et al. 2004; Alonso et al.
2005; Lubin et al. 2008). Consistent with the view of the BDNF
role in the emergence of long-term memory, accumulating evi-
dence sustains the pivotal role of this molecule in neuronal plastic-
ityunderlying learning andmemory (Tyleretal. 2002;Yamadaand
Nabeshima 2003; Rattiner et al. 2005).

The question that arises is by which potential mechanism
could stress be acting to magnify fear expression and fear retention
afterretrieval?It iswellestablishedthattheBLAplaysamajorrolein
thegenerationofnegativeaffectivestates (LeDoux2000)andinthe
processing of stress-induced emotional information (Roozendaal
et al. 2009). Besides, it was reported that the exposure to a stressful
event, similar to the one used in the present study, suppressed the
GABAergic inhibitorymechanisminBLAresultinginanunmasked
activation of glutamatergic projection neurons recorded 1 d after
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stress (RodriguezManzanaresetal.2005; Isoardietal.2007). Infact,
stress-induced activation of a local network in BLA reduces the
threshold induction of LTP (Rodriguez Manzanares et al. 2005;
Sarabdjitsingh et al. 2012), a synaptic plastic process closely associ-
ated to the formation of long-term memory (Blair et al. 2001; Pape
and Pare 2010). Moreover, emotional arousal results in a persistent
enhancement of the spontaneous firing rates of BLA neurons
(Pelletier et al. 2005). It was proposed that the reduction of this in-
hibitory mechanism in BLA enhanced activation of downstream
structures implicated in generating a robust emotional response
and leading to excessive emotional output to mild aversive stimu-
lation or to stimulus that would normally induce minimal emo-
tional disturbance (Martijena et al. 2002; Calfa et al. 2006;
Bignante et al. 2008). What is more, stress and pharmacologically
induced decrease of GABAergic neurotransmission, particularly
in BLA, enhance the emergence of fear memory (Rodriguez
Manzanares et al. 2005; Kim et al. 2012). A logical prediction
from all this evidence suggests that the activation of GABAa sites
in BLA prior to the environmental challenge would prevent the
enhancing effect on the expression and retention of fear following
the interaction of stress and recall. In line with this prediction, our
results show that intra-BLA MDZ treatment prior to stress attenu-
ates the enhancement of both fear expression and fear retention.
Aspreviouslysuggested(Dudai2002),theretrievalofafearmemory
can be an aversive experience by itself. Therefore, it seems likely to
speculate that prior stress can increase the aversive value of the
stimuli thatdefinethecontextwhenthe retrieval experience isper-
formed under a hyperexcitable BLA, as suggested to occur after
stress (Martijena et al. 2002; Rodriguez Manzanares et al. 2005;
Isoardi et al. 2007). Such an enhancement is expressed by higher
freezingscoresduringbothtestingtrials.Therefore,undertheemo-
tional state elicited by stress, the retrieval experience of a weak
memory trace previously established becomes a powerful mne-
monic enhancer. In line with this argument, it was recently report-
ed that a negative emotional state elicited by the stimulation of
the dorsolateral periaqueductal gray prior to retrieval potentiates
a fear memory trace previously acquired (Mochny et al. 2012).

Taken together, the present findings show that the stress-
induced enhancing influence on the resulting fear memory fol-
lowing retrieval is dependent on a hippocampal BDNF mecha-
nism. The results described in the current study may contribute
to the understanding of the mechanisms involved in the emer-
gence of a traumatic memory, a hallmark element of several
anxiety-related disorders.

Materials and Methods

Animals
Adult male Wistar rats (60 d old, weighing between 280 and 320 g)
from a colony established at the Departamento de Farmacologia-
IFEC, Facultad de Ciencias Quı́micas, Universidad Nacional de
Córdoba were used. All animals were housed in standard laborato-
ry Plexiglas cages in groups of three per cage. Food and water were
available ad libitum. Animals were maintained on a 12-h-light/
dark cycle (lights on at 0700–1900 h) and at a room temperature
of 21–23˚C. The protocols used have been approved by the
Animal Care Committee of the Facultad de Ciencias Quı́micas,
Universidad Nacional de Córdoba which are consistent with the
standards outlined in the NIH Guide for the Care and Use of
Laboratory Animals. The number of animals used, as well as their
suffering, was kept at the minimum possible needed to accom-
plish the goals of this study.

Stressor
Animals were transferred in their own home cages to an experi-
mental room, and placed for 30 min inside a plastic cylindrical re-

strainer fitted close to the body, preventing animal movement
except for the tail and the tip of the nose. At the end of the stress
session, animals were returned to the colony room. No other sub-
jects were present in the experimental room during stress expo-
sure. This procedure was selected based on previous findings
from our laboratory using a similar stress protocol to that used
in the current study (Rodriguez Manzanares et al. 2005; Isoardi
et al. 2007; Bustos et al. 2010). Retrieval was performed 1 d after
stress exposure. Such an interval was used based on previous
data from this laboratory which showed that following this inter-
val stress promotes fear memory formation and enhances anx-
iety-like behavior (Rodriguez Manzanares et al. 2005; Bignante
et al. 2010). Control unstressed animals were transferred to the ex-
perimental room, gently handled, and then returned to the
colony room.

Conditioning apparatus
The conditioning chamber was designated as CA and placed in an
acoustically isolated separated room maintained at a constant
temperature of 21+2˚C. It was made of a gray plastic wall (20 ×
23 × 20 cm) with a clear lid. The floor consisted of 10 paral-
lel stainless-steel grid bars, each measuring 4 mm in diameter
and spaced 1.5 cm apart (center to center), enclosed within a
sound-attenuating chamber. The grid floor was attached to a
scrambled shocker (UgoBasile Biological Research Apparatus) to
provide footshock. Illumination was supplied by a 2.5-W white-
light bulb, and the background noise was made available by ven-
tilation fans and the shock scrambler (55 dB). The nonassociated
chamber (CB) was made of wood (33 × 25 × 33 cm) and had lids
of transparent plastic, black walls, and a black rubber floor. This
procedure was used in order to make the novel context as different
as possible from the one originally used during training, and
therefore maximize the possibility of obtaining different levels
of expression of the acquired memory. Consequently, differences
in the expression of learning in these circumstances might be at-
tributable to contextual changes and/or changes regarding the
discrete stimuli that define the context. Both chambers were
cleaned with 10% aqueous ethanol solution before and after
each session. Experiments were always performed between 1400
and 1600 h with the experimenters unaware of the treatment
condition.

Behavioral procedures

Contextual fear conditioning

The procedure used was similar to that used by Maldonado et al.
(2011). On the day of the experiment, two groups of rats randomly
selected were transported from the housing room, individually
placed in the conditioning chamber, and left undisturbed for a
3-min acclimation period (pre-shock period), following by a sin-
gle unsignaled footshock (0.3 mA, 3-sec duration) (CA–US) or
the rats did not receive the unsignaled footshock (CA–noUS).
The animals remained in the chamber for an additional 50 sec
(post-shock period). At the end of this period, rats were removed
and subsequently placed in their home cages. Only a single foot-
shock was given in the conditioning context to elicit a minimal
level of freezing, which allowed a potential facilitating influence
of the stress treatment on fear memory (Maldonado et al. 2011).
In the experiments in which animals were BLA or DH implanted,
the intensity of the footshock was 0.5 mA in order to induce levels
of conditioning similar to those exhibited by animals with-
out cannula implantation because chronic cannulation tends to
attenuate the expression of conditioned freezing (Fanselow
1980; Lee et al. 2006). For the stronger conditioning procedure
(Experiment 4), animals were placed in the conditioning cham-
ber, allowing a 3-min acclimation period followed by three foot-
shocks (0.5 mA, 3-sec duration at an intershock interval of 30
sec). Animals remained in the chamber for an additional 2 min
(post-shock period), after which rats were removed and subse-
quently placed in their home cages (Isoardi et al. 2004; Rodriguez
Manzanares et al. 2005; Bustos et al. 2006).
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Immediate footshock deficit

It is known that in one-trial contextual fear conditioning, the rat
displays freezing when given a footshock after a brief acclimation
period. However, when animals are not given such an acclimation
period and receive an immediate footshock upon entering the
context, they do not freeze in a subsequent retention test in the
same context, indicating the absence of contextual fear learning.
Therefore, animals must have a substantial period of time in the
context prior to shock onset for the occurrence of contextual
fear conditioning (Landeira-Fernandez et al. 2006). This phenom-
enon has been defined as immediate footshock deficit. In this
case, rats were placed in the context and subjected to a single foot-
shock within 10 sec of entry into the training chamber. After the
shock, rats were quickly removed from the context and returned
to their home cages.

Test sessions

Rats were reexposed to CA without shocks for 3 min, 2 d after
training (test 1) and 7 d after training (test 2). Freezing behavior
was assessed as a measure of retrieval during test 1 and as a mea-
sure of memory retention during test 2. In order to control for
context specificity, animals were conditioned as above and tested
for freezing for the same period of time (3 min) in CB.

One week prior to experiments rats were handled daily for
�15 sec each. The behavior of each rat was continuously video-
taped in order to score freezing behavior during the pre-shock
and post-shock periods, and during the entire 3-min test sessions,
either in CA or CB. The total time spent freezing in each period
was quantified (in seconds) using a stopwatch and expressed as
the percentage of total time (Bustos et al. 2010). Freezing, a com-
monly used index of fear in rats (Blanchard and Blanchard 1969;
Fanselow 1980), was defined as a total absence of body and head
movement except those associated with breathing.

Surgery and intracranial infusions
Under aseptic conditions, rats were anesthetized with a mixture of
ketamine (55 mg/kg, i.p., Ketajects) and xylazine (11 mg/kg i.p.,
Xyla-Jects) and placed in a stereotaxic instrument (Stoelting).
The scalp was incised and retracted, and the head position was ad-
justed to place bregma and lambda in the same horizontal plane
with the incisor bar set at 23.3 mm. Two stainless-steel guide can-
nulas were stereotaxically lowered into the BLA (22 gauge, length
12 mm) or into the DH (22 gauge, length 9 mm) using the follow-
ing coordinates: BLA, anterior 22.8 mm, lateral +5.0 mm, ven-
tral 26.1 mm; DH, anterior 23.8 mm, lateral +2.0 mm, ventral
22.0 mm (Paxinos and Watson 1986). These coordinates were es-
tablished from pilot studies in our laboratory (Rodriguez
Manzanares et al. 2005; Calfa et al. 2007). The guide cannulas
were secured in place using acrylic cement and two stainless-steel
screws were anchored to the skull. Stainless “dummy cannulas”
protruding 0.5 mm beyond the tips were placed inside the guide
cannulas to prevent occlusion. Animals were removed from the
stereotaxic instrument to recover under a heat lamp and with
close supervision. After surgery, animals received a subcutaneous
injection of a penicillin/streptomycin suspension to reduce the
risk of infections. Animals were gently handled every day, replac-
ing missing dummy cannulas when necessary, and were allowed
to recover from surgery for 5–7 d before the experimental proce-
dures. Microinfusions were made using 33-gauge infusion cannu-
las that extended 2 mm beyond the guide cannulas implanted in
the BLA or 1 mm beyond the guide cannulas implanted in the
DH. The infusion cannulas were connected via polyethylene tub-
ing (PE 10, Becton Dickinson) to a 10 mL microsyringe
(Hamilton) mounted on a microinfusion pump (Cole-Parmer
74900-Series).

Drugs and drug administration
MDZ (GobbiNovag) was diluted in sterile isotonic SAL (0.9% w/v).
The proteasome inhibitor b-lac (Sigma-Aldrich) was dissolved
in 2% DMSO/PBS and adjusted to pH 7.0–7.4 with NaOH.

Oligonucleotides (ODNs [Genbiotech]) were PAGE-purified phos-
phorothioate end-capped 18-mer sequences and resuspended
in sterile PBS. These were BDNF antisense ODN (BDNF ASO),
5′-TCTTCCCCTTTTAATGGT-3′; BDNF missense ODN (BDNF
MSO), 5′-ATACTTTCTGTTCTTGCC-3′; Zif268 antisense ODN
(Zif268 ASO), 5′- GGTAGTTGTCCATGGTGG-3′; and Zif268 mis-
sense ODN (Zif268 MSO), 5′-GTGTTCGGTAGGGTGTCA-3′.

For intra-BLA infusion, each rat was bilaterally infused with
0.5 mL per side of MDZ (1 mg/mL) or SAL into BLA at a flow rate
of 0.5 mL/min over a period of 60 sec (Rodriguez Manzanares
et al. 2005). This dose of MDZ was selected based on previous stud-
ies which showed that this dose was effective to attenuate
stress-induced effects on fear memory formation (Rodriguez
Manzanares et al. 2005). b-lac (32 ng/mL) was bilaterally infused
in DH (1 mL per side, 0.5 mL/min) at the same dose reported by
Lee (2008) and Lee et al. (2008). The doses and rate of infusion
of ODNs were selected based on previous research (Lee et al.
2004; Bekinschtein et al. 2007; Lee 2008). These authors have
shown an important diffusion of the ODNs into the DH and
slightly into the overlying cortex. Zif268 (2 nmol/mL) and BDNF
(2 nmol/mL) ODNs were bilaterally infused in DH 90 min prior
to test 1 (1.0 mL per side; 0.125 mL/min) (Lee 2008).

In all cases, after completion of the volume injection, the in-
fusion cannulas were kept in place for an additional period of 120
sec to allow diffusion of the drug.

ELISA
Animals were individually transferred to a separate room for sacri-
fice. Their brains were quickly removed and placed in an acrylic
brain matrix (Stoelting) on ice. Coronal brain slices of 1 mm con-
taining the hippocampus were prepared, and the DH was micro-
punched (Paxinos and Watson 1986). Tissue punches were
homogenized in 300 mL of lysis buffer (137 mM NaCl, 20 mM
Tris-HCl [pH 8.0], 1% NP40, 10% glycerol, 1 mM phenylmethyl-
sulfonylfluoride) containing protease inhibitors (10 mg/mL apro-
tinin, 1 mg/mL leupeptin) and phosphatase inhibitor (0.5 mM
sodium orthovanadate). Tissue and lysis buffer were incubated
on ice for 15 min and centrifuged at 12,000g for 10 min at 4˚C.
The supernatant was collected and total protein concentrations
were determined using the DC Protein Assay (Bio-Rad). BDNF
was measured using the BDNF ELISA Emax Immunoassay
System (Promega) as per the manufacturer’s instructions. BDNF
levels were determined relative to a standard curve constructed
from measures of kit-supplied BDNF protein standards (0–500
pg of BDNF protein) that were assayed simultaneously with the ex-
perimental samples. BDNF levels are expressed as picograms of
BDNF per milligram of sample protein.

Histological procedures
After behavioral tests, rats were sacrificed by an overdose of chloral
hydrate and their brains were removed and immersed in a 4% for-
malin fixative solution. Frontal sections were cut in a cryostat
(Leica). An observer blinded to the experimental condition veri-
fied cannula placement throughout the BLA and DH under a light
microscope. Animals with inaccurate cannula placement or ex-
tensive damage were excluded from data analysis.

Statistical analyses
The results are expressed as the mean+ S.E.M. Behavioral and bio-
chemical data were analyzed using Student’s t-test or ANOVAS. In
the latter case, the source of the main significant effects or inter-
actions was determined by Bonferroni’s protected least significant
difference (PLSD) post-hoc multiple comparisons test. The signifi-
cance level used for all statistical analyses was set at P , 0.05.
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