
International Journal of Contemporary Mathematical Sciences
Vol. 9, 2014, no. 12, 569 - 578

HIKARI Ltd, www.m-hikari.com
http://dx.doi.org/10.12988/ijcms.2014.4885

k-Fractional Trigonometric Functions

Rubén A. Cerutti and Luciano L. Luque

Faculty of Exact Sciences
National University of the Northeast

Av. Libertad 5540 (3400); Corrientes, Argentina

Copyright c© 2014 Rubén A. Cerutti and Luciano L. Luque. This is an open access article
distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Abstract

Based on the k-Mittag-Lefler function and the k-α-Exponential Func-
tion we introduce families of functions that allows us define new frac-
tional trigonometric functions that contain the classical trigonometric
functions as particular case for some convenient election of parameters.
We study some elementary properties and obtain the Laplace transform
of some elements of the families.
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I Introduction

As is well known the classical exponential function, and from it, the classical
trigonometric functions play an important role in the solution of ordinary dif-
ferential equation with constant coefficients. Hence the importance of studying
it and its generalizations including the Mittag-Leffler function of one or two
parameters, the one introduced by Prajapati (c.f. [8]) or for us in [5] the called
k-Mittag-Leffler function given by

Eγ
k,α,β(z) =

∞∑
n=0

(γ)n,k z
n

Γk(nα + β)n!
(I.1)
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where (γ)n,k denote the k-Pochhammer symbol given by

(γ)n,k = γ(γ + k)(γ + 2k)...(γ + (n− 1)k) (I.2)

and Γk(z) is the k-Gamma Function due to Diaz and Pariguan (c.f.[4])

Γk(z) =

∫ ∞
0

tz−1e−
tk

k dt. (I.3)

Elementary calculations allow us to establish the following relationship be-
tween (γ)n,k and Γk(z)

(γ)n,k =
Γk(γ + nk)

Γk(γ)
. (I.4)

It can be seen that if in (I.1), is taken k = γ = α = β = 1, the classical
exponential function is obtained

E1
1,1,1(z) = ez. (I.5)

By Euler equation can be established that

ez = ex+iy = ex (cos y + i sin y) , (I.6)

and considering the series expansion of the exponential function and the sine
and cosine functions we have

cos z =
eiz + e−iz

2
=
∞∑
n=0

(−1)nz2n

(2n)!
(I.7)

sin z =
eiz − e−iz

2i
=
∞∑
n=0

(−1)nz2n+1

(2n+ 1)!
. (I.8)

The extension to fractional calculus of the exponential function carries with
it the extension of trigonometric functions. It may be seen the elementary
presentation (c.f.[1]) and the very interesting one given in [3] in which starting
from a generalized exponential function

eλ(x−a)α = (x− a)α−1
∞∑
n=0

λn(x− a)nα

Γ [α(n+ 1)]

= (x− a)α−1Eα,α [λ(x− a)α] , (I.9)

where x > a, λ ∈ C, α ∈ R+, α ∈ R and Eα,β(x) is the two parametters
Mittag-Leffler function.

Eα,β(x) =
∞∑
n=0

xn

Γ(nα + β)
(I.10)
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may be extended to Fractional Calculus definitions of sine and cosine function
by

cosα [λ(x− α)] =
∞∑
n=0

(−1)nλ2n(x− a)(2n+1)α−1

Γ [(2n+ 1)α]
(I.11)

and

sinα [λ(x− α)] =
∞∑
n=0

(−1)nλ2n+1(x− a)(n+1)2α−1

Γ [(n+ 1)2α]
(I.12)

verifying
Dα
a+ [sinα(λx)] = λ cosα(λx) (I.13)

and
Dα
a+ [cosα(λx)] = −λ sinα(λx) (I.14)

where Dα
a+ denote the Riemann-Liouville fractional derivative of order α de-

fined by
(Dα

a+f) (x) =
[
DnIn−αa+ f

]
(x) (I.15)

being D the usual derivative operator and Iαa+ the fractional Riemann-Liouville
integral operator of order α.

Through this paper we will use frequently

Dγ [(x− a)α] =
Γ(α + 1)

Γ(α− γ + 1)
(x− a)α−γ (I.16)

(c.f. [2]), and

Γ(x) =

(
1

k

)x−1
Γk(kx) (I.17)

(c.f.[4]).

II Riemann-Liouville Fractional Derivative of
order a

k of the k-α-Exponential Function
In this paragraph, based on the k-α-Exponential Function, new definitions
of trigonometric functions are presented and some elementary properties of
them are studied. To do that we will begin computing the Riemann-Liouville
fractional derivative of order α/k of the k-α-Exponential Function.

Let ke
az
γ,α be the k-α-Exponential Function (c.f.[7]) given by

ke
az
γ,α = z

α
k
−1Eγ

k,α,α

(
az

α
k

)
= z

α
k
−1

∞∑
n=0

(γ)n,γ
(
az

α
k

)n
Γk [(n+ 1)α]n!

. (II.1)



572 Rubén A. Cerutti and Luciano L. Luque

Taking into account formulae (I.16) we have

D
α
k

[
ke
az
γ,α

]
=
∞∑
n=1

(γ)n,ka
nΓ
[
α
k
(n+ 1)

]
z
α
k
n−1

Γk [(n+ 1)α]n! Γ
[
α
k
(n+ 1)− α

k

] . (II.2)

Reminding the relationship between the two Gamma Functions given by (I.17)
we have

D
α
k

[
ke
az
γ,α

]
=

∞∑
n=1

(γ)n,ka
nk1−

α
k
(n+1)Γk [α(n+ 1)] z

α
k
n−1

Γk [α(n+ 1)]n! k1−[αk (n+1)−α
k ]Γk [α(n+ 1)− α]

=
az

α
k
−1

k
α
k

∞∑
n=0

(γ)n+1,k

(
az

α
k

)
(n+ 1)! Γk [α(n+ 1)]

. (II.3)

If in (II.3); k = γ = 1 is considered we obtain the formulae (23) of [2].
When a = iλ, λ ∈ R, and x− a = t > 0, (II.1) can be written

ke
iλt
γ,α = t

α
k
−1

k Eγ
α,α

(
iλt

α
k

)
=

∞∑
n=0

(γ)n,ki
nλnt

α
k
(n+1)−1

Γk [(n+ 1)α]n!
(II.4)

where i is the imaginary unit.
By grouping summands according to the powers of the imaginary unit and

the parity of n, we obtain

ke
iλt
γ,α =

∞∑
n=0

(−1)n(γ)2n,kλ
2nt

α
k
(2n+1)−1

Γk [(2n+ 1)α] (2n)!
+ i

∞∑
n=0

(−1)n(γ)2n+1,kλ
2n+1t2

α
k
(n+1)−1

Γk [2α(n+ 1)] (2n+ 1)!
.

(II.5)

Taking into account the above, we define

k cosγ,α(λt) = Re
(
ke
iλt
γ,α

)
(II.6)

and
k sinγ,α(λt) = Im

(
ke
iλt
γ,α

)
. (II.7)

If γ = k = 1, coincides with formulaes (20) and (21) from [3]. It may be
observed that if we adopt k = γ = 1, we have

1 cos1,α(λt) =
∞∑
n=0

(−1)nλ2ntk(2n+1)−1

Γk [(2n+ 1)α]

and

1 sin1,α(λt) =
∞∑
n=0

(−1)nλ2n+1tk(2n+2)−1

Γk [(2n+ 2)α]
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which coincides when λ = 1 with the ones in [2]. Then, it may be written

ke
iλt
γ,α = k cosγ,α(λt) + i k sinγ,α(λt). (II.8)

From (II.6) and (II.7) when k = α = γ = 1 we have

1 cos1,1(t) = cos(t) = Re
(
eit
)

and
1 sin1,1(t) = sin(t) = Im

(
eit
)
.

Analogously, it may be obtained

ke
−iλt
γ,α =k cosγ,α(λt)− i k sinγ,α(λt). (II.9)

From (II.8) and (II.9) it result

k cosγ,α(λt) =
ke
iλt
γ,α + ke

−iλt
γ,α

2
(II.10)

and

k sinγ,α(λt) =
ke
iλt
γ,α − ke

−iλt
γ,α

2i
. (II.11)

Can be clearly seen that when k = α = γ = 1 results the known expression
for the classical trigonometric functions given by (I.7) and (I.8).

From the defining formulae (II.10) and (II.11) may be derived the following
properties:

k cosγ,α(−λt) = k cosγ,α(λt) (II.12)

k sinγ,α(−λt) = −k sinγ,α(λt) (II.13)

k cos2γ,α(λt) + k sin2
γ,α(λt) =k e

iλt
γ,α ke

−iλt
γ,α (II.14)

By replacing k,α, γ and λ for 1 in (II.14) is obtained the well known relation

cos2(t) + sin2(t) = 1. (II.15)

III The Laplace Transform of the k-α-Exponential
Function

We begin by recalling the Laplace Transform of the function t
α
k
(n+1)−1, given

by

L
[
t
α
k
(n+1)−1] (s) =

Γ
[
α
k
(n+ 1)

]
s
α
k
((n+1))

(III.1)
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(c.f.[7]).
The series expansion of the k-α-Exponential Function allows us evaluate

L
[
ke
λt
γ,α

]
= L

[
∞∑
n=0

(γ)n,k λ
nt

α
k
(n+1)−1

Γk [(n+ 1)α]n!

]

=
∞∑
n=0

(γ)n,k λ
nL
[
t
α
k
(n+1)−1]

Γk [(n+ 1)α]n!
,

and taking into account (III.1), it results

L
[
ke
λt
γ,α

]
=

∞∑
n=0

(γ)n,k λ
nΓ
[
α
k
(n+ 1)

]
n!Γk [(n+ 1)α] s

α
k
(n+1)

=
∞∑
n=0

(γ)n,k k
1−α

k
n−α

k an

n!s
α
k
ns

α
k

=
k1−

α
k

s
α
k

∞∑
n=0

(γ)n,k
n!

(
λ

(ks)
α
k

)n
. (III.2)

According the notation by [8] formula (2.22) we may writte

L
[
ke
λt
γ,α

]
=
k1−

α
k

s
α
k

(
1− λ

(ks)
α
k

)−γ,k
. (III.3)

If in (III.3) we consider k = γ = 1 we have

L
[
eλtα
]

=
1

sα

∞∑
n=0

(
λ

sα

)n
=

1

sα − λ
(III.4)

(c.f. [6]).
For the convergence of the series in (III.2) see [8] and also [9].
To obtain the Laplace Transform of k cosγ,α(λt) and k sinγ,α(λt) taking

into account (II.10) and (II.11) we have

L [k cosγ,α(λt)] =
1

2

{
L
[
ke
iλt
γ,α

]
+ L

[
ke
−iλt
γ,α

]}
(III.5)

and from (III.3) it results

L [k cosγ,α(λt)] =
k1−

α
k

2sα

{(
1− λ

(ks)
α
k

)−γ,k
+

(
1 +

λ

(ks)
α
k

)−γ,k}
. (III.6)

When taken k = α = γ = 1; (III.6) reduces to the classical expression

L [cos(λt)] =
s

s2 + λ2
(III.7)

Analogous it may be obtained

L [sin(λt)] =
s

s2 + λ2
(III.8)
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IV The Ek,γ,αj Function

Motivated by the result expressed by the formula (II.5) and looking for to
be verified the classical relationship between the derivative of the sine(cosine)
with the cosine(sine), by considering the variation of family of the index of the
k-Pochhammer symbol, we introduce the following family of Mittag-Leffler
type.

Definition 1 : Let α, γ ∈ C, Re(γ) > 0, Re(s) > 0, k > 0 and z ∈ C− {0},
and j ∈ N0.

Ek,γ,αj (λz) =
∑
n≥0

(γ)n+j,kλ
nz

α
k
(n+1)−1

Γk(α(n+ 1))(n+ j)!
. (IV.1)

It can be seen that if in (IV.1) is considered j = 0, is obtained the function
k-α-Exponential (c.f.[7])

ke
λz
γ,α = zα/k−1Eγ

k,α,α

(
λzα/k

)
, (IV.2)

When j = 0 and k = 1 is obtained the function α-Exponencial function
given by (I.9).

We will demostrate that the Ek,γ,αj function satisfies the following proper-
ties:

1. Ek,γ,α0 (λz) =k e
λz
γ,α.

2. Dα/k
[
Ek,γ,α0 (λz)

]
= λk−α/kEk,γ,α1 (λz).

3. Dα/k
[
Ek,γ,αj (λz)

]
= λk−α/kEk,γ,αj+1 (λz).

4.
(
Dα/k

)j (
ke
λz
γ,α

)
=
(
λk−α/k

)j Ek,γ,αj (λz).

Proof.
The first one results from (IV.1) when j = 0. Moreover, it suffices to prove

3) ,to see that also verified 2). Finaly we will show the property 3) by induction
on the index j.

We will prove that 4) is verified. By using the definition and the relationship
(I.16)

Dα/k
(
Ek,γ,αj (λz)

)
=

∑
n≥1

(γ)n+jλ
n

Γk [α(n+ 1)] (n+ j)!
Dα/k

(
zα/k(n+1)−1)

=
∑
n≥1

(γ)n+jλ
n

Γk [α(n+ 1)] (n+ j)!

Γ(α
k
(n+ 1))

Γ(αn
k

)
z
α
k
n−1
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Now, taking into account the relationship between the two gamma functions,
the classical and k-Gamma, Γ(αn

k
) = k1−

αn
n Γ(αn), results

Dα/k
(
Ek,γ,αj (λz)

)
=

∑
n≥1

(γ)n+jλ
n

Γk [α(n+ 1)] (n+ j)!

k−
α
k Γ(α(n+ 1))

Γ(αn)
z
α
k
n−1

= k−
α
k

∑
n≥1

(γ)n+j+1λ
n+1

Γk [α(n+ 1)] (n+ j + 1)!
z
α
k
n−1

= λk−α/kEk,γ,αj+1 (λz). (IV.3)

We will prove the property 4) by inducction on j.
In view the properties 1) y 2) we known that this relationship is verified to

j = 1. Suppose it holds for j = n, we see that this implies that equality holds
for j = n+ 1:

(
Dα/k

)j+1
(Ek,γ,α0 ) = Dα/k

(
Dα/k

)j
(Ek,γ,α0 ) = Dα/k

[(
λk−α/k

)j Ek,γ,αj

]
=

(
λk−α/k

)j
Dα/k(Ek,γ,αj )

=
(
λk−α/k

)j+1 Ek,γ,αj+1 . (IV.4)

that is what we wanted to prove. �

IV.1 Trigonometric Functions

On the basis of (I.1), looking for another generalization of the classical trigono-
metric functions cosine and sine, we put by

Definition 2 : Let α, γ ∈ C, Re(γ) > 0, Re(s) > 0, k > 0 and z ∈ C − {0}
y j ∈ N0

j cosk,γ,α(λz) = Re
{
Ek,γ,αj (iλz)

}
j sink,γ,α(λz) = Im

{
Ek,γ,αj (iλz)

} (IV.5)

o equivalently

j cosk,γ,α(λz) =
∑
n≥0

(−1)n(γ)2n+j,kλ
2nzα/k(2n+1)−1

Γk [α(2n+ 1)] (2n+ j)!
. (IV.6)

j sink,γ,α(λz) =
∑
n≥0

(−1)n(γ)2n+1+j,kλ
2n+1zα/k(2n+2)−1

Γk [α(2n+ 2)] (2n+ 1 + j)!
. (IV.7)
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The functions introduced in (IV.5) satisfies the following properties:

Lemma: Given α, γ ∈ C, Re(γ) > 0, Re(s) > 0, k > 0 and z ∈ C− {0} y
j ∈ N0, then

1.
Dα/k {j sink,γ,α(λz)} = λk−α/k j+1 cosk,γ,α(λz). (IV.8)

2.
Dα/k {j cosk,γ,α(λz)} = −λk−α/k j+1 sink,γ,α(λz). (IV.9)

Proof. By using the definition (IV.1) and the properties demostrated in
IV.1, we have

Dα/k
[
Ek,γ,αj (iλz)

]
= λk−α/kEk,γ,αj+1 (iλz)

= λk−α/k
∑
n≥0

(γ)n+j+1,k(iλ)nzα/k(n+1)−1

Γk [α(n+ 1)] (n+ j + 1)!
. (IV.10)

Grouping of course with the powers of imaginary unit, it results

Dα/k
[
Ek,γ,αj (iλz)

]
=

− λk−α/k
∑
n≥0

(−1)n
(γ)2n+2+j,kλ

2n+1zα/k(2n+2)−1

Γk [α(2n+ 2)] (2n+ 2 + j)!
+

+ i λk−α/k
∑
n≥0

(−1)n
(γ)2n+1+j,kλ

2nzα/k(2n+1)−1

Γk [α(2n+ 1)] (2n+ 1 + j)!
. (IV.11)

As Ek,γ,αj (iλz) =j cosk,γ,α(λz) + ij sink,γ,α(λz), results the assertion. �
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